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Question 1: 

Background - 

The Maximum Likelihood estimation principle gives us a method of obtaining estimators which 

are generally very well-behaved, if the sample size is large enough, in a very wide range of 

situations.  To illustrate this technique, consider a random sample of n observations on a variable 

X, where xi ~ N(,  
2
) for all i.  This implies that the density function for a single xi value is the 

familiar “bell-shaped” curve, the formula for which is: 
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Now consider the joint density function of the n sample values, given the parameters. Using the 

independence of these values: 
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Here, the joint density function is viewed as a function of the x data, given the values of the two 

parameters,  and  
2
. Without changing the form of this expression, we could also view it from a 

different perspective – namely, as a function of the parameters, given the values of the data. 

When we view it in this alternative way we give the function a different name, even though the 

algebraic expression is the same – we call it the “Likelihood Function”. That is: 

 

 L(, 2
 | x1, x2, ….xn) = f(x1, x2,….., xn | ,  

2
).  

 

One general estimation principle that we could adopt is to try and choose the values of the 

parameters that are “most likely” to have generated the observed sample of data. Note that all of 

the (data-related) information that we have about the parameters is summarized in the joint 

density function for the sample observations (i.e., the likelihood function). In other words, we 

could choose a formula for the estimator which maximizes the value of the likelihood function (or 

the value of the logarithm of the likelihood function, as this will yield the same result, because the 

logarithmic transformation is strictly monotonic increasing). The estimator that we obtain by 

following this logic is called the Maximum Likelihood Estimator (MLE), and is perhaps the most 

widely used estimation principle in statistics (and econometrics). 

 

To get the MLE’s of  and  
2
 in our example, we will have to take the partial derivatives of the 

likelihood function, or its logarithm (denoted lnL( ,  
2
)) for convenience, with respect to  and 

 
2
, and set these derivatives equal to zero to obtain the first-order conditions We then solve this 

pair of simultaneous equations  and  
2
: 
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[Note: To get (ii) we differentiated with respect to  
2
, not with respect to  . ] 

 

So, setting (i) equal to zero: 
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Similarly, setting (ii) equal to zero: 
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Our two MLE’s are given by the expressions in (iii) and (iv). In this case, the MLE for the 

population mean is just the sample mean, and the MLE for the population variance is the sample 

mean squared deviation (not the sample variance, as the divisor in (iv) is n, not (n-1)). 

 

Now, here is the exercise for you to work through: 

 

Consider our usual linear multiple regression model: 

 

   y = X +  ;  ~ N(0,  
2
I) 

 

(a) Write down the likelihood function, L(,  
2
 | y1, y2, …. ,yn). (Note that if the i’s are 

uncorrelated and normally distributed, then they are independent.) 

 

(b) Derive the maximum likelihood estimator for   in this model. Is this estimator 

biased or unbiased? 
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(c) Compare the assumptions that we used in class to derive the OLS estimator of  with 

the assumptions used here to obtain the MLE. 

 

(d) Derive the MLE for  
2
 in this model. Is this estimator biased or unbiased? 

 

(e) One of the two estimators you have obtained is biased. Show that this bias vanishes if 

the sample size is sufficiently large. 

 

           


