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Intro to Time Series 

 A time series is a single occurrence of a random event. 

 The sequence of observations, {𝑦𝑡}𝑡=−∞
𝑡=+∞, is a time-series process. 

 There is no counterpart to repeated sampling for a time series. 

 We observe realizations of this process in a time window, 𝑡 = 1, … , 𝑇. 

 The frequency of observations are important, but the length of the window is arguably 

more important. 

 Asymptotics involves considering an increasingly longer window. 

 

Data from Greene (7th ed.), Table F5.2. Macroeconomics data set, quarterly from 1950 to 2000. 

data <- 

read.csv("http://home.cc.umanitoba.ca/~godwinrt/4042/material/gdptime.csv") 

attach(data) 

Variables in the data set include real GDP, M1 money supply, and CPI. 

plot(time, realgdp, cex= .5) 

 

 

Linear over time? 
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plot(time, log(realgdp), cex = .5) 

 

Take logs of the variables: 

lgdp <- log(realgdp) 

lm1 <- log(M1) 

lcpi <- log(cpi_u) 

 

Regress log(GDP) on a constant and time trend 

ols1 <- lm(lgdp ~ time) 

summary(ols1) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 7.468e+00  5.486e-03  1361.3   <2e-16 *** 

time        8.236e-03  4.641e-05   177.5   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.03903 on 202 degrees of freedom 

Multiple R-squared:  0.9936, Adjusted R-squared:  0.9936  

F-statistic: 3.149e+04 on 1 and 202 DF,  p-value: < 2.2e-16 
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abline(ols1) 

 

Regress log(GDP) on a constant and its lagged value: 

lgdpt1 <- lgdp[2:204] 

lgdpt <- lgdp[1:203] 

summary(lm(lgdpt1 ~ lgdpt)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.026098   0.011993   2.176   0.0307 *   

lgdpt       0.997899   0.001441 692.485   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.009943 on 201 degrees of freedom 

Multiple R-squared:  0.9996, Adjusted R-squared:  0.9996  

F-statistic: 4.795e+05 on 1 and 201 DF,  p-value: < 2.2e-16 

What does this tell you? 

A time-series model typically describes a variable, 𝑦𝑡, in terms of: 

 contemporaneous factors, 𝒙𝑡 

 lagged factors, 𝒙𝑡−1, 𝒙𝑡−2, … 

 its own past, 𝑦𝑡−1, 𝑦𝑡−2, … 

 disturbances (innovations), 𝜀𝑡. 

For example: 

𝑦𝑡 = 𝛽1 + 𝛽2𝑥𝑡 + 𝛽3𝑦𝑡−1 + 𝜀𝑡 
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Let’s try regressing the (logs) of U.S. money stock (M1) on real GDP and CPI: 

ols2 <- lm(lm1 ~ lgdp + lcpi) 

summary(ols2) 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.63306    0.22857  -7.145 1.62e-11 *** 

lgdp         0.28705    0.04738   6.058 6.68e-09 *** 

lcpi         0.97181    0.03377  28.775  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.08288 on 201 degrees of freedom 

Multiple R-squared:  0.9895, Adjusted R-squared:  0.9894  

F-statistic:  9489 on 2 and 201 DF,  p-value: < 2.2e-16 

Plot the residuals over time: 

resids <- ols2$residuals 

plot(time, resids) 

 

What does this tell you? 
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Autocorrelated Errors 

 Often, current values of the error term are correlated with past values. 

 We often say they are “Serially Correlated ”. 

 In this case, the off-diagonal elements of 𝑉(𝜺) will be non-zero. 

 The particular values they take will depend on the form of autocorrelation. 

 That is, they will depend on the pattern  of the correlations between the elements of the 

error vector. 

                           𝑉(𝜺) = [

𝜎2 𝜎12 𝜎13

𝜎12 𝜎2 𝜎23

𝜎13 𝜎23 𝜎2

] 

 If the errors themselves are autocorrelated, often this will be reflected in the regression 

residuals also being autocorrelated. 

 That is, the residuals will follow some sort of pattern, rather than just being random. 

 If the errors of our model are autocorrelated, then the OLS estimator of 𝜷 usually will be 

unbiased and consistent, but it will be inefficient. 

 In addition 𝑉(𝒃) will be computed incorrectly, and the standard errors, etc., will be 

inconsistent. (Same situation as with heteroskedasticity). 

 In general, concern lies in formal methods for 

1.   Testing for the presence/absence of autocorrelation. 

2.   Estimating models when the errors are autocorrelated. 

 However, in this introduction, we will not look at these methods. We will consider to 

ways of modelling autocorrelation: an AR process and an MA process. We will also 

consider a limiting form of an AR process. 
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Autoregressive Process 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]      ;    |𝜌| < 1   

This is an AR(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯ + 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] 

Moving Average Process 

𝜀𝑡 = 𝑢𝑡 + 𝜙𝑢𝑡−1     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]       

This is an MA(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝑢𝑡 + 𝜙1𝜀𝑡−1 + ⋯ + 𝜙𝑞𝑢𝑡−𝑞     ;    𝑢𝑡 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an MA(q) model for the error process.  

We can combine both types of process into an ARMA(p , q) model: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯ 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡 + 𝜙1𝑢𝑡−1 + ⋯ + 𝜙𝑞𝑢𝑡−𝑞      

where:                  𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2] . 

 

 Note that in the AR(1) process, we said that   |𝜌| < 1  . 

 This condition is needed to ensure that the process is “stationary”. 

 Let’s see what this actually means, more generally. 
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Stationarity 

Suppose that the following 3 conditions are satisfied: 

1.   𝐸[𝜀𝑡] = 0                          ;     for all t 

2.   𝑣𝑎𝑟. [𝜀𝑡] = 𝜎2                  ;     for all t 

3.   𝑐𝑜𝑣. [𝜀𝑡 , 𝜀𝑠 ] = 𝛾|𝑡−𝑠|       ;     for all t, s;  𝑡 ≠ 𝑠 

Then we say that the time-series sequence, {𝜀𝑡} is “Covariance Stationary”; or “Weakly 

Stationary”. 

 More generally, this can apply to any time-series – not just the error process. 

 Unless a time-series is stationary, we can’t identify & estimate the parameters of the 

process that is generating its values. 

 Let's see how this notion relates to the AR(1) model, introduced above. 

 We have:      𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 

                 𝐸[𝑢𝑡] = 0 

            𝑣𝑎𝑟. [𝑢𝑡] = 𝐸[𝑢𝑡
2] = 𝜎𝑢

2 

       𝑐𝑜𝑣. [𝑢𝑡, 𝑢𝑠] = 0        ;       𝑡 ≠ 𝑠 

 So, 

                      𝜀𝑡 = 𝜌[𝜌𝜀𝑡−2 + 𝑢𝑡−1] + 𝑢𝑡 

     = 𝜌2𝜀𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌2[𝜌𝜀𝑡−3 + 𝑢𝑡−2] + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌3𝜀𝑡−3 + 𝜌2𝑢𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     etc. 

 Continuing in this way, eventually, we get: 

                       𝜀𝑡 = 𝑢𝑡 + 𝜌𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯                     (1) 

[This is an infinite-order MA process.] 

The value of 𝜀𝑡 embodies the entire past history of the 𝑢𝑡 values. 

 From (1),  𝐸(𝜀𝑡) = 0, and 

𝑣𝑎𝑟. (𝜀𝑡) = 𝑣𝑎𝑟. (𝑢𝑡) + 𝑣𝑎𝑟. (𝜌𝑢𝑡−1) + 𝑣𝑎𝑟. (𝜌2𝜀𝑡−2) + ⋯ 

                = 𝜎𝑢
2 + 𝜌2𝜎𝑢

2 + 𝜌4𝜎𝑢
2 + ⋯ 
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 Now, under what conditions will this series converge? 

The series will converge to  𝜎𝑢
2(1 − 𝜌2)−1, as long as |𝜌2| < 1, and this in turn requires 

that |𝜌| < 1. 

 This is a necessary condition needed to ensure that the process, {𝜀𝑡} is stationary, because 

if this condition isn't satisfied, then 𝑣𝑎𝑟. [𝜀𝑡] is infinite. 

 So, for the AR(1) process, as long as |𝜌| < 1, then 𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2(1 − 𝜌2)−1. 

 In addition, stationarity implies that 𝑣𝑎𝑟. [𝜀𝑡] = 𝑣𝑎𝑟. [𝜀𝑡−𝑠], for all 's'. 

 It can be shown that the full covariance matrix for ε is: 

𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

 If we can find a matrix, P, such that Ω−1 = 𝑃′𝑃, and if the value of 𝜌 were known, then 

we could apply GLS estimation. 

Random Walk 

Consider a random variable that follows an AR(1) process, but where 𝜌 = 1. This variable is 

said to be nonstationary, to be integrated of order one I(1), or to follow a random walk. 

What is the variance for a variable that follows a random walk? 

What happens if we regress one random walk on another? 

See: 

Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of 

econometrics, 2(2), 111-120. 

 

n <- 100 

y <- x <- 0 

 

for(i in 2:n){ 

  y[i] <- y[i - 1] + rnorm(1) 

  x[i] <- x[i - 1] + rnorm(1) 

} 

 

plot(y, type = "l", col = "red", ylim = c(min(x,y),max(x,y))) 

points(x, type = "l", col = "blue") 

summary(lm(y ~ x)) 


