Department of Economics

University of Manitoba

ECON 7010: Econometrics I Midterm, Oct. 06, 2014

Instructor:	Ryan Godwin
Instructions:	Answer ALL QUESTIONS, and put all answers in the booklet provided
Time Allowed:	75 minutes (Total marks = $72 - i.e.$, ~ one mark per minute)
Number of Pages:	3

PART A:

Select the most appropriate answer in each case. Each question is worth **3 marks**. (No explanation is needed to obtain full marks, but it will be taken into account if given.)

1.) If the regression model includes an intercept, then:

- a) The OLS residuals sum to zero.
- b) The fitted regression passes through the sample mean.
- c) The sample mean of the fitted *y*-values equals the sample mean of the actual *y*-values.
- d) All of the above.

2.) The formula for the OLS estimator: $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y}$, is derived by:

- a) Ensuring that **b** is a linear, unbiased and efficient estimator for $\boldsymbol{\beta}$.
- b) Minimizing the sum of squared residuals.
- c) Minimizing bias and variance.
- d) Ensuring that **b** has the best fit (which also maximizes R^2).

3.) The probability of a "Type I" for a t-test:

- a) Is one minus the power of the test, when the null hypothesis is false.
- b) Is equal to the p-value of the test, when the null hypothesis is true.
- c) Is not higher than the power of the test.
- d) Is determined by the standard error of the regression.

4.) A p-value is:

- a) The probability of calculating a test statistic more extreme than the one just calculated.
- b) The maximum and minimum values for the test statistic, that won't be rejected in a hypothesis test.
- c) The maximum and minimum values for the null hypothesis, that won't be rejected in a hypothesis test.
- d) Equal to the probability of a type I error.

PART B: Answer all questions.

5.) Consider the population model:

$$y = X\beta + \varepsilon$$
,

where *b* is the OLS estimator for $\boldsymbol{\beta}$.

a) Show that the variance-covariance matrix of **b** is equal to $\sigma^2(X'X)^{-1}$. Which assumptions have you used?

[10 marks]

b) Let $\tilde{\beta}$ be any other estimator for β (not the OLS estimator). What can you say about the variance of $\tilde{\beta}$?

[5 marks]

6.)

a) Explain why R^2 cannot decrease when a regressor is added to the regression model.

[5 marks]

b) Suppose that for an OLS regression, the $R^2 = 1$. What must the vector of residuals, e, be equal to?

[5 marks]

7.) Let $\hat{\theta}$ be an estimator for the population parameter θ . Suppose that:

$$E(\widehat{\theta}) = \frac{n-c}{n}\theta,$$

where *n* is the sample size, and *c* is a constant. Using $\hat{\theta}$, construct an unbiased estimator for θ .

[5 marks]

8.) Let $M = I - X(X'X)^{-1}X'$. Show that MX = 0 (you may either prove it algebraically, or explain it intuitively).

[10 marks]

9.) Let *e* be the residual vector associated with the ordinary least squares estimation of the linear multiple regression model, $y = X\beta + \varepsilon$.

(a) Prove that E(e) = 0, and carefully state which of our usual assumptions you are making.

[10 marks]

(b) Prove that X' e = 0, and carefully state which of our usual assumptions you are making.

[10 marks]