Topic 4: Generalized Least Squares

Generalized Least Squares

(Alexander Aitken, 1935)

- In the present context, (Ordinary) LS ignores some important information, and we'd anticipate that this will result in a loss of efficiency when estimating β .
- Let's see how to obtain the fully efficient (linear unbiased) estimator.
- Recall that $V(\boldsymbol{\varepsilon}) = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \Sigma = \sigma^2 \Omega$.
- Generally, Ω will be *unknown*. However, to begin with, let's consider the case where it is actually *known*.
- Clearly, Ω must be *symmetric*, as it is a covariance matrix.
- Suppose that Ω is also *positive-definite*.
- Then, Ω^{-1} is also positive-definite, and so there exists a *non-singular* matrix, *P*, such that $\Omega^{-1} = P'P$.

.

• Our model is:

$$\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$$
 ; $\boldsymbol{\varepsilon} \sim [0, \sigma^2 \Omega]$

• Pre-multiply the equation by *P*:

 $P\mathbf{y} = PX\boldsymbol{\beta} + P\boldsymbol{\varepsilon}$

or,

$$y^* = X^* \beta + \varepsilon^*$$
; say

- Now, Ω is non-random, so *P* is also non-random.
- So, $E[\boldsymbol{\varepsilon}^*] = E[P\boldsymbol{\varepsilon}] = P E[\boldsymbol{\varepsilon}] = \mathbf{0}$
- And $V[\boldsymbol{\varepsilon}^*] = V[P\boldsymbol{\varepsilon}]$ = $PV(\boldsymbol{\varepsilon})P'$ = $P(\sigma^2\Omega)P' = \sigma^2 P\Omega P'$
- Note that $P\Omega P' = P(\Omega^{-1})^{-1}P'$

$$= P(P'P)^{-1}P'$$

= $PP^{-1}(P')^{-1}P' = I$

• (Because *P* is both square and non-singular.)

- So, $E[\boldsymbol{\varepsilon}^*] = \mathbf{0}$ and $V[\boldsymbol{\varepsilon}^*] = \sigma^2 I$.
- The transformed model, $y^* = X^*\beta + \varepsilon^*$, has an error-term that satisfies the *usual* assumptions. In particular, it has a scalar covariance matrix.
- So, if we apply (Ordinary) Least Squares to the model, $y^* = X^*\beta + \varepsilon^*$, we'll get the BLU estimator of β , by the Gauss-Markhov Theorem.
- We call this the **Generalized Least Squares Estimator** of β .
- The formula for this estimator is readily determined:

$$\widehat{\boldsymbol{\beta}} = [X^{*'}X^{*}]^{-1}X^{*'}\boldsymbol{y}^{*}$$
$$= [(PX)'(PX)]^{-1}(PX)'(P\boldsymbol{y})$$
$$= [X'P'PX]^{-1}X'P'P\boldsymbol{y}$$
$$= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\boldsymbol{y}$$

- Clearly, because E[ε*] = 0 as long as the regressors are non-random, the GLS estimator,
 β is unbiased.
- Moreover, the covariance matrix of the GLS estimator is:

$$V(\widehat{\beta}) = [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}V(\mathbf{y})\{[X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\}'$$

= $[X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\sigma^2\Omega\Omega^{-1}X[X'\Omega^{-1}X]^{-1}$
= $\sigma^2[X'\Omega^{-1}X]^{-1}$.

• If the errors are Normally distributed, then the full sampling distribution of the GLS estimator of β is:

$$\widehat{\boldsymbol{\beta}} \sim N[\boldsymbol{\beta}, \sigma^2[X'\Omega^{-1}X]^{-1}]$$

• The GLS estimator is just the OLS estimator, applied to the transformed model, and the latter model satisfies all of the usual conditions.

- So, the *Gauss-Markhov Theorem* applies to the GLS estimator.
- The GLS estimator is BLU for this more general model (with a non-scalar error covariance matrix).
- Note: OLS must be *inefficient* in the present context.

"Feasible" GLS Estimator

- In order to be able to implement the GLS estimator, in practice, we're usually going to have to provide a *suitable estimator* of Ω (or Σ).
- Presumably we'll want to obtain an estimator that is *at least consistent*, and place this into the formula for the GLS estimator, yielding:

$$\widetilde{\boldsymbol{\beta}} = \left[X' \widehat{\boldsymbol{\Omega}}^{-1} X \right]^{-1} X' \widehat{\boldsymbol{\Omega}}^{-1} \boldsymbol{y}$$

- Problem: The Ω matrix is $(n \times n)$, and it has n(n + 1)/2 *distinct* elements. However, we have only *n* observations on the data. This precludes obtaining a consistent estimator.
- We need to constrain the elements of Ω in some way.
- In practice, this won't be a big problem, because usually there will be lots of "structure" on the form of Ω .
- Typically, we'll have $\Omega = \Omega(\boldsymbol{\theta})$, where the vector, $\boldsymbol{\theta}$ has low dimension.

Example:

Heteroskedasticity

Suppose that $var.(\varepsilon_i) \propto (\theta_1 + \theta_2 z_i) = \sigma^2(\theta_1 + \theta_2 z_i)$

Then,

$$\Omega = \begin{pmatrix} \theta_1 + \theta_2 z_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \theta_1 + \theta_2 z_n \end{pmatrix}$$

There are just two parameters that have to be estimated, in order to obtain $\widehat{\Omega}$.

Example: Autocorrelation

Suppose that the errors follow a *first-order autoregressive process*:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t \quad ; \quad u_t \sim N[0, \sigma_u^2]$$
 (i.i.d.)

Then (for reasons we'll see later),

$$\Omega = \frac{\sigma_u^2}{1 - \rho^2} \begin{bmatrix} 1 & \rho & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \rho^{n-2} \\ \vdots & \rho & \ddots & \vdots \\ \rho^{n-1} & \dots & \dots & 1 \end{bmatrix} = \Omega(\rho).$$

- So, typically, we'll just have to estimate a very small number of parameters in order to get an estimator of Ω .
- As long as we use a *consistent estimator* for these parameters the elements of θ , this will give us a consistent estimator of Ω and of Ω^{-1} , by Slutsky's Theorem.
- This in turn, will ensure that our Feasible GLS estimator of β is also *weakly consistent*:

$$plim(\tilde{\beta}) = plim\left\{ \left[X' \widehat{\Omega}^{-1} X \right]^{-1} X' \widehat{\Omega}^{-1} y \right\}$$
$$= plim\{ \left[X' \Omega^{-1} X \right]^{-1} X' \Omega^{-1} y \right\}$$
$$= plim(\hat{\beta}) = \beta .$$

- Also, if $\widehat{\Omega}$ is consistent for Ω then $\widetilde{\beta}$ will be *asymptotically efficient*.
- In general, we can say little about the *finite-sample* properties of our feasible GLS estimator.
- Usually it will be *biased*, and the nature of the bias will depend on the form of Ω and our choice of Ω.
- In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know the form of Ω .

Typically, this is achieved by postulating various forms, and testing to see if these are supported by the data.