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3. OLS Part 111

In this section we derive some finite-sample properties of the OLS estimator.

3.1 The Sampling Distribution of the OLS Estimator
y=XB+¢& ; &~N[0,0%],]

b=XX)"'Xy=f()
& is random sl v js random i | s random

e bisan estimator of g. It is a function of the random sample data.
e bisa “statistic”.
e Db has a probability distribution — called its Sampling Distribution.
e Interpretation of sampling distribution —
Repeatedly draw all possible samples of size n.
Calculate values of b each time.
Construct relative frequency distribution for the b values and probability of occurrence.
It is a hypothetical construct. Why?

e Sampling distribution offers one basis for answering the question:

“How good is b as an estimator of g ?”

Note:

Quiality of estimator is being assessed in terms of performance in repeated samples. Tells us

nothing about quality of estimator for one particular sample.
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e Let’s explore some of the properties of the LS estimator, b, and build up its sampling
distribution.

e Introduce some general results, and apply them to our problem.

Definition: An estimator, @ is an unbiased estimator of the parameter vector, 6, if E[8] =6 .
That is, E[o(n]=6.

That is, [0(y)p(y| 8)dy =86.

The quantity, B(6,y) = E[0(y) — 0], is called the “Bias” of 9 .

Example:  {y1, V5, «or o ,Yn} is arandom sample from population with a finite mean, x, and a

finite variance, o2 .

Consider the statistic y = %Z?:lyi .

Then, E[7] = E [Z Xy vi| = 221 E(ro)

5= =u

So, y is an unbiased estimator of the parameter, .

e Here, there are lots of possible unbiased estimators of .

e S0, need to consider additional characteristics of estimators to help choose.

Return to our LS problem —
b=X'X)"1X"y

e Recall — either assume that X is non-random, or condition on X.

e We’ll assume X is non-random — get same result if we condition on X.

Then:  E(b) = E[(X'X)7'X'y] = X' X)T'X'E(®)
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So,
E(b) = (X'X)"X'E[XB + €] = (X'X)"1X'[XB + E(&)]
= (X'X)"X'[XB+ 0] = (X'X)"1X'XB

The LS estimator of £ is Unbiased

Definition: Any estimator that is a linear function of the random sample data is called a Linear

Estimator.

Example:  {y1, 5, - .. ,¥n} is arandom sample from population with a finite mean, x, and a

finite variance, ¢° .
Consider the statistic y = %Z?:lyi = %[y1 +y,++ ]

This statistic is a linear estimator of .

(Note that the “weights” are non-random.)

Return to our LS problem —
b=XX)"'X'y=Ay
(kx1) (kxn)(nx1)

Note that, under our assumptions, A is a non-random matrix.

(bl) [an o Qip ()’1)
by, A1 " Qgnl \In

Forexample, b; = [a;1y1 + a2y, + -+ anyn] ; et

So,
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The LS estimator, b, is a linear (& unbiased) estimator of g

Now let’s consider the dispersion (variability) of b, as an estimator of .

Definition: Suppose we have an (nx1) random vector, X. Then the Covariance Matrix of x is

defined as the (nxn) matrix:

V(x) = E[(x — Ex))(x — E(x)) .

e Diagonal elements of V(x) are var.(x;), ....... ,var. (x,).

o Off-diagonal elements are covar.(x;,x;) ;i,j=1,...,n;i#].

Return to our LS problem —

We have a (kx1) random vector, b, and we know that £(b) = .

V(b) = E[(b—E(b))(b—E(b))]

Now,
b=XX)"X'y=X'X)'X'(XB + £)
= (X'X)IX'X)B + (X' X)X'e
=IB+ (X'X) X'
So,

(b—B)=X'X)"X'e. [*]
Using the result, [*], in V(b), we have:
V(b) = E{[(X'X)7'X"e][(X' X)X "]’}
= (X'X) X' E[e'|X(X'X)" .
We showed, earlier, that because E(g) =0, V(e) = E(e€’) = 621, .
(What other assumptions did we use to get this result?)

So, we have:
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V(b)) = (X'X)"XX'E[e€']X(X'X)™' = X' X) " X'a?IXX'X) ' =c?(X'X) T X' X)X’ X)™?

=o?(X'X)"L

V(b) = c?(X'X)1
(kxk)

Interpret diagonal and off-diagonal elements of this matrix.
Finally, because the error term, ¢ is assumed to be Normally distributed,

1. y=Xp+e: thisimplies thaty is also Normally distributed. (\Why?)
2. b=(X'X)"1X'y = Ay: thisimplies that b is also Normally distributed.

So, we now have the full Sampling Distribution of the LS estimator, b :

b~N[B,0%(X'X)™ 1]

Note:

e This result depends on our various, rigid, assumptions about the various components of
the regression model.

e The Normal distribution here is a “multivariate Normal” distribution.
(See handout on “Spherical Distributions”.)

e As with estimation of population mean, u, in previous example, there are lots of other
unbiased estimators of B inthe model = X + ¢ .

e How might we choose between these possibilities? Is linearity desirable?

e We need to consider other desirable properties that these unbiased estimators may have.

e One option is to take account of estimators' precisions.
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3.2 The Efficiency of OLS

Definition: Suppose we have two unbiased estimators, 8, and 8, , of the (scalar) parameter, 6.

Then we say that 8, is at least as efficient as 8, if var.(0;) < var.(9;).

Note:

1. The variance of an estimator is just the variance of its sampling  distribution.

no

"Efficiency” is a relative concept.

w

What if there are 3 or more unbiased estimators being compared?

What if one or more of the estimators being compared is biased ?

In this case we can take account of both variance, and any bias, at the same time by using

"mean squared error" (MSE) of the estimators.

Definition: Suppose we have two unbiased estimators, 8; and 8, , of the parameter vector, 8.
Then we say that 8, is at least as efficientas 8, if 4 =V(8, ) — V(8,) is at least positive

semi-definite.

Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator,
b, of B optimal?

Theorem (Gauss-Markhov):

In the "standard™ linear regression model, y = Xf + £, the LS estimator, b, of B is Best Linear

Unbiased (BLU). That is, it is Efficient in the class of all linear and unbiased estimators of .

1. Isthisan interesting result?

2. What assumptions about the "standard” model are we going to exploit?




Proof
Let bo be any other linear estimator of B:
by, = Cy ; for some non-random C .

(kx1) (kxn)(nx1)

Now, V(bo) = CV(y)C’' = C(c21,)C' = g2CC’
(kxk)

Define: D=C—-XX)"x

so that Dy=Cy— (X'X)"'X'y=by—b .

Now restrict bo to be unbiased, so that E(by) = E(Cy) =CXB = [ .
This requires that CX = I, which in turn implies that
DX =[C-X'X)X'X=CX—-1=0 (and D'X' = 0)
(What assumptions have we used so far?)
Now, focus on covariance matrix of bo :
V(by) = a?[D + (X'X)"'X'1[D + (X' X)X
=d?[DD' + (X'X)'X'X(X'X)™'] DX =0
=02DD' + o?(X'X) !
= a2DD' + V(b),

or, [V(by) — V(b)] = 62DD’ : 0% >0

Now we just have to "sign" this (matrix) difference:

0 (DD = (D) (D) = v'v = Ty vF 2 0.

So, 4 =[V(bg) —V(b)]isap.s.d. matrix, implying that bo is relatively less efficient than b.
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Result:

The LS estimator is the Best Linear Unbiased estimator of .

What assumptions did we use, and where?
Were there any standard assumptions that we didn't use?

What does this suggest?
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