ECON 7010: Econometrics I Midterm, Oct. 08, 2015

Instructor:	Ryan Godwin
Instructions:	Answer ALL QUESTIONS, and put all answers in the booklet provided
Time Allowed:	75 minutes (Total marks = 75 – <i>i.e.</i> , one mark per minute)
Number of Pages:	3

PART A:

Select the most appropriate answer in each case. Each question is worth **3 marks**. (No explanation is needed to obtain full marks, but it will be taken into account if given.)

1.) If we use Ordinary Least Squares to estimate the regression model, $y = X\beta + \varepsilon$, where *all* of the usual assumptions are satisfied, then:

a) The OLS residuals will sum to zero.

- b) The regressors will be correlated with the residuals in the sample.
- c) Adding any regressor will not increase the sum of squared residuals.
- d) All of the above.

2.) The Gauss-Markov Theorem tells us that, under appropriate assumptions about the model:

- a) The least squares estimator of β in the usual linear regression model has the smallest possible variance, and therefore is 'best'.
- b) The least squares estimator of β in the usual linear regression model has the smallest mean squared error among all possible linear estimators for this parameter vector.
- c) The least squares estimator of β in the usual linear regression model has the smallest mean squared error among all possible unbiased estimators of this parameter vector.
- d) The least squares estimator of β in the usual linear regression model is most efficient among all possible linear and unbiased estimators of this parameter vector.

3.) The Least Squares principle for estimating a regression model, $y = X\beta + \varepsilon$, where *all* of the usual assumptions are satisfied:

- a) Produces unbiased and efficient estimators of both β and σ .
- b) Involves minimizing the sum of the squares of elements of ε .
- c) Produces an estimator for β that has a Normal sampling distribution, centered at β itself.
- d) Produces an equal number of positive and negative residuals if the sample size is even.

4.) A p-value is:

- a) The probability of calculating a test statistic more extreme than the one just calculated.
- b) The maximum and minimum values for the test statistic, that won't be rejected in a hypothesis test.
- c) The maximum and minimum values for the null hypothesis, that won't be rejected in a hypothesis test.
- d) Equal to the probability of a type I error.

5.) The correct interpretation of a 95% confidence interval constructed around a regression coefficient is:

a) There's a 0.95 probability that the true value of the regression coefficient lies in the interval.

b) The interval includes the true value of the regression coefficient 95% of the time.

c) 95% of such intervals will contain the true value of the regression coefficient.

d) None of the above.

PART B: Answer all questions.

6.) Prove that the OLS residuals will be Normally distributed if the error term is Normally distributed.

[10 marks]

7.) Describe (briefly) a situation where:

a)
$$R^2 = 0$$

b) $R^2 = 1$

[10 marks]

8.) Suppose that the true population model is: $y = X_1\beta_1 + X_2\beta_2 + u$, but the model that you estimate by OLS is $y = X_1\beta_1 + \varepsilon$.

a) Show that, in general, the OLS estimator for β_1 is biased.

[10 marks]

b) Under what two conditions will the OLS estimator for β_1 be unbiased?

[5 marks]

9.) Show how to express the quantity:

$$\sum_{i=1}^n (y_i - \bar{y})^2,$$

in matrix form.

[5 marks]

10.) Let $\tilde{\beta} = (X^{*'}X^{*})^{-1}X^{*'}y^{*}$, where $X^{*} = CX$ and $y^{*} = Cy$. *C* is an $n \times n$ matrix, where the first n/2 leading diagonal elements of *C* are equal to "1", and the rest of the elements are "0". For example, if n = 6, then:

a) Prove that $\tilde{\beta}$ is an unbiased estimator for β , in the population model $y = X\beta + \varepsilon$.

[10 marks]

b) Intuitively, explain why you would expect $\tilde{\beta}$ to be unbiased.

[5 marks]

c) We know from the Gauss-Markov theorem that $V(\tilde{\beta}) - V(b)$ is positive definite, where *b* is the OLS estimator. Intuitively, explain why we would expect $V(\tilde{\beta}) - V(b)$ to be positive definite, even if we did not know the Gauss-Markov theorem.

[5 marks]