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Intro to Time Series 

 A time series is a single occurrence of a random event. 

 The sequence of observations, {𝑦𝑡}𝑡=−∞
𝑡=+∞, is a time-series process. 

 There is no counterpart to repeated sampling for a time series. 

 We observe realizations of this process in a time window, 𝑡 = 1, … , 𝑇. 

 The frequency of observations are important, but the length of the window is arguably 

more important. 

 Asymptotics involves considering an increasingly longer window. 

 

Data from Greene (7th ed.), Table F5.2. Macroeconomics data set, quarterly from 1950 to 2000. 

data <- 

read.csv("http://home.cc.umanitoba.ca/~godwinrt/4042/material/gdptime.csv") 

attach(data) 

Variables in the data set include real GDP, M1 money supply, and CPI. 

plot(time, realgdp, cex= .5) 

 

 

Linear over time? 
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plot(time, log(realgdp), cex = .5) 

 

Take logs of the variables: 

lgdp <- log(realgdp) 

lm1 <- log(M1) 

lcpi <- log(cpi_u) 

 

Regress log(GDP) on a constant and time trend 

ols1 <- lm(lgdp ~ time) 

summary(ols1) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 7.468e+00  5.486e-03  1361.3   <2e-16 *** 

time        8.236e-03  4.641e-05   177.5   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.03903 on 202 degrees of freedom 

Multiple R-squared:  0.9936, Adjusted R-squared:  0.9936  

F-statistic: 3.149e+04 on 1 and 202 DF,  p-value: < 2.2e-16 
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abline(ols1) 

 

Regress log(GDP) on a constant and its lagged value: 

lgdpt1 <- lgdp[2:204] 

lgdpt <- lgdp[1:203] 

summary(lm(lgdpt1 ~ lgdpt)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.026098   0.011993   2.176   0.0307 *   

lgdpt       0.997899   0.001441 692.485   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.009943 on 201 degrees of freedom 

Multiple R-squared:  0.9996, Adjusted R-squared:  0.9996  

F-statistic: 4.795e+05 on 1 and 201 DF,  p-value: < 2.2e-16 

What does this tell you? 

A time-series model typically describes a variable, 𝑦𝑡, in terms of: 

 contemporaneous factors, 𝒙𝑡 

 lagged factors, 𝒙𝑡−1, 𝒙𝑡−2, … 

 its own past, 𝑦𝑡−1, 𝑦𝑡−2, … 

 disturbances (innovations), 𝜀𝑡. 

For example: 

𝑦𝑡 = 𝛽1 + 𝛽2𝑥𝑡 + 𝛽3𝑦𝑡−1 + 𝜀𝑡 
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Let’s try regressing the (logs) of U.S. money stock (M1) on real GDP and CPI: 

ols2 <- lm(lm1 ~ lgdp + lcpi) 

summary(ols2) 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.63306    0.22857  -7.145 1.62e-11 *** 

lgdp         0.28705    0.04738   6.058 6.68e-09 *** 

lcpi         0.97181    0.03377  28.775  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.08288 on 201 degrees of freedom 

Multiple R-squared:  0.9895, Adjusted R-squared:  0.9894  

F-statistic:  9489 on 2 and 201 DF,  p-value: < 2.2e-16 

Plot the residuals over time: 

resids <- ols2$residuals 

plot(time, resids) 

 

What does this tell you? 
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Autocorrelated Errors 

 Often, current values of the error term are correlated with past values. 

 We often say they are “Serially Correlated ”. 

 In this case, the off-diagonal elements of 𝑉(𝜺) will be non-zero. 

 The particular values they take will depend on the form of autocorrelation. 

 That is, they will depend on the pattern  of the correlations between the elements of the 

error vector. 

                           𝑉(𝜺) = [

𝜎2 𝜎12 𝜎13

𝜎12 𝜎2 𝜎23

𝜎13 𝜎23 𝜎2

] 

 If the errors themselves are autocorrelated, often this will be reflected in the regression 

residuals also being autocorrelated. 

 That is, the residuals will follow some sort of pattern, rather than just being random. 

 If the errors of our model are autocorrelated, then the OLS estimator of 𝜷 usually will be 

unbiased and consistent, but it will be inefficient. 

 In addition 𝑉(𝒃) will be computed incorrectly, and the standard errors, etc., will be 

inconsistent. (Same situation as with heteroskedasticity). 

 In general, concern lies in formal methods for 

1.   Testing for the presence/absence of autocorrelation. 

2.   Estimating models when the errors are autocorrelated. 

 However, in this introduction, we will not look at these methods. We will consider to 

ways of modelling autocorrelation: an AR process and an MA process. We will also 

consider a limiting form of an AR process. 
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Autoregressive Process 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]      ;    |𝜌| < 1   

This is an AR(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯ + 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] 

Moving Average Process 

𝜀𝑡 = 𝑢𝑡 + 𝜙𝑢𝑡−1     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]       

This is an MA(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝑢𝑡 + 𝜙1𝜀𝑡−1 + ⋯ + 𝜙𝑞𝑢𝑡−𝑞     ;    𝑢𝑡 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an MA(q) model for the error process.  

We can combine both types of process into an ARMA(p , q) model: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯ 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡 + 𝜙1𝑢𝑡−1 + ⋯ + 𝜙𝑞𝑢𝑡−𝑞      

where:                  𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2] . 

 

 Note that in the AR(1) process, we said that   |𝜌| < 1  . 

 This condition is needed to ensure that the process is “stationary”. 

 Let’s see what this actually means, more generally. 
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Stationarity 

Suppose that the following 3 conditions are satisfied: 

1.   𝐸[𝜀𝑡] = 0                          ;     for all t 

2.   𝑣𝑎𝑟. [𝜀𝑡] = 𝜎2                  ;     for all t 

3.   𝑐𝑜𝑣. [𝜀𝑡 , 𝜀𝑠 ] = 𝛾|𝑡−𝑠|       ;     for all t, s;  𝑡 ≠ 𝑠 

Then we say that the time-series sequence, {𝜀𝑡} is “Covariance Stationary”; or “Weakly 

Stationary”. 

 More generally, this can apply to any time-series – not just the error process. 

 Unless a time-series is stationary, we can’t identify & estimate the parameters of the 

process that is generating its values. 

 Let's see how this notion relates to the AR(1) model, introduced above. 

 We have:      𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 

                 𝐸[𝑢𝑡] = 0 

            𝑣𝑎𝑟. [𝑢𝑡] = 𝐸[𝑢𝑡
2] = 𝜎𝑢

2 

       𝑐𝑜𝑣. [𝑢𝑡, 𝑢𝑠] = 0        ;       𝑡 ≠ 𝑠 

 So, 

                      𝜀𝑡 = 𝜌[𝜌𝜀𝑡−2 + 𝑢𝑡−1] + 𝑢𝑡 

     = 𝜌2𝜀𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌2[𝜌𝜀𝑡−3 + 𝑢𝑡−2] + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌3𝜀𝑡−3 + 𝜌2𝑢𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     etc. 

 Continuing in this way, eventually, we get: 

                       𝜀𝑡 = 𝑢𝑡 + 𝜌𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯                     (1) 

[This is an infinite-order MA process.] 

The value of 𝜀𝑡 embodies the entire past history of the 𝑢𝑡 values. 

 From (1),  𝐸(𝜀𝑡) = 0, and 

𝑣𝑎𝑟. (𝜀𝑡) = 𝑣𝑎𝑟. (𝑢𝑡) + 𝑣𝑎𝑟. (𝜌𝑢𝑡−1) + 𝑣𝑎𝑟. (𝜌2𝜀𝑡−2) + ⋯ 

                = 𝜎𝑢
2 + 𝜌2𝜎𝑢

2 + 𝜌4𝜎𝑢
2 + ⋯ 
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 Now, under what conditions will this series converge? 

The series will converge to  𝜎𝑢
2(1 − 𝜌2)−1, as long as |𝜌2| < 1, and this in turn requires 

that |𝜌| < 1. 

 This is a necessary condition needed to ensure that the process, {𝜀𝑡} is stationary, because 

if this condition isn't satisfied, then 𝑣𝑎𝑟. [𝜀𝑡] is infinite. 

 So, for the AR(1) process, as long as |𝜌| < 1, then 𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2(1 − 𝜌2)−1. 

 In addition, stationarity implies that 𝑣𝑎𝑟. [𝜀𝑡] = 𝑣𝑎𝑟. [𝜀𝑡−𝑠], for all 's'. 

 It can be shown that the full covariance matrix for ε is: 

𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

 If we can find a matrix, P, such that Ω−1 = 𝑃′𝑃, and if the value of 𝜌 were known, then 

we could apply GLS estimation. 

Random Walk 

Consider a random variable that follows an AR(1) process, but where 𝜌 = 1. This variable is 

said to be nonstationary, to be integrated of order one I(1), or to follow a random walk. 

What is the variance for a variable that follows a random walk? 

What happens if we regress one random walk on another? 

See: 

Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of 

econometrics, 2(2), 111-120. 

 

n <- 100 

y <- x <- 0 

 

for(i in 2:n){ 

  y[i] <- y[i - 1] + rnorm(1) 

  x[i] <- x[i - 1] + rnorm(1) 

} 

 

plot(y, type = "l", col = "red", ylim = c(min(x,y),max(x,y))) 

points(x, type = "l", col = "blue") 

summary(lm(y ~ x)) 


