Use the following data for Question 1:

$$
\begin{aligned}
& Y=\{0,5,6,3\} \\
& X=\{2,4,6,8\}
\end{aligned}
$$

where Y is the dependent variable, and X is the independent variable. The population model is:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

1.1) Write R code which calculates b_{0} and b_{1}. The R code should use basic matrix-algebra functions only. Do not use the R functions mean, var, cov, or $l m$.

The basic functions which you might use are:

- combine http://stat.ethz.ch/R-manual/R-devel/library/base/html/c.html
- matrix http://stat.ethz.ch/R-manual/R-devel/library/base/html/matrix.html
- solve http://stat.ethz.ch/R-manual/R-devel/library/base/html/solve.html
- transpose http://stat.ethz.ch/R-manual/R-devel/library/base/html/t.html
- matrix multiplication http://stat.ethz.ch/R-manual/R-
patched/library/base/html/matmult.html
For extracting elements from a matrix see: http://www.r-tutor.com/r-introduction/matrix. This short tutorial also illustrates the matrix command.

For a quick list of matrix commands see: http://www.statmethods.net/advstats/matrix.html
1.2) Write R code to calculate the predicted values, and the residuals, from the estimated model above.
1.3) Write R code to calculate the R^{2} from the estimated model above.
1.4) Use the R function $l m$ to verify your answers above.
2) Prove that $\bar{y}=\overline{\hat{y}}$, if the model includes an intercept.
3) Suppose that we have the following population model:
$y=X \beta+\varepsilon$,
where the X matrix contains only a column of "ones". In this case, prove that $b=\bar{y}$.
4) Suppose that we have a linear multiple regression model,

$$
\begin{aligned}
y & =X \beta+\varepsilon \\
& =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
\end{aligned}
$$

where all of the usual assumptions are satisfied, except that $\mathrm{E}(\varepsilon)=X_{I} \gamma$. That is, the mean vector for the disturbances is a linear combination of a subset of the regressors.

Let b_{1} and b_{2} be the OLS estimators of β_{1} and β_{2}. Obtain the expressions for $\mathrm{E}\left(b_{1}\right)$ and $\mathrm{E}\left(b_{2}\right)$, and interpret your results.
5) Derive the variance of the OLS estimator.

