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Topic 4: Generalized Least Squares 

Generalized Least Squares                                          (Alexander Aitken, 1935) 

 In the present context, (Ordinary) LS ignores some important information, and we’d 

anticipate that this will result in a loss of efficiency when estimating β. 

 Let’s see how to obtain the fully efficient (linear unbiased) estimator. 

 Recall that 𝑉(𝜺) = 𝐸[𝜺𝜺′] = Σ = 𝜎2Ω . 

 Generally, Ω will be unknown. However, to begin with, let’s consider the case where it is 

actually known. 

 Clearly, Ω must be symmetric, as it is a covariance matrix. 

 Suppose that Ω is also positive-definite. 

 Then, Ω−1 is also positive-definite, and so there exists a non-singular matrix, P, such that 

Ω−1 = 𝑃′𝑃.  

 Our model is: 

                 𝒚 = 𝑋𝜷 + 𝜺       ;     𝜺 ~ [0 , 𝜎2Ω] 

 Pre-multiply the equation by P: 

               𝑃𝒚 = 𝑃𝑋𝜷 + 𝑃𝜺        

or, 

              𝒚∗ = 𝑋∗𝜷 + 𝜺∗       ;     say 

 Now, Ω is non-random, so P is also non-random. 

 So,           𝐸[𝜺∗] = 𝐸[𝑃𝜺] = 𝑃 𝐸[𝜺] = 𝟎       . 

 

 And      𝑉[𝜺∗] = 𝑉[𝑃𝜺]    

                     = 𝑃𝑉(𝜺)𝑃′ 

                     = 𝑃(𝜎2Ω)𝑃′ = 𝜎2𝑃ΩP′ 

 Note that    𝑃ΩP′ = 𝑃(Ω−1)−1𝑃′ 

                               = 𝑃(𝑃′𝑃)−1𝑃′ 

                               = 𝑃𝑃−1(𝑃′)−1𝑃′ = 𝐼 

 (Because P is both square and non-singular.) 
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 So,   𝐸[𝜺∗] = 𝟎       and      𝑉[𝜀∗] = 𝜎2𝐼 . 

 The transformed model,  𝒚∗ = 𝑋∗𝜷 + 𝜺∗ , has an error-term that satisfies the usual 

assumptions.  In particular, it has a scalar covariance matrix.    

 

 So, if we apply (Ordinary) Least Squares to the model, 𝒚∗ = 𝑋∗𝜷 + 𝜺∗, we’ll get the BLU 

estimator of β, by the Gauss-Markhov Theorem. 

 

 We call this the Generalized Least Squares Estimator of  β. 

 

 The formula for this estimator is readily determined: 

 

                    �̂� = [𝑋∗′𝑋∗]−1𝑋∗′𝒚∗ 

                        = [(𝑃𝑋)′(𝑃𝑋)]−1(𝑃𝑋)′(𝑃𝒚) 

                        = [𝑋′𝑃′𝑃𝑋]−1𝑋′𝑃′𝑃𝒚 

                              = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 Clearly, because 𝐸[𝜺∗] = 𝟎 as long as the regressors are non-random, the GLS estimator,  

�̂� is unbiased.     

 Moreover, the covariance matrix of the GLS estimator is: 

𝑉(�̂�) = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑉(𝒚){[𝑋′Ω−1𝑋]−1𝑋′Ω−1}′ 

                                                  = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝜎2ΩΩ−1𝑋[𝑋′Ω−1𝑋]−1 

                                                  = 𝜎2[𝑋′Ω−1𝑋]−1 . 

 If the errors are Normally distributed, then the full sampling distribution of the GLS 

estimator of β is: 

 

�̂� ~ 𝑁[𝜷 , 𝜎2[𝑋′Ω−1𝑋]−1] 

 

 The GLS estimator is just the OLS estimator, applied to the transformed model, and the 

latter model satisfies all of the usual conditions. 
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 So, the Gauss-Markhov Theorem applies to the GLS estimator. 

 The GLS estimator is BLU for this more general model (with a non-scalar error covariance 

matrix). 

 Note: OLS must be inefficient in the present context. 

 

 “Feasible” GLS Estimator 

 In order to be able to implement the GLS estimator, in practice, we’re usually going to 

have to provide a suitable estimator of  Ω (or Σ). 

 Presumably we’ll want to obtain an estimator that is at least consistent, and place this into 

the formula for the GLS estimator, yielding: 

                 �̃� = [𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚   

 Problem: The Ω matrix is (𝑛 × 𝑛), and it has 𝑛(𝑛 + 1)/2 distinct elements. However, we 

have only n observations on the data. This precludes obtaining a consistent estimator. 

 We need to constrain the elements of  Ω in some way. 

 In practice, this won’t be a big problem, because usually there will be lots of “structure” 

on the form of  Ω . 

 Typically, we’ll have Ω = Ω(𝜽), where the vector, 𝜽 has low dimension. 

 

Example:                   Heteroskedasticity 

Suppose that          𝑣𝑎𝑟. (𝜀𝑖) ∝ (𝜃1 + 𝜃2𝑧𝑖) = 𝜎2(𝜃1 + 𝜃2𝑧𝑖) 

Then, 

Ω = (
𝜃1 + 𝜃2𝑧1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜃1 + 𝜃2𝑧𝑛

) 

There are just two parameters that have to be estimated, in order to obtain Ω̂ . 
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Example:                   Autocorrelation 

Suppose that the errors follow a first-order autoregressive process: 

                 𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡   ;   𝑢𝑡  ~ 𝑁[0 , 𝜎𝑢
2]         (i.i.d.) 

Then (for reasons we’ll see later), 

 

                       Ω =
𝜎𝑢

2

1−𝜌2 [

1 𝜌 …
𝜌 1 𝜌
⋮ 𝜌 ⋱

     
𝜌𝑛−1

𝜌𝑛−2

⋮
𝜌𝑛−1 …     … 1

] = Ω(𝜌). 

 So, typically, we’ll just have to estimate a very small number of parameters in order to get 

an estimator of Ω . 

 As long as we use a consistent estimator for these parameters – the elements of 𝜃, this will 

give us a consistent estimator of  Ω and of  Ω−1, by Slutsky’s Theorem. 

 This in turn, will ensure that our Feasible GLS estimator of 𝛽 is also weakly consistent: 

𝑝𝑙𝑖𝑚(𝛽) = 𝑝𝑙𝑖𝑚 {[𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚{[𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚(�̂�) = 𝛽 . 

 Also, if  Ω̂ is consistent for Ω then 𝛽 will be asymptotically efficient. 

 In general, we can say little about the finite-sample properties of our feasible GLS 

estimator. 

 Usually it will be biased, and the nature of the bias will depend on the form of Ω and our 

choice of  Ω̂. 

 In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know 

the form of  Ω .  

Typically, this is achieved by postulating various forms, and testing to see if these are supported 

by the data. 


