
Estimating 𝝈𝟐 

 We now know a lot about estimating  𝜷 . 

 There’s another parameter in the regression model -  𝜎2 – the variance of each 𝜀𝑖 . 

 Note that  𝜎2 = 𝑣𝑎𝑟. (𝜀𝑖) = 𝐸[(𝜀𝑖 − 𝐸(𝜀𝑖))
2
] = 𝐸(𝜀𝑖

2) . 

 The sample counterpart to this population parameter is the sample average of the 

“residuals”:   �̂�2 =
1

𝑛
∑ 𝑒𝑖

2 =
1

𝑛
𝒆′𝒆𝑛

𝑖=1  . 

 However, there is a distortion in this estimator of 𝜎2 . 

 Although mean of 𝑒𝑖’s is zero (if intercept in model), not all of 𝑒𝑖’s are independent of 

each other – only (n – k) of them are. 

It can be shown that: 

                     𝐸(�̂�2) = 𝐸(
1

𝑛
𝒆′𝒆) =

1

𝑛
(𝑛 − 𝑘)𝜎2 < 𝜎2     ;    BIASED     

Easy to convert this to an Unbiased estimator – 

 

 

 

 “(n – k)” is the “degrees of freedom” – number of independent sources of information in 

the “n” residuals (ei’s). 

 We can use “s” as an estimator of 𝜎, but it is a biased estimator. 

 Call “s” the “standard error of the regression”, or the “standard error of estimate”. 

 s2 is a statistic – has its own sampling distribution, etc. More on this to come. 

 Let’s see one immediate application of s2 and s. 

 Recall sampling distribution for LS estimator, b: 

                                  𝒃 ~ 𝑁[𝜷  , 𝜎𝟐(𝑋′𝑋)−1] 

 So, 𝑣𝑎𝑟. (𝑏𝑖) = 𝜎2[(𝑋′𝑋)−1]𝑖𝑖           ;     𝜎
2   is unobservable. 

 If we want to report variability associated with bi as an estimator of 𝛽𝑖, we need to use an 

estimator of 𝜎2 . 

𝑠2 =
1

(𝑛 − 𝑘)
𝒆′𝒆 



 𝑒𝑠𝑡. 𝑣𝑎𝑟. (𝑏𝑖) = 𝑠2[(𝑋′𝑋)−1]𝑖𝑖  . 

 √𝑒𝑠𝑡. 𝑣𝑎𝑟. (𝑏𝑖) = 𝑠. 𝑑.̂ (𝑏𝑖) = 𝑠{[(𝑋′𝑋)−1]𝑖𝑖}
1/2  . 

 We call this the “standard error” of bi. 

 This quantity will be very important when it comes to constructing interval estimates of 

our regression coefficients; and when we construct tests of hypotheses about these 

coefficients. 

Confidence Intervals & Hypothesis Testing 

 So far, we’ve concentrated on “point” estimation. 

 We will make use of the assumption of Normally distributed errors. 

 Recall that: 

                                𝒃 ~ 𝑁[𝜷 , 𝜎2(𝑋′𝑋)−1] 

 

                          𝑏𝑖 ~ 𝑁[𝛽𝑖 , 𝜎
2((𝑋′𝑋)−1)𝑖𝑖]   ;    why still Normal? 

 So, we can standardize: 

𝑧𝑖 = (𝑏𝑖 − 𝛽𝑖)/√𝜎2[(𝑋′𝑋)−1]𝑖𝑖 

 But 𝜎2 is unknown, so we can’t use zi directly to draw inferences about bi. We must 

replace 𝜎2 with an estimator, e.g. 𝑠2 

When we replace 𝜎2 with 𝑠2 in the formula for 𝑧𝑖, 𝑧𝑖 is no longer Normally distributed. Instead, 

the statistic follows a Student-t distribution, and we call it a t statistic. That is: 

 

 

 

We can use this to construct confidence intervals and test hypotheses about 𝛽𝑖 . 

Note:  This result used all of our assumptions about the linear regression model – including the 

assumption of Normality for the errors. 

Note: The t-distribution becomes the Normal distribution as the sample size grows. 

 
𝑏𝑖 − 𝛽𝑖

𝑠. 𝑒. (𝑏𝑖)
  ~ 𝑡(𝑛−𝑘) 



Try running the following R code one line at a time: 

par(lwd = 3) 

#”dt” is the density function for the t-distribution 

curve(dt(x,5), from=-3, to=3, col = "red", ylab = "", ylim = c(0, 0.4)) 

par(new=TRUE) 

curve(dt(x,100), from=-3, to=3, col = "blue", ylab = "", ylim = c(0, 0.4)) 

par(new=TRUE) 

curve(dt(x,1000), from=-3, to=3, col = "green", ylab = "", ylim = c(0, 0.4)) 

par(new=TRUE) 

#”dnorm” is the density function for the Normal distribution 

curve(dnorm(x), from=-3, to=3, col = "pink", ylab = "", ylim = c(0, 0.4)) 

 

 

 

 

#Area under the curve, to the left of "-2", t-distribution for various d.o.f. 

pt(-2, 5) 

pt(-2, 100) 

pt(-2, 1000) 

#Area under the curve, to the left of "-2", standard Normal distribution 

pnorm(-2) 

 

#To get the 10th percentile from a t-distribution with 15 d.o.f., for example 

qt(0.1, 15) 

 

  

Degrees of freedom for the t-distribution (n-k) 



Example 1: 

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽2 = 0       𝑣𝑠.      𝐻𝐴:  𝛽2 > 0 

                 𝑡 = [
𝑏2−𝛽2

𝑠.𝑒.(𝑏2)
] = [

0.2−0

0.05
] = 4                  ;    suppose n = 20 

                𝑡𝑐(5%) = 1.74  ;  𝑡𝑐(1%) = 2.567     ; d.o.f. = 17  

                𝑡 > 𝑡𝑐   ⇒   𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 . 

 

Degrees of  

Freedom 

90th  

Percentile  

95th  

Percentile 

97.5th  

Percentile 

99th  

Percentile  

99.5th 

Percentile  

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

: : : : : : 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 



Example 2: 

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽1 = 1.5      𝑣𝑠.      𝐻𝐴:  𝛽1 ≠ 1.5 

                 𝑡 = [
𝑏1−𝛽1

𝑠.𝑒.(𝑏1)
] = [

1.4−1.5

0.7
] = −0.1429     ; d.o.f. = 17 

                    𝑡𝑐(5%) = ±2.11 

                   |𝑡| < 𝑡𝑐    ⇒   𝐷𝑜 𝑁𝑜𝑡 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 

                (Against 𝐻𝐴 , at the 5% significance level.)  

 

Example 3:     

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽1 = 1.5      𝑣𝑠.      𝐻𝐴:  𝛽1 < 1.5 

                 𝑡 = [
𝑏1−𝛽1

𝑠.𝑒.(𝑏1)
] = [

1.4−1.5

0.7
] = −0.1429     ; d.o.f. = 17 

                    𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟. [𝑡 < −0.1429 |𝐻0 𝑖𝑠 𝑇𝑟𝑢𝑒] 

                    

    in R:  pt(-0.1429,17) 

                   p = 0.444 

What do you conclude? 

  



Some Properties of Tests: 

Null Hypothesis   (H0)         Alternative Hypothesis  (HA) 

 

Classical hypothesis testing – 

 Assume that H0 is TRUE 

 Compute value of test statistic using random sample of data 

 Determine distribution of the test statistic (when H0 is true) 

 Check of observed value of test statistic is likely to occur, if  H0 is true 

 If this event is sufficiently unlikely, then REJECT H0 (in favour of HA) 

Note: 

1.  Can never accept H0. Why not? 

2.  What constitutes “unlikely” – subjective?  

3. Two types of errors we might incur with this process 

Type I Error:  Reject H0 when in fact it is True 

 

Type II Error: Do Not Reject H0 when in fact it is False 

 

 Pr.[ I ] = α = Significance level of test = “size” of test 

 Pr.[ II ] = β   ; say 

 Value of β will depend on how H0 is False. Usually, many ways. 

 

Definition: 

The “Power” of a test is Pr.[Reject H0 when it is False].  

So, Power = 1 – Pr.[Do Not Reject H0 | H0 is False] = 1 – β. 

 



 As β typically changes, depending on the way that H0 is false, we usually have a Power 

Curve. 

 For a fixed value of α, this curve plots Power against parameter value(s). 

 We want our tests to have high power. 

 We want the power of our tests to increase as H0 becomes increasingly false. 

 

Confidence Intervals 

We can also use our t-statistic to construct a confidence interval for 𝛽𝑖.  

             𝑃𝑟. [−𝑡𝑐 ≤ 𝑡 ≤ 𝑡𝑐] = (1 − α) 

⇒         𝑃𝑟. [−𝑡𝑐 ≤ [
𝑏𝑖−𝛽𝑖

𝑠.𝑒.(𝑏𝑖)
] ≤ 𝑡𝑐] = (1 − α) 

⇒         𝑃𝑟. [−𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ (𝑏𝑖 − 𝛽𝑖) ≤ 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

⇒         𝑃𝑟. [−𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ (−𝛽𝑖) ≤ −𝑏𝑖 + 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)] 

              = (1 − α) 

⇒         𝑃𝑟. [𝑏𝑖 + 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≥ 𝛽𝑖 ≥ 𝑏𝑖 − 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

⇒         𝑃𝑟. [𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ 𝛽𝑖 ≤ 𝑏𝑖 + 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

Interpretation – 

The interval,  [𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)  , 𝑏𝑖 + 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] is random. 

The parameter, 𝛽𝑖, is fixed (but unknown). 

 

 

 

If we were to take a sample of n observations, and construct such an interval, and then repeat 

this exercise many, many, times, then 100(1 − α)% of such intervals would cover the true 

value of 𝛽𝑖. 

 



If we just construct an interval, for our given sample of data, we’ll never know if this particular 

interval covers 𝛽𝑖, or not. 

Example 1 

                        �̂� = 0.3 − 1.4𝑥2 + 0.7𝑥3  

                              (0.1)   (1.1)     (0.2) 

Construct a 95% confidence interval for 𝛽1when n = 30. 

          d.o.f. = (n – k) = 27   ;     (α/2) = 0.025 

          𝑡𝑐 = ±2.052   ;     𝑏1 = 0.3   ;    𝑠. 𝑒. (𝑏1) = 0.1 

The 95% Confidence Interval is: 

[𝑏1 − 𝑡𝑐 𝑠. 𝑒. (𝑏1)  , 𝑏1 + 𝑡𝑐  𝑠. 𝑒. (𝑏1)] 

 

⇒                [0.3 – (2.052)(0.1)   ,   0.3 + (2.052)(0.1)] 

⇒                [0.0948   ,   0.5052]      

Don’t forget the units of measurement! 

Example 2 

                        �̂� = 0.3 − 1.4𝑥2 + 0.7𝑥3  

                              (0.1)   (1.1)     (0.2) 

Construct a 90% confidence interval for 𝛽2when n = 16. 

           d.o.f. = (n – k) = 13   ;     (α/2) = 0.05 

           𝑡𝑐 = ±1.771   ;  𝑏2 = −1.4   ;   𝑠. 𝑒. (𝑏2) = 1.1 

The 95% Confidence Interval is: 

[𝑏2 − 𝑡𝑐  𝑠. 𝑒. (𝑏2)  , 𝑏2 + 𝑡𝑐  𝑠. 𝑒. (𝑏2)] 

 

⇒                [-1.4 – (1.771)(1.1)   ,   -1.4 + (1.771)(1.1)] 

⇒                [-3.3481   ,   0.5481]      



Questions: 

 Why do we construct the interval symmetrically about point estimate, 𝑏𝑖? 

 How can we use a Confidence Interval to test hypotheses? 

 For instance, in the last Example, can we reject H0: 𝛽2 = 0, against a 2-sided alternative 

hypothesis? 

 


