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3. OLS Part III 

In this section we derive some finite-sample properties of the OLS estimator. 

3.1 The Sampling Distribution of the OLS Estimator 

𝒚 = 𝑿𝜷 + 𝜺    ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛] 

𝒃 = (𝑿′𝑿)−1𝑿′𝒚 = 𝑓(𝒚) 

            ε is random               y is random                 b is random 

 b is an estimator of β. It is a function of the random sample data. 

 b is a “statistic”. 

 b has a probability distribution – called its Sampling Distribution. 

 Interpretation of sampling distribution – 

Repeatedly draw all possible samples of size n.  

Calculate values of b each time. 

Construct relative frequency distribution for the b values and probability of occurrence. 

It is a hypothetical construct. Why? 

 Sampling distribution offers one basis for answering the question: 

 

              “How good is b as an estimator of β ?” 

Note: 

Quality of estimator is being assessed in terms of performance in repeated samples. Tells us 

nothing about quality of estimator for one particular sample. 
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 Let’s explore some of the properties of the LS estimator, b, and build up its sampling 

distribution. 

 Introduce some general results, and apply them to our problem. 

 

Definition: An estimator, 𝜽̂ is an unbiased estimator of the parameter vector, θ, if   𝐸[𝜽̂] = 𝜽 . 

That is, 𝐸[𝜽̂(𝒚)] = 𝜽 . 

That is, ∫ 𝜃(𝒚)𝑝(𝒚 | 𝜽)𝑑𝒚 = 𝜽 . 

The quantity,  𝑩(𝜽, 𝒚) = 𝐸[𝜽̂(𝒚) − 𝜽] , is called the “Bias” of  𝜽̂ . 

 

Example:     {𝑦1, 𝑦2, … … , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  . 

Then, 𝐸[𝑦̅] = 𝐸 [
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ] =

1

𝑛
∑ 𝐸(𝑦𝑖

𝑛
𝑖=1 ) 

                     =
1

𝑛
∑ 𝜇 =𝑛

𝑖=1 (
1

𝑛
𝑛𝜇 ) = 𝜇  . 

So, 𝑦̅ is an unbiased estimator of the parameter, μ. 

 Here, there are lots of possible unbiased estimators of μ. 

 So, need to consider additional characteristics of estimators to help choose. 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚   

 Recall – either assume that X is non-random, or condition on X. 

 We’ll assume X is non-random – get same result if we condition on X. 

Then:        𝐸(𝒃) = 𝐸[(𝑋′𝑋)−1𝑋′𝒚] = (𝑋′𝑋)−1𝑋′𝐸(𝒚) 
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So, 

 𝐸(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝑋𝜷 + 𝜺] = (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝐸(𝜺)] 

= (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝟎] = (𝑋′𝑋)−1𝑋′𝑋𝜷 

= 𝜷 . 

 

 

 

Definition:  Any estimator that is a linear function of the random sample data is called a Linear 

Estimator. 

Example:     {𝑦1, 𝑦2, … … , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 =

1

𝑛
[𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛] . 

This statistic is a linear estimator of μ. 

(Note that the “weights” are non-random.) 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚   

                    (k×1)                      (k×n)(n×1) 

Note that, under our assumptions, A is a non-random matrix. 

So, 

                    (
𝑏1

⋮
𝑏𝑘

) = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋯ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑛

] (

𝑦1

⋮
𝑦𝑛

)  . 

For example,    𝑏1 = [𝑎11𝑦1 + 𝑎12𝑦2 + ⋯ + 𝑎1𝑛𝑦𝑛]   ;     etc. 

The LS estimator of β is Unbiased 
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Now let’s consider the dispersion (variability) of b, as an estimator of β. 

Definition:  Suppose we have an (n×1) random vector, x. Then the Covariance Matrix of x is 

defined as the (n×n) matrix: 

                     𝑉(𝒙) = 𝐸[(𝒙 − 𝐸(𝒙))(𝒙 − 𝐸(𝒙))
′
]. 

 Diagonal elements of V(x) are   𝑣𝑎𝑟. (𝑥1), ……., 𝑣𝑎𝑟. (𝑥𝑛). 

 Off-diagonal elements are  𝑐𝑜𝑣𝑎𝑟. (𝑥𝑖 , 𝑥𝑗) ; i, j = 1, …, n ; i ≠ j. 

Return to our LS problem – 

We have a (k×1) random vector, b, and we know that  𝐸(𝒃) = 𝜷. 

                 𝑉(𝒃) = 𝐸[(𝒃 − 𝐸(𝒃))(𝒃 − 𝐸(𝒃))
′
] 

Now, 

               𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                  = (𝑋′𝑋)−1(𝑋′𝑋)𝜷 + (𝑋′𝑋)−1𝑋′𝜺 

                  = 𝐼𝜷 + (𝑋′𝑋)−1𝑋′𝜺. 

So, 

               (𝒃 − 𝜷) = (𝑋′𝑋)−1𝑋′𝜺 .                                          [*] 

Using the result, [*], in V(b), we have: 

            𝑉(𝒃) = 𝐸{[(𝑋′𝑋)−1𝑋′𝜺][(𝑋′𝑋)−1𝑋′𝜺]′} 

                     = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 . 

We showed, earlier, that because  𝐸(𝜺) = 𝟎,   𝑉(𝜺) = 𝐸(𝜺𝜺′) = 𝜎2𝐼𝑛 . 

(What other assumptions did we use to get this result?) 

So, we have: 

The LS estimator, b, is a linear (& unbiased) estimator of β 
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   𝑉(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 = (𝑋′𝑋)−1𝑋′𝜎2𝐼𝑋(𝑋′𝑋)−1 = 𝜎2(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1 

             = 𝜎2(𝑋′𝑋)−1. 

 

 

 

Interpret diagonal and off-diagonal elements of this matrix. 

Finally, because the error term, ε is assumed to be Normally distributed, 

1.   𝒚 = 𝑋𝜷 + 𝜺 :   this implies that y is also Normally distributed. (Why?) 

2.   𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚 :   this implies that b is also Normally distributed. 

So, we now have the full Sampling Distribution of the LS estimator, b : 

 

                      

Note: 

 This result depends on our various, rigid, assumptions about the various components of 

the regression model. 

 The Normal distribution here is a “multivariate Normal” distribution. 

(See handout on “Spherical Distributions”.) 

 As with estimation of population mean, μ, in previous example, there are lots of other 

unbiased estimators of  𝜷  in the model = 𝑋𝜷 + 𝜺 . 

 How might we choose between these possibilities?  Is linearity desirable? 

 We need to consider other desirable properties that these unbiased estimators may have. 

 One option is to take account of estimators' precisions. 

 

𝑉(𝒃) = 𝜎2(𝑋′𝑋)−1 

          (k×k) 

𝒃 ~ 𝑁[𝜷 , 𝜎2(𝑋′𝑋)−1] 
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3.2 The Efficiency of OLS 

Definition:  Suppose we have two unbiased estimators,  𝜃1̂ and 𝜃2̂ , of the (scalar) parameter, 𝜃. 

Then we say that  𝜃1̂ is at least as efficient as  𝜃2̂  if 𝑣𝑎𝑟. ( 𝜃1̂ ) ≤ 𝑣𝑎𝑟. ( 𝜃2̂ ) . 

Note: 

1.  The variance of an estimator is just the variance of its sampling     distribution. 

2.  "Efficiency" is a relative concept. 

3.   What if there are 3 or more unbiased estimators being compared? 

 

 What if one or more of the estimators being compared is biased ? 

 In this case we can take account of both variance, and any bias, at the same time by using 

"mean squared error" (MSE) of the estimators. 

Definition:  Suppose we have two unbiased estimators, 𝜃1 and 𝜃2 , of the parameter vector, 𝜽. 

Then we say that  𝜃1 is at least as efficient as 𝜃2  if 𝛥 = 𝑉(𝜃2 ) − 𝑉( 𝜃1) is at least positive 

semi-definite. 

Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator, 

b, of 𝛽 optimal? 

 

 

 

 

1.  Is this an interesting result? 

2. What assumptions about the "standard" model are we going to exploit? 

 

  

Theorem (Gauss-Markhov): 

In the "standard" linear regression model,  𝒚 = 𝑋𝜷 + 𝜺 , the LS estimator, b, of 𝜷 is Best Linear 

Unbiased (BLU). That is, it is Efficient in the class of all linear and unbiased estimators of 𝛽. 
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Proof 

Let b0 be any other linear estimator of 𝜷: 

                         𝒃𝟎 = 𝐶𝒚                        ;         for some non-random C . 

                     (k×1)   (k×n)(n×1) 

Now,             𝑉(𝒃𝟎) = 𝐶𝑉(𝒚)𝐶′ = 𝐶(𝜎2𝐼𝑛)𝐶′ = 𝜎2𝐶𝐶′                                                                                 

                       (k×k)  

Define:           𝐷 = 𝐶 − (𝑋′𝑋)−1𝑋′ 

so that            𝐷𝒚 = 𝐶𝒚 − (𝑋′𝑋)−1𝑋′𝒚 = 𝒃𝟎 − 𝒃   . 

Now restrict b0 to be unbiased, so that  𝐸(𝒃𝟎) = 𝐸(𝐶𝒚) = 𝐶𝑋𝜷 = 𝜷 . 

This requires that  𝐶𝑋 = 𝐼, which in turn implies that 

         𝐷𝑋 = [𝐶 − (𝑋′𝑋)−1𝑋′]𝑋 = 𝐶𝑋 − 𝐼 = 0               (𝑎𝑛𝑑 𝐷′𝑋′ = 0) 

(What assumptions have we used so far?) 

Now, focus on covariance matrix of b0 : 

𝑉(𝒃𝟎) = 𝜎2[𝐷 + (𝑋′𝑋)−1𝑋′][𝐷 + (𝑋′𝑋)−1𝑋′]′ 

                             = 𝜎2[𝐷𝐷′ + (𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1]      ;         𝐷𝑋 = 0                                                          

                     = 𝜎2𝐷𝐷′ + 𝜎2(𝑋′𝑋)−1 

                          = 𝜎2𝐷𝐷′ + 𝑉(𝒃), 

or,                [𝑉(𝒃𝟎) − 𝑉(𝒃)] = 𝜎2𝐷𝐷′                     ;                   𝜎2 > 0 

 

Now we just have to "sign" this (matrix) difference: 

                   𝜼′(𝐷𝐷′)𝜼 = (𝐷′𝜼)′(𝐷′𝜼) = 𝑣′𝑣 = ∑ 𝑣𝑖
2𝑛

𝑖=1 ≥ 0 . 

So,    𝛥 = [𝑉(𝒃𝟎) − 𝑉(𝒃)] is a p.s.d. matrix, implying that b0 is relatively less efficient  than b. 
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Result:     

 

 

 What assumptions did we use, and where? 

 Were there any standard assumptions that we didn't use? 

 What does this suggest? 

The LS estimator is the Best Linear Unbiased estimator of 𝜷. 


