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2. OLS Part II 

The OLS residuals are orthogonal to the regressors. If the model includes an intercept, the 

orthogonality of the residuals and regressors gives rise to three results, which have limited 

practical usefulness but are good exercises for understanding the algebra of least squares. 

Partitioned and partial regression is not treated as seriously as it might be in a graduate course, 

and is only given a cursory presentation. However, the residual maker matrix Mi is presented, 

and is used in to define 𝑅2, and in several other parts of the course. 

2.1 Some basic properties of OLS 

First, note that the LS residuals are “orthogonal” to the regressors – 

𝑋′𝑋𝒃 − 𝑋′𝒚 = 𝟎                         (“normal equations”;  (k×1) ) 

So, 

−𝑋′(𝒚 − 𝑋𝒃) = −𝑋′𝒆 = 0  ; 

or,          

 

Orthogonality implies linear independence (but not vice versa). See “Linearly Independent, 

Orthogonal, and Uncorrelated Variables” (Rodgers et al., 1984), for the definition and 

relationship between the three terms. 

If the model includes an intercept term, then one regressor (say, the first column of X) is a unit 

vector. 

In this case we get some further results: 

1.  The LS residuals sum to zero 

𝑋′𝒆 = (
1 ⋯ 𝑥1𝑘

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛𝑘

)

′

(

𝑒1
⋮
𝑒𝑛

) = (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(

𝑒1
⋮
𝑒𝑛

) 

                                         = (
∑ 𝑒𝑖𝑖

?
?

) = (
0
⋮
0
)  

From the first element: 

   

𝑋′𝒆 = 0 

 𝑒𝑖 = 0

𝑛

𝑖=1

 

http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1984.10483183
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1984.10483183
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2.  Fitted regression passes through sample mean       

                  𝑋′𝒚 = 𝑋′𝑋𝒃  , 

or,      (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(

𝑦1

⋮
𝑦𝑛

) = (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(
1 ⋯ 𝑥1𝑘

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛𝑘

)(
𝑏1

⋮
𝑏𝑘

)  . 

So,           (
∑ 𝑦𝑖𝑖

?
?

) = (
𝑛 ∑ 𝑥𝑖2𝑖 …
? … ?
? … ?

)(
𝑏1

⋮
𝑏𝑘

)   . 

From the first row of this vector equation – 

 𝑦𝑖

𝑖

= 𝑛𝑏1 + 𝑏2  𝑥𝑖2 + ⋯+ 𝑏𝑘  𝑥𝑖𝑘

𝑖𝑖

 

or,     

 

3.  Sample mean of the fitted y-values equals sample mean of actual y-values 

𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝜀𝑖 = 𝒙𝒊

′𝒃 + 𝑒𝑖 = 𝑦𝑖̂ + 𝑒𝑖  . 

So,            

1

𝑛
∑ 𝑦𝑖 =

1

𝑛
∑ 𝑦𝑖̂

𝑛
𝑖=1 +

1

𝑛
∑ 𝑒𝑖

𝑛
𝑖=1

𝑛
𝑖=1   , 

or,    

              

 

Note: These last 3 results use the fact that the model includes an intercept. 

2.2 Partitioned and Partial Regression 

We can solve for “blocks” of 𝒃. Suppose we partition our model into 2 blocks: 

𝒚     =   𝑋1𝜷1      +       𝑋2𝜷2      +      𝜺    . 

                                          (n×1)  (n×k1)(k1×1)   (n×k2)(k2×1)     (n×1)   

We could solve for the OLS estimator of 𝜷1 only: 

𝒃𝟏 = (𝑋1′𝑋1)
−1𝑋1′𝒚 − (𝑋1′𝑋1)

−1𝑋1′𝑋2𝒃𝟐 

When does 𝒃𝟏 = (𝑋1′𝑋1)
−1𝑋1′𝒚 ? 

𝑦 = 𝑏1 + 𝑏2𝑥2   + ⋯+ 𝑏𝑘𝑥𝑘    

𝑦 = 𝑦  + 0 = 𝑦   
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Above we have a solution for 𝒃𝟏 in terms of 𝒃𝟐. We can substitute in a similar solution for 𝒃𝟐 to 

obtain a solution for 𝒃𝟏 that is a function of only the X and y data. 

Define: 

𝑀2 = (𝐼 − 𝑋2(𝑋2′𝑋2)
−1𝑋2′) 

 M2 is an “idempotent” matrix  

 𝑀2𝑀2 = 𝑀2𝑀2′ = 𝑀2 = 𝑀2′𝑀2. 

Then, we can write: 

 

 

By the symmetry of the problem, we can interchange the “1” and “2” subscripts, and get: 

 

 

So, finally, we can write: 

 

 

where: 

            𝑋1
∗ = 𝑀2𝑋1  ;  𝑋2

∗ = 𝑀1𝑋2  ;   𝒚𝟏
∗ = 𝑀2𝒚   ;    𝒚𝟐

∗ = 𝑀1𝒚 

These results are important for several reasons: 

 Historically, for computational reasons. See the “Frisch-Waugh-Lovell Theorem”. 

 In certain situations 𝒃𝟏 and 𝒃𝟐 may have different properties. This is difficult to show 

without have separate formulas. 

 Having established the Mi “residual maker” matrix, it is used frequently to derive other 

results. 

Why is Mi called a “residual maker” matrix? 

  

𝒃𝟏 = (𝑋1′𝑀2𝑋1)
−1𝑋1′𝑀2𝒚 

𝒃𝟐 = (𝑋2′𝑀1𝑋2)
−1𝑋2′𝑀1𝒚 

𝒃𝟏 = (𝑋1
∗′𝑋1

∗)−1𝑋1
∗′𝒚𝟏

∗  𝒃𝟐 = (𝑋2
∗′𝑋2

∗)−1𝑋2
∗′𝒚𝟐

∗  
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2.3 Goodness-of-Fit 

 One way of measuring the “quality” of fitted regression model is by the extent to which 

the model “explains” the sample variation for y. 

 Sample variance of y is    
1

(𝑛−1)
∑ (𝑦𝑖 − 𝑦 )2𝑛

𝑖=1  . 

 Or, we could just use   ∑ (𝑦𝑖 − 𝑦 )2𝑛
𝑖=1  to measure variability. 

 Our “fitted” regression model, using LS, gives us 

 

                        𝒚 = 𝑋𝒃 + 𝒆 = 𝒚̂ + 𝒆 

where              𝒚̂ = 𝑋𝒃 = 𝑋(𝑋′𝑋)−1𝑋′𝒚 

 Recall that if the model includes an intercept, then the residuals sum to zero, and  𝑦 = 𝑦   . 

 

To simplify things, introduce the following matrix: 

                           𝑀0 = [𝐼𝑛 −
1

𝑛
𝒊𝒊′] 

where:              𝒊 = (
1
⋮
1
)                ;                    (n×1) 

Note that: 

 𝑀0is an idempotent matrix. 

 𝑀0𝒊 = 𝟎 . 

 𝑀0 transforms elements of a vector into deviations from sample mean. 

  𝒚′𝑀0𝒚 = 𝒚′𝑀0𝑀0𝒚 = ∑ (𝑦𝑖 − 𝑦 )2𝑛
𝑖=1  . 

Let’s check the third of these results: 

      𝑀0𝒚 = {[
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] − [[
1/𝑛 ⋯ 1/𝑛
⋮ ⋱ ⋮

1/𝑛 ⋯ 1/𝑛
]]}(

𝑦1

⋮
𝑦𝑛

) 
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               = [

𝑦1 −
1

𝑛
𝑦1 −

1

𝑛
𝑦2 …−

1

𝑛
𝑦𝑛

⋮

𝑦𝑛 −
1

𝑛
𝑦1 −

1

𝑛
𝑦2 − ⋯−

1

𝑛
𝑦𝑛

] = (
𝑦1 − 𝑦 

⋮
𝑦𝑛 − 𝑦 

) . 

 

Returning to our “fitted” model: 

                   𝒚 = 𝑋𝒃 + 𝒆 = 𝒚̂ + 𝒆  

So, we have: 

                     𝑀0𝒚 = 𝑀0𝒚̂ + 𝑀0𝒆 = 𝑀0𝒚̂ + 𝒆 . 

[𝑀0𝒆 = 𝒆  ;  because the residuals sum to zero.] 

Then – 

                     𝒚′𝑀0𝒚 = 𝒚′𝑀0′𝑀0𝒚 = (𝑀0𝒚̂ + 𝒆)′(𝑀0𝒚̂ + 𝒆) 

                                 = 𝒚̂′𝑀0𝒚̂ + 𝒆′𝒆 + 2𝒆′𝑀0𝒚̂  

However,  

  𝒆′𝑀0𝒚̂ = 𝒆′𝑀0′
𝒚̂ = (𝑀0𝒆)′𝒚̂ = 𝒆′𝒚̂ = 𝒆′𝑋(𝑋′𝑋)−1𝑋′𝒚 = 0 . 

So, we have – 

 

 

 

 

 

Recall:   𝑦  = 𝑦  . 

 

 

This lets us define the “Coefficient of Determination” – 

𝑅2 = (
𝑆𝑆𝑅

𝑆𝑆𝑇
) = 1 − (

𝑆𝑆𝐸

𝑆𝑆𝑇
) 

  

𝒚′𝑀0𝒚     =      𝒚̂′𝑀0𝒚̂          +     𝒆′𝒆 

 (𝑦𝑖 − 𝑦 )2  =  (𝑦𝑖̂ − 𝑦 )2 +  𝑒𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

SST         =     SSR        +        SSE 
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Note: 

 The second equality in definition of R2 holds only if model includes an intercept. 

 𝑅2 = (
𝑆𝑆𝑅

𝑆𝑆𝑇
) ≥ 0 

 𝑅2 = 1 − (
𝑆𝑆𝐸

𝑆𝑆𝑇
) ≤ 1 

 So, 0 ≤ 𝑅2 ≤ 1 

 Interpretation of “0” and “1” ? 

 𝑅2 is unitless . 

What happens if we add any regressor(s) to the model? 

                             𝒚 = 𝑋1𝜷1 + 𝜺                    ; [1] 

Then:  

                             𝒚 = 𝑋1𝜷1 + 𝑋2𝜷2 + 𝒖      ; [2] 

(A)  Applying LS to [2]: 

                   𝑚𝑖𝑛. (𝒖̂′𝒖̂)             ;      𝒖̂ = 𝒚 − 𝑋1𝒃𝟏 − 𝑋2𝒃𝟐 

(B) Applying LS to [1]: 

                   𝑚𝑖𝑛. (𝒆′𝒆)               ;      𝒆 = 𝒚 − 𝑋1𝜷̂𝟏 

Problem (B) is just Problem (A), subject to restriction: 𝜷𝟐 = 0 . Minimized value in (A) must be  

≤  minimized value in (B). So, 𝒖̂′𝒖̂ ≤ 𝒆′𝒆 . 

What does this imply? 

 Adding any regressor(s) to the model cannot increase (and typically will decrease) the 

sum of squared residuals. 

 So, adding any regressor(s) to the model cannot decrease (and typically will increase) the 

value of R2. 

 Means that R2 is not really a very interesting measure of the “quality” of the regression 

model, in terms of explaining sample variability of the dependent variable. 

 For these reasons, we usually use the “adjusted” Coefficient of Determination.  

We modify   𝑅2 = [1 −
𝒆′𝒆

𝒚′𝑀0𝒚
 ] to become: 
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                                 𝑅 2 = [1 −
𝒆′𝒆/(𝑛−𝑘)

𝒚′𝑀0𝒚/(𝑛−1)
] . 

 What are we doing here? 

We’re adjusting for “degrees of freedom” in numerator and denominator. 

 “Degrees of freedom” = number of independent pieces of information. 

 𝒆 = 𝒚 − 𝑋𝒃  .  We estimate k parameters from the n data-points. We have (n – k) 

“degrees of freedom” associated with the fitted model. 

 In denominator – have constructed 𝑦  from sample. “Lost” one degree of freedom. 

 Possible for 𝑅 2 < 0   (even with intercept in the model). 

 𝑅 2 can increase or decrease when we add regressors. 

 When will it increase (decrease)? 

In multiple regression, 𝑅 2 will increase (decrease) if a variable is deleted, if and only if 

the associated t-statistic has absolute value less than (greater than) unity. 

 If model doesn’t include an intercept, then  SST ≠ SSR + SSE, and in this case no longer 

any guarantee that 0 ≤ 𝑅2 ≤ 1 . 

 Must be careful comparing 𝑅2 and 𝑅 2 values across models. 

Example –  

(1)    𝐶𝑖̂ = 0.5 + 0.8𝑌𝑖               ;          𝑅
2 = 0.90 

(2)  log (𝐶𝑖̂) = 0.2 + 0.75𝑌𝑖      ;          𝑅
2 = 0.80 

Sample variation is in different units. 


