Department of Economics

ECON 7010: Econometric Analysis
 Fall 2013

Assignment \#2

Question 1:

You may want to use the results from our class overheads on "Partitioned and Partial Regression" to help you to answer this question.

Suppose that we have a linear multiple regression model,

$$
\begin{aligned}
y & =X \beta+\varepsilon \\
& =X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon,
\end{aligned}
$$

where all of the usual assumptions are satisfied, except that $E(\varepsilon)=X_{1} \gamma$. That is, the mean vector for the disturbances is a linear combination of a subset of the regressors.

Let b_{1} and b_{2} be the OLS estimators of β_{1} and β_{2}. Obtain the expressions for $E\left(b_{1}\right)$ and $E\left(b_{2}\right)$, and interpret your results.

Question 2:

Consider the following simple linear regression model, with a single regressor, and no intercept:

$$
y_{i}=\beta x_{i}+\varepsilon_{i} \quad ; \quad i=1,2, \ldots \ldots, n .
$$

Suppose that all of our usual six assumptions are satisfied. Now, consider the following three estimators for β :

$$
\begin{aligned}
& \tilde{\beta}
\end{aligned}=\left[\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}\right)\right] /\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)\right] .
$$

(a) By what name do you know the last of these estimators? Write down its variance (i.e., the variance of its sampling distribution).
(b) Are $\hat{\beta}$ and $\tilde{\beta}$ linear estimators? Are they unbiased?
(c) Obtain the sampling distributions for $\hat{\beta}$ and $\tilde{\beta}$.
(d) Which of these estimators produces a fitted line that passes through the sample mean of the data?
(e) Calculate the variance of each of the other two estimators. Can you rank the three estimators in terms of their precision?

Question 3:

Suppose that the classical regression model applies but that the true value of the constant is zero. Compare the variance of the least squares slope estimator computed without a constant term with that of the estimator computed with an unnecessary constant term.

