Intro to Time Series

e Atime series is a single occurrence of a random event.

e The sequence of observations, {y,}:=*%, is a time-series process.

e There is no counterpart to repeated sampling for a time series.

e We observe realizations of this process in a time window, t = 1, ..., T.

e The frequency of observations are important, but the length of the window is arguably
more important.

e Asymptotics involves considering an increasingly longer window.

Data from Greene (7" ed.), Table F5.2. Macroeconomics data set, quarterly from 1950 to 2000.

data <-
read.csv ("http://home.cc.umanitoba.ca/~godwinrt/4042/material/gdptime.csv")
attach (data)

Variables in the data set include real GDP, M1 money supply, and CPI.

plot (time, realgdp, cex= .5)
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Linear over time?



plot(time, log(realgdp), cex = .5)
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Take logs of the variables:

lgdp <- log(realgdp)
Iml <- log(M1)
lcpi <- log(cpi u)

Regress log(GDP) on a constant and time trend

0olsl <- Im(lgdp ~ time)
summary (olsl)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.468e+00 5.486e-03 1361.3 <2e-16 ***
time 8.236e-03 4.641e-05 177.5 <2e-16 ***

Signif. codes: 0 ‘x**’ (0.001 ‘**’ 0.01 ‘*" 0.05 '.” 0.1

Residual standard error: 0.03903 on 202 degrees of freedom

Multiple R-squared: 0.9936, Adjusted R-squared: 0.9936

F-statistic: 3.14%9e+04 on 1 and 202 DF, p-value: < 2.2e-16




abline (olsl)

logirealgdp)
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Regress log(GDP) on a constant and its lagged value:

lgdptl <- 1lgdp[2:204]
lgdpt <- 1gdp[1:203]
summary (1lm(lgdptl ~ lgdpt))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.026098 0.011993 2.176 0.0307 *
lgdpt 0.997899 0.001441 692.485 <2e-16 ***

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 *" 0.05 *.” 0.1 Y"1

Residual standard error: 0.009943 on 201 degrees of freedom
Multiple R-squared: 0.9996, Adjusted R-squared: 0.9996
F-statistic: 4.795e+05 on 1 and 201 DF, p-value: < 2.2e-16

What does this tell you?
A time-series model typically describes a variable, y;, in terms of:

e contemporaneous factors, x;
e lagged factors, x;_1, X;_o, ...
e itsown past, y;_1, Yi—2, ...

e disturbances (innovations), ;.

For example:

Ve = B1+ Boxe + B3yi—1 + &



Let’s try regressing the (logs) of U.S. money stock (M1) on real GDP and CPI:

0ls2 <- Im(Iml ~ lgdp + lcpi)
summary (ols2)

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) -1.63306 0.22857 -=7.145 1.62e-11 ***
lgdp 0.28705 0.04738 6.058 6.68e-09 ***
lcpi 0.97181 0.03377 28.775 < 2e-16 ***

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 *" 0.05 *.” 0.1 Y"1

Residual standard error: 0.08288 on 201 degrees of freedom
Multiple R-squared: 0.9895, Adjusted R-squared: 0.9894
F-statistic: 9489 on 2 and 201 DF, p-value: < 2.2e-16

Plot the residuals over time:

resids <- o0ls2Sresiduals
plot (time, resids)
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What does this tell you?




Autocorrelated Errors

e Often, current values of the error term are correlated with past values.

e We often say they are “Serially Correlated ™.

e In this case, the off-diagonal elements of V(&) will be non-zero.

e The particular values they take will depend on the form of autocorrelation.

e That is, they will depend on the pattern of the correlations between the elements of the
error vector.
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e |f the errors themselves are autocorrelated, often this will be reflected in the regression
residuals also being autocorrelated.
e That is, the residuals will follow some sort of pattern, rather than just being random.
e If the errors of our model are autocorrelated, then the OLS estimator of g usually will be
unbiased and consistent, but it will be inefficient.
e Inaddition V(b) will be computed incorrectly, and the standard errors, etc., will be
inconsistent. (Same situation as with heteroskedasticity).
e In general, concern lies in formal methods for
1. Testing for the presence/absence of autocorrelation.
2. Estimating models when the errors are autocorrelated.
e However, in this introduction, we will not look at these methods. We will consider to
ways of modelling autocorrelation: an AR process and an MA process. We will also

consider a limiting form of an AR process.



Autoregressive Process
& =p&_1+u ; u ~i.i.d.N[0,c?] ; |pl<1
This is an AR(1) model for the error process.
More generally:
& = P16&r—1 + P2&r—p + o ppErpFur ;U ~i.0.d.N[0,0]]
This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.]
Moving Average Process
& =u +¢u,_; ; u ~i.i.d.N[0,c?]
This is an MA(1) model for the error process.
More generally:
& =Ur + Pr&rq + o+ Poup_g ;U ~i.i.d.N[0,07]
This is an MA(q) model for the error process.
We can combine both types of process into an ARMA(p , ) model:
& = P1€t-1F P2Et—2 F  PpEe—p T U + P11+ F Pl

where: uy ~i.i.d.N[0, 2] .

e Note that in the AR(1) process, we said that |p| <1 .
e This condition is needed to ensure that the process is “stationary”.

e Let’s see what this actually means, more generally.



Stationarity

Suppose that the following 3 conditions are satisfied:

1. Elg] =0 ; forallt
2. wvar.[g] = o . forallt
3. cov.le, & ] = V—g ;o forallt,s; t#s

Then we say that the time-series sequence, {&;} is “Covariance Stationary”; or “Weakly

Stationary”.

e More generally, this can apply to any time-series — not just the error process.
e Unless a time-series is stationary, we can’t identify & estimate the parameters of the
process that is generating its values.

e Let's see how this notion relates to the AR(1) model, introduced above.

e We have: & = pE&r_q + U
Elu;] =0
var.[u;] = E[u?] = o2
cov.[u,us] =0 : t+s
e So,

& = plpe—2 +ur 1] +u;
= pPer_p + pU_y + Uy
= p?[per—z + Ue_p] + pus_g + U,
=per_z + pPuU_p + pupg +u,
etc.
e Continuing in this way, eventually, we get:
& = Up + pU_g + pPUp + 1)
[This is an infinite-order MA process.]
The value of &, embodies the entire past history of the u; values.
e From (1), E(g;) =0, and
var. (&) = var. (u;) + var. (pus_,) + var. (p%ee_y) + -+

= 02 + pPa? + ptod + -



e Now, under what conditions will this series converge?
The series will converge to o2(1 — p?)~1, as long as |p?| < 1, and this in turn requires
that [p] < 1.

e This is a necessary condition needed to ensure that the process, {¢;} is stationary, because
if this condition isn't satisfied, then var. [&] is infinite.

e So, for the AR(1) process, as long as |p| < 1, then var. [e,] = ¢2(1 — p?)~L.

e In addition, stationarity implies that var. [e;] = var.[e;_s], for all 's".

e It can be shown that the full covariance matrix for ¢ is:

1 p pn_l
2
_ 20 __ Ou p 1 -~ pn?
V(E) = O'u.Q = m : _— p :
pn—l pn—z 1

e If we can find a matrix, P, such that Q=1 = P'P, and if the value of p were known, then

we could apply GLS estimation.
Random Walk
Consider a random variable that follows an AR(1) process, but where p = 1. This variable is
said to be nonstationary, to be integrated of order one I(1), or to follow a random walk.
What is the variance for a variable that follows a random walk?
What happens if we regress one random walk on another?
See:

Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of
econometrics, 2(2), 111-120.

n <- 100
y <- x <= 0

for(i in 2:n){

y[i] <= y[i - 1] + rnorm(1l)

x[1] <= x[1 - 1] + rnorm(1l)
}
plot(y, type = "1", col = "red", ylim = c(min(x,y),max(x,y)))
points(x, type = "1", col = "blue")

summary (lm(y ~ x))



