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Introduction

1.1 What is Econometrics?
Econometrics is the study of statistical methods applied to economics data.
It is a subset of statistics, but Econometrics places more emphasis on meth-
ods most suited to economics data, and (Microeconometrics) specializes in
dealing with observational data, as opposed to experimental data. In an ex-
periment, there is some element of control - a variable can be changed by
the researcher, and the effect of the change on another variable can be more
easily measured. In observational data the causal variable is changing on its
own, and this can be very problematic. Typically there are important omit-
ted variables in observational data, and it is very important to consider the
relationship of these omitted variables with the ones included in the model.

Econometrics can be used to estimate causal effects, though it should
not be used to find them. That is, the theoretical model (e.g. from Micro
or Macro) should specify which variable causes which. Typically the goal
is to estimate how much of an effect a variable has on another, and to test
hypothesis concerning the magnitudes of this effect. Econometrics may also
be used to forecast or predict economic variables, although this is a topic
for time series which is only touched on in this course.

1.2 Limitations of Econometrics
It is important to be aware of the limitations of Econometrics. It cannot be
used to determine causation. Causation must be theorized. If two variables
are correlated, Econometrics alone cannot tell which variable causes which,
or if there is any causation at all. That is, correlation does not imply cau-
sation. If, however, we find that two variables are statistically independent
from each other, one variable can not cause the other.
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1.3 Objective
The main objective of the course is to give you the tools necessary to assess
the merits of an econometric model.



2

Basic Multiple Regression

The population model is:

y = f (x1, x2, . . . , xk;θ) + ε (2.1)

• y is the dependent variable or “regressand”

• x1, x2, . . . , xk are the explanatory variables or “regressors”

• θ is a parameter vector

• ε is the disturbance term or the random “error”

We’ll focus on population models where f is parametric and (usually) linear
in the parameters. The first estimation strategy that we’ll consider, Ordi-
nary Least Squares, requires that the model is linear in the parameters. In
general, however, f may be:

• linear or non-linear in the variables

• linear or non-linear in the parameters

• parametric or non-parametric

Questions:

1. What is the role of the error term?

2. What is random, and what is deterministic?

3. What is observable, and what is unobservable?
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2.1 Examples of some old population models in
economics

You do not have to learn about these economic models. These models are
provided in order to relate them to the general population model in equation
2.1. For each model, try to determine the components of the model, and
whether or not it is linear/non-linear in the regressors/parameters.

Keynes’ consumption function

C = β1 + β2Y + ε

Cobb-Douglas production function

Y = AKβ2Lβ3eε

By taking logs, the Cobb-Douglas production function can be rewritten as:

log Y = β1 + β2 logK + β3 logL+ ε

where β1 = logA.

CES production function

Y = ϕ (aKr + (1− a)Lr)1/r eε

Taking logs, the CES production function is written as:

log Y = logϕ+ 1
r

log (aKr + (1− a)Lr) + ε

2.2 Sample information
Suppose that we have a sample of n observations:

{yi;xi1, xi2, . . . , xik} ; i = 1, 2, . . . , n

Assuming that the observed values are generated by the population model,
and taking the case where the model is linear in the parameters, we have:

yi = β1x1i + β2x2i + · · ·+ βkxki + εi ; i = 1, . . . , n (2.2)

Recall that the βs and ε are unobservable. So, yi is generated by two
components:

1. Deterministic component: Σk
j=1βjxij

2. Stochastic component: εi
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So, the yi must be “realized values” of a random variable!

Some typical objectives are to:

(i) Estimate unknown parameters

(ii) Test hypotheses about parameters

(iii) Predict values of y outside sample

2.3 Interpreting the parameters in a model
Once we estimate θ (i.e. all the βs), how do we interpret them? A major
advantage of the linear model is the ease in which the parameters may be
interpreted. That is, the βs in equation 2.2 have an important economics
interpretation. For example:

∂yi
∂x1i

= β1

The parameters are the marginal effects of the x on y, with other factors
held constant (ceteris paribus). For example, from Keynes’ consumption
function:

∂C

∂Y
= β2 = Marginal Propensity to Consume

We might wish to test the hypothesis that β2 = 0.9, for example.

Depending on how the population model is specified, however, the β might
not be interpreted as marginal effects. For example, after taking logs of
the Cobb-Douglas production function in, we get the following population
model:

log Y = β1 + β2 logK + β3 logL+ ε,

and

β2 = ∂ log Y
∂ logK = ∂ log Y

∂Y
× ∂Y

∂K
× ∂K

∂ logK = 1
Y
× ∂Y

∂K
×K = ∂Y/Y

∂K/K
,

so that β2 is the elasticity of output with respect to capital. The point is
that we need to be careful about how the parameters of the model are in-
terpreted in all but the most simple of cases.

Question: How could we test the hypothesis of constant returns to scale in
the above Cobb-Douglas model?
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So, we have a stochastic model that might be useful as a starting point to
represent economics relationships. We need to be especially careful about
the way in which we specify both parts of the model (the deterministic and
stochastic parts).

2.4 Assumptions of the Classical Linear Regres-
sion Model

In this section, we are going to state six “classical” assumptions, and refer
back to them frequently throughout the course. These simplifying assump-
tions are a starting point, and are likely not satisfied in real data. One of
the main objectives of this course is to re-consider these assumptions - are
they realistic; can they be tested; what if they are wrong; can they be “re-
laxed”? When these assumptions are violated, and we consider how to fix
the resulting consequence, we will be led to different estimation strategies,
such as instrumental variables estimation or generalized least squares.

All “models” are simplifications of reality. Presumably we want our econo-
metric model to be simple but “realistic” – at least in the sense that we can
identify our objective.

Traditionally the objective of most econometric models was to describe an
economic process. Assumptions, such as the ones to follow, were to ensure
the “quality” of the estimated economic model (we will soon measure qual-
ity in terms of unbiasedness, efficiency, and consistency). More recently,
applied econometrics has been focused on obtaining causal inference from
observational data. The emphasis is usually on estimating the marginal
effect of just one of the x variables on y. From this perspective, the follow-
ing assumptions can in part be viewed as necessary for estimating a causal
relationship between x and y.

A.1: Linearity

The model is linear in the parameters:

yi = β1xi1 + β2xi2 + · · ·+ βkxik + εi

Linearity in the parameters allows the model to be written in matrix nota-
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tion. Let,

y =

 y1
...
yn


(n× 1)

; β =

 β1
...
βk


(n× 1)

; X =


x11 x12 . . . x1k
x21 x22 · · · x2k
...

... . . . ...
xn1 xn2 · · · xnk


(n× k)

; ε =

 ε1
...
εn


(n× 1)

Then, we can write the model, for the full sample, as:

y = Xβ + ε (2.3)

If we take the ith row (observation) of this model we have:

yi = xiβ + εi (scalar)

Notational points

• Vectors are in bold.

• The dimensions of vectors/matrices are written (rows × columns).

• The first subscript denotes the row, the second subscript the column.

• Some texts (including Greene, 2011), use the convention that vectors
are columns. Hence, when an observation (row) is extracted from the
X matrix, it is transformed into a column. Hence, the above equation
would be expressed as yi = x′iβ + εi.

A.2: Full Rank

We assume that there are no exact linear dependencies among the columns
of X (if there were, then one or more regressor is redundant). Note that X
is (n× k) and rank(X) = k. So we are also implicitly assuming that n > k,
since rank(A) ≤ min {#rows,#cols}.

What does this assumption really mean? Suppose we had:

yi = β1xi1 + β2 (2xi1) + εi

We can only identify, and estimate, the one function, (β1 + 2β2). In this
model, rank(X) = k − 1 = 1. An example which is commonly found in
undergraduate textbooks, of where A.2 is violated, is the dummy variable
trap.
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A.3: Errors have a zero mean

Assume that, in the population, E(εi) = 0 ; i = 1, 2, . . . , n. So,

E(ε) = E

 ε1
...
εn

 = 0

A.4: Spherical errors

Assume that, in the population, the disturbances are generated by a process
whose variance is constant (σ2), and that these disturbances are uncorrelated
with each other:

var (εi) = σ2; i = 1, 2, . . . , n (Homoskedasticity)

cov (εi, εj) = 0;∀i 6= j (no Autocorrelation)

Putting these assumptions together we can determine the form of the “co-
variance matrix” for the random vector, ε.

V (ε) = E
[
(ε− E(ε))(ε− E(ε))′

]
= E

[
εε′
]

=

 E (ε1ε1) · · · E (ε1εn)
... . . . ...

E (εnε1) · · · E (εnεn)


but...

E (εiεi) = E
(
ε2
i

)
= E

[
(εi − 0)2

]
= var (εi) = σ2

and

E (εiεj) = E [(εi − 0) (εj − 0)] = cov (εi, εj) = 0.

So:

V (ε) =

 σ2 · · · 0
... . . . ...
0 · · · σ2

 = σ2In

a scalar matrix.
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A.5: Generating process for X

The classical regression model assumes that the regressors are “fixed in
repeated samples” (laboratory situation). We can assume this – very strong,
though.

Alternatively, allow X to be random, but restrict the form of their ran-
domness – the process that generates X is unrelated to the process that
generates ε in the population.

This is likely the most important assumption. We will soon see that it is
imperative that X and ε are statistically independent.

So, if X is random, we need to assume strict exogeneity:

E(ε|X) = 0 (2.4)

or make the weaker assumption that X and ε are uncorrelated:

cov(xj , ε) = 0 ; for j = 1, . . . , k

Note that independence implies zero correlation, but not necessarily the
other way around due to correlation measuring only linear dependencies
between variables. (Question: Does the implication go both ways in the
present case?)

Prove that the zero correlation assumption is equivalent to each column of
X being orthogonal to ε, that is, prove that A.5 at least implies that:

E(X ′ε) = 0 (2.5)

Finally, note that the strict exogeneity assumption implies that: E(f(X)′ε) =
0.

A.6: Normality of errors

(ε|X) ∼ N
[
0, σ2In

]
This assumption is not as strong as it seems:

• often reasonable due to the Central Limit Theorem (C.L.T.)

• often not needed

• when some distributional assumption is needed, often a more general
one is ok
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Summary

The classical linear regression model is:

• y = Xβ + ε

• (ε|X) ∼ N
[
0, σ2In

]
• rank(X) = k

• The data generating process (DGP) of X and ε are unrelated

Implications for y (if X is non-random; or conditional on X):

E(y) = Xβ + E(ε) = Xβ

V (y) = V (ε) = σ2In

Because linear transformations of a Normal random variable are themselves
Normal, we also have:

y ∼ N
[
Xβ, σ2In

]
Some questions:

• How reasonable are the assumptions associated with the classical linear
regression model?

• How do these assumptions affect the estimation of the model’s param-
eters?

• How do these assumptions affect the way we test hypotheses about
the model’s parameters?

• Which of these assumptions are used to establish the various results
we’ll be concerned with?

• Which assumptions can be “relaxed” without affecting these results?

2.5 Least Squares Estimator
Our first task is to estimate the parameters of our model,

y = Xβ + ε ; ε ∼ N
[
0, σ2In

]
Note that there are (k + 1) parameters, including σ2.

• There are many possible procedures for estimating parameters.
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• Choice should be based not only on computational convenience, but
also on the “sampling properties” of the resulting estimator.

• To begin with, consider one possible estimation strategy – Least Squares.

For the ith data-point, we have:

yi = x′iβ + εi,

and the population regression is:

E
(
yi|x′i

)
= x′iβ.

We’ll estimate E (yi|x′i) by

ŷi = x′ib.

In the population, the true (unobserved) disturbance is

εi = yi − x′iβ.

When we use b to estimate β, there will be some “estimation error”, and
the value,

ei = yi − x′ib

will be called the ith “residual”. So,

yi =
(
x′iβ + εi

)
=
(
x′ib+ ei

)
= (ŷi + ei)

Question: Which terms are unobserved (from the population) and which
are observed (determined by the sample)?

2.5.1 The Least Squares criterion

We will “choose b so as to minimize the sum of squared residuals”.
Questions:

• Why squared residuals?

• Why not absolute values of residuals?

• Why not use a “minimum distance” criterion?
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2.5.2 Minimizing the sum of squared residuals: an optimiza-
tion problem

We will solve a minimization problem using the least-squares criterion in
order to derive the “Least Squares” estimator. The problem that we are
trying to solve can be stated as:

Min(b)

n∑
i=1

e2
i ⇔ Min(b)

(
e′e
)

⇔ Min(b)
[
(y −Xb)′(y −Xb)

]
Now, let:

S = (y −Xb)′(y −Xb) = y′y − b′X ′y − y′Xb+ b′X ′Xb

Note that:

b′X ′y = y′Xb

(1× k)(k × n)(n× 1) = (1× 1)
So,

S = y′y − 2
(
y′X

)
b+ b′

(
X ′X

)
b

Two rules involving the differentiation of vectors and matrices that we need
are:

(i) ∂ (a′x) /∂x = a

(ii) ∂ (x′Ax) /∂x = 2Ax ; if A is symmetric

Applying these two results:

∂S/∂b = 0− 2
(
y′X

)′ + 2
(
X ′X

)
b = 2

[
X ′Xb−X ′y

]
Set this to zero (for a turning point):

X ′Xb = X ′y

(k × n)(n× k)(k × 1) = (k × n)(n× 1)
This gives us k equations in k unknowns, sometimes called the “normal
equations”. Finally, provided that (X ′X)−1 exists:

b =
(
X ′X

)−1
X ′y (2.6)

Notice that X ′X is (k×k), and rank(X ′X) = rank(X) = k (by assumption).
This implies that (X ′X)−1 exists. We need the “full rank” assumption for
the Least Squares estimator, b, to exist. None of our other assumptions have
been used so far.
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Check - have we minimized S?

(
∂2S

∂b∂b′

)
= ∂

∂b′
[
2X ′Xb− 2X ′y

]
= 2

(
X ′X

)
; a (k × k) matrix

Note that X ′X is at least positive semi-definite:

η′
(
X ′X

)
η = (Xη)′(Xη) =

(
u′u

)
=

n∑
i=1

u2
i ≥ 0

and so if X ′X has full rank, it will be positive-definite, not negative-definite.
So, our assumption that X has full rank has two implications:

(i) The Least Squares estimator, b, exists.

(ii) Our optimization problem leads to the minimization of S, not its max-
imization!

2.5.3 Least Squares estimator in scalar form

For a population model with an intercept and a single regressor, you may
have seen the following formulas used in undergraduate textbooks:

b1 =
∑n
i=1 (xi − x) (yi − y)∑n

i=1 (xi − x)2 = sx,y
s2
x

b0 = y − b1x,

(2.7)

where sx,y is the sample covariance between x and y, and s2
x is the sample

variance of x.

Question: Why do population models typically include an intercept and
how is the intercept effected in the population in matrix form (2.3)?

2.6 Method of Moments
The least squares criterion may seem dubious and unmotivated. We have yet
to see the benefits of using an estimator that minimizes the sum of squared
residuals. Rather than starting from this seemingly arbitrary criterion, we
can instead derive the least squared estimator using the Method of Moments
(MM).

The Method of Moments relies on the principle that the sample mean is a
good way of estimating a population mean (we will see this later in the law of
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large numbers). The MM is widely used in statistics, and many estimators
in econometrics can be motivated using it or the closely related Generalized
Method of Moments.

Take the simple population model:

yi = β0 + β1xi + εi (2.8)

and take assumptions A.3 and A.5:

E[εi] = 0 ; E[xiεi] = 0 (2.9)

That is, assumptions A.3 and A.5 imply two moment conditions, expressed
in equation 2.9. By replacing the expectations with sample averages, it
can be seen that the MM estimator for the above population model 2.8 is
identical to that in equation 2.7.

Note that the population model 2.8 above can be generalized to include k
regressors; A.3 will provide one moment condition while A.5 will provide the
remaining (k− 1) moment conditions necessary to solve for the unknown β.
The MM estimator, in matrix form, will be identical to equation 2.6.

2.7 Exercises
1. Let the y and X data be:

y =


1
4
5
4

 ; X =


1 2
1 4
1 6
1 8


(a) Calculate the Least Squares estimators for β0 and β1 for the pop-

ulation model:

y = Xβ + ε

(b) Calculate the predicted values, and residuals, for the above data
and model.

(c) Verify that equation 2.6 and equation 2.7 are identical for the
above situation.

The data points, Least Squares estimates, predicted values, and resid-
uals, are shown in Figure 2.1.
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Figure 2.1: A simple data set with the estimated OLS line in blue. b0 is
the OLS intercept, and b1 is the OLS slope. The OLS residuals (ei) are the
vertical distances between the actual data points (◦) and the OLS predicted
values (×).
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2. Prove that the Method of Moments estimator for the population model
in equation 2.8 is identical to the least squared estimator in scalar form
(equation 2.7). Hint: use the results that

n∑
i=1

(xiyi)− nx̄ȳ =
n∑
i=1

(xi − x) (yi − y)

and

n∑
i=1

(
x2
i

)
− nx2 =

n∑
i=1

(xi − x)2
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