
 
 

Topic 3: Non-Spherical Disturbances 

Our basic linear regression model is 

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

Now we’ll generalize the specification of the error term in the model: 

                   𝐸[𝜺] = 𝟎       ;     𝐸[𝜺𝜺′] = Σ = 𝜎2Ω    ;         (& Normal) 

This allows for the possibility of one or both of 

 Heteroskedasticity 

 Autocorrelation                                (Cross-section; Time-series; Panel data) 

 Spherical Disturbances – Homoskedasticity and Non-Autocorrelation 

 

In the above, consider 𝑥 = 𝜀𝑖 and 𝑦 = 𝜀𝑗. The joint probability density function, 𝑝(𝜀𝑖, 𝜀𝑗), is in 

the direction of the z axis. Below is a contour of the above perspective. If we consider the joint 

distribution of three error terms instead of two, the circles below would become spheres, hence 

the terminology “spherical disturbances.” 



 
 

 

Non-Spherical Disturbances – Heteroskedasticity and Non-Autocorrelation 

 

 

 

 

 



 
 

 

Non-Spherical Disturbances – Homoskedasticity and Autocorrelation

 

 
Non-Spherical Disturbances – Heteroskedasticity and Autocorrelation 
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How does the more general situation of non-spherical disturbances affect our (Ordinary) Least 

Squares  estimator? 

In particular, let’s first look at the sampling distribution of b: 

𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,  

𝐸(𝒃) = 𝜷 + (𝑋′𝑋)−1𝑋′𝐸(𝜺) = 𝜷  . 

The more general form of the covariance matrix for the error term does not alter the fact that the 

OLS estimator is unbiased. 

Next, consider the covariance matrix of our OLS estimator in this more general situation: 

𝑉(𝒃) = 𝑉[𝜷 + (𝑋′𝑋)−1𝑋′𝜺] = 𝑉[(𝑋′𝑋)−1𝑋′𝜺] 

                      = [(𝑋′𝑋)−1𝑋′𝑉(𝜺)𝑋(𝑋′𝑋)−1] 

                      = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

                      ≠ [𝜎2(𝑋′𝑋)−1]  . 

So, under our full set of modified assumptions about the error term: 

                      𝒃 ~ 𝑁[𝜷 , 𝑉∗] 

where 

                     𝑉∗ = 𝜎2[(𝑋′𝑋)−1𝑋′Ω𝑋(𝑋′𝑋)−1] . 

 So, the usual computer output will be misleading, numerically, as it will be based on using 

the wrong formula, namely  𝑠2(𝑋′𝑋)−1. 

 The standard errors, t-statistics, etc. will all be incorrect. 

 As well as being unbiased, the OLS point estimator of β will still be weakly consistent. 

 The I.V. estimator of β will still be weakly consistent. 
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 However, the usual estimator for the covariance matrix of b, namely 𝑠2(𝑋′𝑋)−1, will be 

an inconsistent estimator of the true covariance matrix of b! 

 This has serious implications for inferences based on confidence intervals, tests of 

significance, etc. 

 So, we need to know how to deal with these issues. 

 This will lead us to some generalized estimators. 

 First, let’s deal with the most pressing issue – the inconsistency of the estimator for the 

covariance matrix of  b. 

White’s Heteroskedasticity-Consistent Covariance Matrix Estimator 

 If we knew 𝜎2Ω, then the “estimator” of the covariance matrix for b would just be: 

 𝑉∗ = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜎2Ω𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

 Let               𝑄∗ = (
1

𝑛
𝑋′Σ𝑋)                               (k × k) 

=
1

𝑛
∑ ∑ 𝜎𝑖𝑗𝒙𝑖𝒙𝑗

′

𝑛

𝑗=1

𝑛

𝑖=1

 

                                                         (k × 1)  (1 × k) 

 In the case of heteroskedastic errors, things simplify, because 𝜎𝑖𝑗 = 0, for 𝑖 ≠ 𝑗. 
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Then, we have  

𝑄∗ =
1

𝑛
∑ 𝜎𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

 White (1980) showed that if we define  

𝑆0 =
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

Then ,   𝑝𝑙𝑖𝑚(𝑆0) = 𝑄∗ . 

 This means that we can estimate the model by OLS; get the associated residual vector, e ; 

and then a consistent estimator of 𝑉∗, the covariance matrix of b, will be:  

          �̂�∗ =
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′𝑛

𝑖=1 ) (
1

𝑛
𝑋′𝑋)

−1

] 

or, 

         �̂�∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋′𝑋)−1] . 

 �̂�∗ is a consistent estimator of  𝑉∗, regardless of the (unknown) form of the 

heteroskedasticity. 

 This includes no heteroskedasticity (i.e., homoscedastic errors). 

 Newey & West produced a corresponding consistent estimator of 𝑉∗ for when the errors 

possibly exhibit autocorrelation (of some unknown form). 

 Note that the White and the Newey-West estimators modify just the estimated covariance 

matrix of b – not b itself. 

 As a result, the t-statistics, F-statistic, etc., will be modified, but only in a manner that is 

appropriate asymptotically. 

 So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance 

estimator or not, the usual test statistics will be unreliable in finite samples. 

 Now let’s turn to the estimation of β, taking account of the fact that the error term has a 

non-scalar covariance matrix. 

 Using this information should enable us to improve the efficiency of the LS estimator of 

the coefficient vector. 


