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3. OLS Part III 

In this section we derive some finite-sample properties of the OLS estimator. 

3.1 The Sampling Distribution of the OLS Estimator 

𝒚 = 𝑿𝜷 + 𝜺    ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛] 

𝒃 = (𝑿′𝑿)−1𝑿′𝒚 = 𝑓(𝒚) 

            ε is random               y is random                 b is random 

 b is an estimator of β. It is a function of the random sample data. 

 b is a “statistic”. 

 b has a probability distribution – called its Sampling Distribution. 

 Interpretation of sampling distribution – 

Repeatedly draw all possible samples of size n.  

Calculate values of b each time. 

Construct relative frequency distribution for the b values and probability of occurrence. 

It is a hypothetical construct. Why? 

 Sampling distribution offers one basis for answering the question: 

 

              “How good is b as an estimator of β ?” 

Note: 

Quality of estimator is being assessed in terms of performance in repeated samples. Tells us 

nothing about quality of estimator for one particular sample. 
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 Let’s explore some of the properties of the LS estimator, b, and build up its sampling 

distribution. 

 Introduce some general results, and apply them to our problem. 

 

Definition: An estimator, �̂� is an unbiased estimator of the parameter vector, θ, if   𝐸[�̂�] = 𝜽 . 

That is, 𝐸[�̂�(𝒚)] = 𝜽 . 

That is, ∫ 𝜃(𝒚)𝑝(𝒚 | 𝜽)𝑑𝒚 = 𝜽 . 

The quantity,  𝑩(𝜽, 𝒚) = 𝐸[�̂�(𝒚) − 𝜽] , is called the “Bias” of  �̂� . 

 

Example:     {𝑦1, 𝑦2, … … , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  . 

Then, 𝐸[�̅�] = 𝐸 [
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ] =

1

𝑛
∑ 𝐸(𝑦𝑖

𝑛
𝑖=1 ) 

                     =
1

𝑛
∑ 𝜇 =𝑛

𝑖=1 (
1

𝑛
𝑛𝜇 ) = 𝜇  . 

So, �̅� is an unbiased estimator of the parameter, μ. 

 Here, there are lots of possible unbiased estimators of μ. 

 So, need to consider additional characteristics of estimators to help choose. 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚   

 Recall – either assume that X is non-random, or condition on X. 

 We’ll assume X is non-random – get same result if we condition on X. 

Then:        𝐸(𝒃) = 𝐸[(𝑋′𝑋)−1𝑋′𝒚] = (𝑋′𝑋)−1𝑋′𝐸(𝒚) 
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So, 

 𝐸(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝑋𝜷 + 𝜺] = (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝐸(𝜺)] 

= (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝟎] = (𝑋′𝑋)−1𝑋′𝑋𝜷 

= 𝜷 . 

 

 

 

Definition:  Any estimator that is a linear function of the random sample data is called a Linear 

Estimator. 

Example:     {𝑦1, 𝑦2, … … , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 =

1

𝑛
[𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛] . 

This statistic is a linear estimator of μ. 

(Note that the “weights” are non-random.) 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚   

                    (k×1)                      (k×n)(n×1) 

Note that, under our assumptions, A is a non-random matrix. 

So, 

                    (
𝑏1

⋮
𝑏𝑘

) = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋯ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑛

] (

𝑦1

⋮
𝑦𝑛

)  . 

For example,    𝑏1 = [𝑎11𝑦1 + 𝑎12𝑦2 + ⋯ + 𝑎1𝑛𝑦𝑛]   ;     etc. 

The LS estimator of β is Unbiased 
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Now let’s consider the dispersion (variability) of b, as an estimator of β. 

Definition:  Suppose we have an (n×1) random vector, x. Then the Covariance Matrix of x is 

defined as the (n×n) matrix: 

                     𝑉(𝒙) = 𝐸[(𝒙 − 𝐸(𝒙))(𝒙 − 𝐸(𝒙))
′
]. 

 Diagonal elements of V(x) are   𝑣𝑎𝑟. (𝑥1), ……., 𝑣𝑎𝑟. (𝑥𝑛). 

 Off-diagonal elements are  𝑐𝑜𝑣𝑎𝑟. (𝑥𝑖 , 𝑥𝑗) ; i, j = 1, …, n ; i ≠ j. 

Return to our LS problem – 

We have a (k×1) random vector, b, and we know that  𝐸(𝒃) = 𝜷. 

                 𝑉(𝒃) = 𝐸[(𝒃 − 𝐸(𝒃))(𝒃 − 𝐸(𝒃))
′
] 

Now, 

               𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                  = (𝑋′𝑋)−1(𝑋′𝑋)𝜷 + (𝑋′𝑋)−1𝑋′𝜺 

                  = 𝐼𝜷 + (𝑋′𝑋)−1𝑋′𝜺. 

So, 

               (𝒃 − 𝜷) = (𝑋′𝑋)−1𝑋′𝜺 .                                          [*] 

Using the result, [*], in V(b), we have: 

            𝑉(𝒃) = 𝐸{[(𝑋′𝑋)−1𝑋′𝜺][(𝑋′𝑋)−1𝑋′𝜺]′} 

                     = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 . 

We showed, earlier, that because  𝐸(𝜺) = 𝟎,   𝑉(𝜺) = 𝐸(𝜺𝜺′) = 𝜎2𝐼𝑛 . 

(What other assumptions did we use to get this result?) 

So, we have: 

The LS estimator, b, is a linear (& unbiased) estimator of β 
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   𝑉(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 = (𝑋′𝑋)−1𝑋′𝜎2𝐼𝑋(𝑋′𝑋)−1 = 𝜎2(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1 

             = 𝜎2(𝑋′𝑋)−1. 

 

 

 

Interpret diagonal and off-diagonal elements of this matrix. 

Finally, because the error term, ε is assumed to be Normally distributed, 

1.   𝒚 = 𝑋𝜷 + 𝜺 :   this implies that y is also Normally distributed. (Why?) 

2.   𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚 :   this implies that b is also Normally distributed. 

So, we now have the full Sampling Distribution of the LS estimator, b : 

 

                      

Note: 

 This result depends on our various, rigid, assumptions about the various components of 

the regression model. 

 The Normal distribution here is a “multivariate Normal” distribution. 

(See handout on “Spherical Distributions”.) 

 As with estimation of population mean, μ, in previous example, there are lots of other 

unbiased estimators of  𝜷  in the model = 𝑋𝜷 + 𝜺 . 

 How might we choose between these possibilities?  Is linearity desirable? 

 We need to consider other desirable properties that these unbiased estimators may have. 

 One option is to take account of estimators' precisions. 

 

𝑉(𝒃) = 𝜎2(𝑋′𝑋)−1 

          (k×k) 

𝒃 ~ 𝑁[𝜷 , 𝜎2(𝑋′𝑋)−1] 
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3.2 The Efficiency of OLS 

Definition:  Suppose we have two unbiased estimators,  𝜃1̂ and 𝜃2̂ , of the (scalar) parameter, 𝜃. 

Then we say that  𝜃1̂ is at least as efficient as  𝜃2̂  if 𝑣𝑎𝑟. ( 𝜃1̂ ) ≤ 𝑣𝑎𝑟. ( 𝜃2̂ ) . 

Note: 

1.  The variance of an estimator is just the variance of its sampling     distribution. 

2.  "Efficiency" is a relative concept. 

3.   What if there are 3 or more unbiased estimators being compared? 

 

 What if one or more of the estimators being compared is biased ? 

 In this case we can take account of both variance, and any bias, at the same time by using 

"mean squared error" (MSE) of the estimators. 

Definition:  Suppose we have two unbiased estimators, 𝜃1 and 𝜃2 , of the parameter vector, 𝜽. 

Then we say that  𝜃1 is at least as efficient as 𝜃2  if 𝛥 = 𝑉(𝜃2 ) − 𝑉( 𝜃1) is at least positive 

semi-definite. 

Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator, 

b, of 𝛽 optimal? 

 

 

 

 

1.  Is this an interesting result? 

2. What assumptions about the "standard" model are we going to exploit? 

 

  

Theorem (Gauss-Markhov): 

In the "standard" linear regression model,  𝒚 = 𝑋𝜷 + 𝜺 , the LS estimator, b, of 𝜷 is Best Linear 

Unbiased (BLU). That is, it is Efficient in the class of all linear and unbiased estimators of 𝛽. 
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Proof 

Let b0 be any other linear estimator of 𝜷: 

                         𝒃𝟎 = 𝐶𝒚                        ;         for some non-random C . 

                     (k×1)   (k×n)(n×1) 

Now,             𝑉(𝒃𝟎) = 𝐶𝑉(𝒚)𝐶′ = 𝐶(𝜎2𝐼𝑛)𝐶′ = 𝜎2𝐶𝐶′                                                                                 

                       (k×k)  

Define:           𝐷 = 𝐶 − (𝑋′𝑋)−1𝑋′ 

so that            𝐷𝒚 = 𝐶𝒚 − (𝑋′𝑋)−1𝑋′𝒚 = 𝒃𝟎 − 𝒃   . 

Now restrict b0 to be unbiased, so that  𝐸(𝒃𝟎) = 𝐸(𝐶𝒚) = 𝐶𝑋𝜷 = 𝜷 . 

This requires that  𝐶𝑋 = 𝐼, which in turn implies that 

         𝐷𝑋 = [𝐶 − (𝑋′𝑋)−1𝑋′]𝑋 = 𝐶𝑋 − 𝐼 = 0               (𝑎𝑛𝑑 𝐷′𝑋′ = 0) 

(What assumptions have we used so far?) 

Now, focus on covariance matrix of b0 : 

𝑉(𝒃𝟎) = 𝜎2[𝐷 + (𝑋′𝑋)−1𝑋′][𝐷 + (𝑋′𝑋)−1𝑋′]′ 

                             = 𝜎2[𝐷𝐷′ + (𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1]      ;         𝐷𝑋 = 0                                                          

                     = 𝜎2𝐷𝐷′ + 𝜎2(𝑋′𝑋)−1 

                          = 𝜎2𝐷𝐷′ + 𝑉(𝒃), 

or,                [𝑉(𝒃𝟎) − 𝑉(𝒃)] = 𝜎2𝐷𝐷′                     ;                   𝜎2 > 0 

 

Now we just have to "sign" this (matrix) difference: 

                   𝜼′(𝐷𝐷′)𝜼 = (𝐷′𝜼)′(𝐷′𝜼) = 𝑣′𝑣 = ∑ 𝑣𝑖
2𝑛

𝑖=1 ≥ 0 . 

So,    𝛥 = [𝑉(𝒃𝟎) − 𝑉(𝒃)] is a p.s.d. matrix, implying that b0 is relatively less efficient  than b. 
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Result:     

 

 

 What assumptions did we use, and where? 

 Were there any standard assumptions that we didn't use? 

 What does this suggest? 

The LS estimator is the Best Linear Unbiased estimator of 𝜷. 


