3. OLS Part III

In this section we derive some finite-sample properties of the OLS estimator.

3.1 The Sampling Distribution of the OLS Estimator

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$; $\boldsymbol{\varepsilon} \sim N[\mathbf{0}, \sigma^2 I_n]$

$$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} = f(\boldsymbol{y})$$

 ε is random \longrightarrow y is random \longrightarrow b is random

- **b** is an *estimator* of β . It is a function of the *random* sample data.
- **b** is a "statistic".
- **b** has a probability distribution called its *Sampling Distribution*.
- Interpretation of sampling distribution –

Repeatedly draw all possible samples of size n.

Calculate values of *b* each time.

Construct relative frequency distribution for the *b* values and probability of occurrence.

It is a *hypothetical* construct. Why?

• Sampling distribution offers *one* basis for answering the question:

"How good is *b* as an estimator of β ?"

Note:

Quality of estimator is being assessed in terms of performance in *repeated samples*. Tells us nothing about quality of estimator for *one particular sample*.

- Let's explore some of the properties of the LS estimator, **b**, and build up its sampling distribution.
- Introduce some general results, and apply them to our problem.

Definition: An estimator, $\hat{\theta}$ is an *unbiased* estimator of the parameter vector, θ , if $E[\hat{\theta}] = \theta$.

That is, $E[\widehat{\boldsymbol{\theta}}(\boldsymbol{y})] = \boldsymbol{\theta}$.

That is, $\int \hat{\theta}(\mathbf{y}) p(\mathbf{y} \mid \boldsymbol{\theta}) d\mathbf{y} = \boldsymbol{\theta}$.

The quantity, $B(\theta, y) = E[\widehat{\theta}(y) - \theta]$, is called the "Bias" of $\widehat{\theta}$.

Example: $\{y_1, y_2, \dots, y_n\}$ is a random sample from population with a finite mean, μ , and a finite variance, σ^2 .

Consider the *statistic* $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Then, $E[\overline{y}] = E\left[\frac{1}{n}\sum_{i=1}^{n} y_i\right] = \frac{1}{n}\sum_{i=1}^{n} E(y_i)$ $= \frac{1}{n}\sum_{i=1}^{n} \mu = \left(\frac{1}{n}n\mu\right) = \mu .$

So, \overline{y} is an *unbiased estimator* of the parameter, μ .

- Here, there are lots of possible unbiased estimators of μ .
- So, need to consider additional characteristics of estimators to help choose.

Return to our LS problem -

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y}$$

- Recall either assume that *X* is *non-random*, or condition on *X*.
- We'll assume *X* is non-random get same result if we condition on *X*.

Then: $E(\mathbf{b}) = E[(X'X)^{-1}X'\mathbf{y}] = (X'X)^{-1}X'E(\mathbf{y})$

So,

$$E(\mathbf{b}) = (X'X)^{-1}X'E[X\mathbf{\beta} + \mathbf{\varepsilon}] = (X'X)^{-1}X'[X\mathbf{\beta} + E(\mathbf{\varepsilon})]$$
$$= (X'X)^{-1}X'[X\mathbf{\beta} + \mathbf{0}] = (X'X)^{-1}X'X\mathbf{\beta}$$
$$= \mathbf{\beta}.$$
The LS estimator of $\mathbf{\beta}$ is Unbiased

Definition: Any estimator that is a *linear function* of the random sample data is called a *Linear Estimator*.

Example: $\{y_1, y_2, \dots, y_n\}$ is a random sample from population with a finite mean, μ , and a finite variance, σ^2 .

Consider the *statistic* $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} [y_1 + y_2 + \dots + y_n]$.

This statistic is a *linear estimator* of μ .

(Note that the "weights" are non-random.)

Return to our LS problem -

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = A\boldsymbol{y}$$

$$(k \times 1) \qquad (k \times n)(n \times 1)$$

Note that, under our assumptions, A is a non-random matrix.

So,

$$\begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{k1} & \cdots & a_{kn} \end{bmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} .$$

For example, $b_1 = [a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n]$; *etc.*

Now let's consider the dispersion (variability) of \boldsymbol{b} , as an estimator of $\boldsymbol{\beta}$.

Definition: Suppose we have an $(n \times 1)$ random vector, x. Then the *Covariance Matrix* of x is defined as the $(n \times n)$ matrix:

$$V(\mathbf{x}) = E[(\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))'].$$

- Diagonal elements of $V(\mathbf{x})$ are $var.(x_1), \ldots, var.(x_n)$.
- Off-diagonal elements are *covar*. (x_i, x_j) ; i, j = 1, ..., n; $i \neq j$.

Return to our LS problem -

We have a $(k \times 1)$ random vector, *b*, and we know that $E(\mathbf{b}) = \boldsymbol{\beta}$.

$$V(\boldsymbol{b}) = E[(\boldsymbol{b} - E(\boldsymbol{b}))(\boldsymbol{b} - E(\boldsymbol{b}))']$$

Now,

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$
$$= (X'X)^{-1}(X'X)\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}$$
$$= I\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}.$$

So,

$$(\boldsymbol{b} - \boldsymbol{\beta}) = (X'X)^{-1}X'\boldsymbol{\varepsilon} .$$
^(*)

Using the result, [*], in *V*(*b*), we have:

$$V(\boldsymbol{b}) = E\{[(X'X)^{-1}X'\boldsymbol{\varepsilon}][(X'X)^{-1}X'\boldsymbol{\varepsilon}]'\}$$
$$= (X'X)^{-1}X'E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']X(X'X)^{-1}.$$

We showed, earlier, that because $E(\varepsilon) = 0$, $V(\varepsilon) = E(\varepsilon \varepsilon') = \sigma^2 I_n$.

(What other assumptions did we use to get this result?)

So, we have:

$$V(\boldsymbol{b}) = (X'X)^{-1}X'E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2IX(X'X)^{-1} = \sigma^2(X'X)^{-1}(X'X)(X'X)^{-1}$$
$$= \sigma^2(X'X)^{-1}.$$

$$V(\boldsymbol{b}) = \sigma^2 (X'X)^{-1}$$
$$(\boldsymbol{k} \times \boldsymbol{k})$$

Interpret diagonal and off-diagonal elements of this matrix.

Finally, because the error term, ε is assumed to be Normally distributed,

- 1. $y = X\beta + \varepsilon$: this implies that y is also Normally distributed. (Why?)
- 2. $\mathbf{b} = (X'X)^{-1}X'\mathbf{y} = A\mathbf{y}$: this implies that \mathbf{b} is also Normally distributed.

So, we now have the full **Sampling Distribution** of the LS estimator, *b* :

$$\boldsymbol{b} \sim N[\boldsymbol{\beta}, \sigma^2(X'X)^{-1}]$$

Note:

- This result depends on our various, *rigid*, assumptions about the various components of the regression model.
- The Normal distribution here is a "*multivariate* Normal" distribution. (*See handout on "Spherical Distributions*".)
- As with estimation of population mean, μ , in previous example, there are lots of other *unbiased* estimators of β in the model = $X\beta + \varepsilon$.
- How might we choose between these possibilities? Is *linearity* desirable?
- We need to consider other *desirable* properties that these unbiased estimators may have.
- One option is to take account of estimators' precisions.

3.2 The Efficiency of OLS

Definition: Suppose we have two *unbiased* estimators, $\widehat{\theta_1}$ and $\widehat{\theta_2}$, of the (scalar) parameter, θ . Then we say that $\widehat{\theta_1}$ is **at least as efficient** as $\widehat{\theta_2}$ if $var.(\widehat{\theta_1}) \leq var.(\widehat{\theta_2})$.

Note:

- 1. The variance of an estimator is just the variance of its sampling distribution.
- 2. "Efficiency" is a *relative* concept.
- 3. What if there are 3 or more unbiased estimators being compared?
- What if one or more of the estimators being compared is *biased*?
- In this case we can take account of both variance, and any bias, at the same time by using "*mean squared error*" (MSE) of the estimators.

Definition: Suppose we have two *unbiased* estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, of the parameter vector, $\boldsymbol{\theta}$. Then we say that $\hat{\theta}_1$ is **at least as efficient** as $\hat{\theta}_2$ if $\Delta = V(\hat{\theta}_2) - V(\hat{\theta}_1)$ is *at least positive semi-definite*.

Taking account of its *linearity*, *unbiasedness*, and its *precision*, in what sense is the LS estimator, \boldsymbol{b} , of β *optimal*?

Theorem (Gauss-Markhov):

In the "standard" linear regression model, $y = X\beta + \varepsilon$, the LS estimator, *b*, of β is **Best Linear Unbiased** (BLU). That is, it is **Efficient** in the class of all linear and unbiased estimators of β .

- 1. Is this an *interesting* result?
- 2. What *assumptions* about the "standard" model are we going to exploit?

Proof

Now,

Let b_0 be any other *linear* estimator of β :

 $b_0 = Cy \qquad ; \qquad \text{for some non-random } C .$ $(k \times 1) \quad (k \times n)(n \times 1)$ $V(b_0) = CV(y)C' = C(\sigma^2 I_n)C' = \sigma^2 CC'$ $(k \times k)$

Define: $D = C - (X'X)^{-1}X'$

so that $D\mathbf{y} = C\mathbf{y} - (X'X)^{-1}X'\mathbf{y} = \mathbf{b_0} - \mathbf{b}$.

Now restrict **b**₀ to be *unbiased*, so that $E(\mathbf{b}_0) = E(C\mathbf{y}) = CX\boldsymbol{\beta} = \boldsymbol{\beta}$.

This requires that CX = I, which in turn implies that

$$DX = [C - (X'X)^{-1}X']X = CX - I = 0 \qquad (and \ D'X' = 0)$$

(What assumptions have we used so far?)

Now, focus on covariance matrix of **b**₀ :

$$V(\boldsymbol{b_0}) = \sigma^2 [D + (X'X)^{-1}X'] [D + (X'X)^{-1}X']'$$

= $\sigma^2 [DD' + (X'X)^{-1}X'X(X'X)^{-1}]$; $DX = 0$
= $\sigma^2 DD' + \sigma^2 (X'X)^{-1}$
= $\sigma^2 DD' + V(\boldsymbol{b})$,
 $[V(\boldsymbol{b_0}) - V(\boldsymbol{b})] = \sigma^2 DD'$; $\sigma^2 > 0$

or,

Now we just have to "sign" this (matrix) difference:

$$\boldsymbol{\eta}'(DD')\boldsymbol{\eta} = (D'\boldsymbol{\eta})'(D'\boldsymbol{\eta}) = v'v = \sum_{i=1}^n v_i^2 \ge 0$$

So, $\Delta = [V(b_0) - V(b)]$ is a p.s.d. matrix, implying that b_0 is relatively less efficient than b.

Result:

The LS estimator is the Best Linear Unbiased estimator of β .

- What assumptions did we use, and where?
- Were there any standard assumptions that we *didn't* use?
- What does this suggest?