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Topic 1: Basic Multiple Regression 

 

Population “model” –   

    

𝒚 = 𝑓(𝑥1, 𝑥2, … . , 𝑥𝑘 ;  𝜽) +  𝜺 

 

 

Dependent variable 

(“regressand”) 

Explanatory variables 

(“regressors”) 

Parameter vector Disturbance term 

(random “error”) 

 

 

 

Note: 

 The function, “f”, may be linear or non-linear in the variables. 

 The function, “f”, may be linear or non-linear in the parameters. 

 The function, “f”, may be non-parametric, but we won’t consider this. 

 We’ll focus on models that are parametric, and usually linear in the parameters. 

Questions: 

 Why is the error term needed? 

 What is random, and what is deterministic? 

What is observable, and what is unobservable?       

          

 

Examples: 

 

1) Keynes’ consumption function: 

 

𝐶 = 𝛽1 + 𝛽2𝑌 + 휀 (1) 
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2) Cobb-Douglas production function: 

 

𝑌 = 𝐴𝐾𝛽2𝐿𝛽3𝑒𝜀 (2) 

 

By taking logs, the Cobb-Douglas production function can be rewritten as: 

 

log 𝑌 = 𝛽1 + 𝛽2 log𝐾 + 𝛽3 log 𝐿 + 휀, where 𝛽1 = log𝐴 

 

3) CES production function 

 

𝑌 = 𝜑(𝑎𝐾𝑟 + (1 − 𝑎)𝐿𝑟)1 𝑟⁄ 𝑒𝜀 (3) 

 

Taking logs, the CES production function is written as: 

 

log 𝑌 = log𝜑 +
1

𝑟
log(𝑎𝐾𝑟 + (1 − 𝑎)𝐿𝑟) + 휀 

Sample Information 

 

 Have a sample of “n” observations:  {yi ; xi1, xi2, …., xik} ;    i = 1, 2, …., n 

 We assume that these observed values are generated by the population model. 

 

Let’s take  the case where the model is linear in the parameters: 

 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑘𝑥𝑘𝑖 + 휀𝑖   ;    𝑖 = 1, … , 𝑛 (4) 

 

Recall that the β’s and ε are unobservable. So, yi is generated by 2 components: 

1.  Deterministic component:   ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1  . 

2.  Stochastic component:       εi  . 

 

So, the yi’s must be “realized values” of a random variable. 

 

Objectives: 

(i) Estimate unknown parameters 

(ii) Test hypotheses about parameters 

(iii) Predict values of 𝑦 outside sample 
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Interpreting the Parameters in a Model 

Note that the β’s in equation (4) have an important economics interpretation: 

 
𝜕𝑦𝑖

𝜕𝑥1𝑖
= 𝛽1;  etc. 

 

The parameters are the marginal effects of the x’s on y, with other factors held constant (ceteris 

paribus). For example, from equation (1): 

 

𝜕𝐶
𝜕𝑌⁄ = 𝛽2 = 𝑀.𝑃. 𝐶. 

 

We might wish to test the hypothesis that 𝛽2 = 0.9, for example. 

 

Depending on how the population model is specified, however, the β’s may not be interpreted as 

marginal effects. For example, after taking logs of the Cobb-Douglas production function in (2), 

we get the following population model: 

 

log 𝑌 = 𝛽1 + 𝛽2 log𝐾 + 𝛽3 log 𝐿 + 휀, 

and 

 

𝛽2 =
𝜕 log 𝑌

𝜕 log𝐾
=

𝜕 log 𝑌

𝜕𝑌
×

𝜕𝑌

𝜕𝐾
×

𝜕𝐾

𝜕 log𝐾
=

1

𝑌
×

𝜕𝑌

𝜕𝐾
× 𝐾 =

𝜕𝑌 𝑌⁄

𝜕𝐾 𝐾⁄
, 

 

so that 𝛽2 is the elasticity of output with respect to capital. The point is that we need to be careful 

about how the parameters of the model are interpreted. 

 

How could we test the hypothesis of constant returns to scale in the above Cobb-Douglas model? 

 

So, we have a stochastic model that might be useful as a starting point to represent economics 

relationships. We need to be especially careful about the way in which we specify both parts of 

the model (the deterministic and stochastic parts). 

Assumptions of the Classical Linear Regression Model 

All “models” are simplifications of reality. Presumably we want our model to be simple but 

“realistic” – able to explain actual data in a reliable and robust way. 

 

To begin with we’ll make a set of simplifying assumptions for our model. In fact, one of the 

main objectives of Econometrics is to re-consider these assumptions – are they realistic; can they 
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be tested; what if they are wrong; can they be “relaxed”? The assumptions relate to: (1) 

functional form (parameters); (2) regressors; (3) disturbances. 

A.1: Linearity 

The model is linear in the parameters: 

 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯+ 𝛽𝑘𝑥𝑘𝑖 + 휀𝑖   ;    𝑖 = 1,… , 𝑛. 

 

Linearity in the parameters allows the model to be written in matrix notation. Let, 

 

𝒚 =
[

𝑦1

⋮
𝑦𝑛

]

(𝑛 × 1)

; 𝜷 =
[
𝛽1

⋮
𝛽𝑘

]

(𝑘 × 1)

; 𝑋 =
[

𝑥11 𝑥12

𝑥21 𝑥22
⋯

𝑥1𝑘

𝑥2𝑘

⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑘

]

(𝑛 × 𝑘)

 ; 𝜺 =
[

휀1

⋮
휀𝑛

]

(𝑛 × 1)

. 

 

Then, we can write the model, for the full sample, as: 

 

𝒚 = 𝑋𝜷 + 𝜺 

 

If we take the ith row (observation) of this model we have: 

 

        𝑦𝑖 = 𝒙𝑖𝜷 + 휀𝑖  (scalar) 

 

Notational points 

i. Vectors are in bold. 

ii. The dimensions of vectors/matrices are written (rows × columns). 

iii. The first subscript denotes the row,  the second subscript the column.  

iv. Some texts (including Greene, 2011), use the convention that vectors are columns. 

Hence, when an observation (row) is extracted from the 𝑋 matrix, it is transformed into a 

column. Hence, the above equation would be expressed as 𝑦𝑖 = 𝒙𝑖
′𝜷 + 휀𝑖. 

A.2: Full Rank 

We assume that there are no exact linear dependencies among the columns of 𝑋 (if there were, 

then one or more regressor is redundant). Note that 𝑋 is (𝑛 × 𝑘) and 𝑅𝑎𝑛𝑘(𝑋) = 𝑘. So we are 

also implicitly assuming that 𝑛 > 𝑘, since 𝑅𝑎𝑛𝑘(𝐴) ≤ 𝑚𝑖𝑛. {#𝑟𝑜𝑤𝑠, #𝑐𝑜𝑙𝑠}. 

 

What does this assumption really mean? Suppose we had: 

 

 𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2(2𝑥𝑖1) + 휀𝑖 



7 
 

 

We can only identify, and estimate, the one function, (𝛽1 + 2𝛽2). In this model, 𝑅𝑎𝑛𝑘(𝑋) =

 𝑘 − 1 = 1. An example which is commonly found in undergraduate textbooks, of where A.2 is 

violated, is the dummy variable trap. 

A.3: Errors Have a Zero Mean 

Assume that, in the population, 𝐸(휀𝑖) = 0   ;    i = 1, 2, …., n. So, 

 𝐸(𝜺) = 𝐸 (

휀1

⋮
휀𝑛

) = 𝟎  . 

 

A.4: Spherical Errors 

 

Assume that, in the population, the disturbances are generated by a process whose variance is 

constant (𝜎2), and that these disturbances are uncorrelated with each other: 

 

𝑣𝑎𝑟(휀𝑖) = 𝜎2  ;   𝑖 = 1,2, … , 𝑛 (Homoskedasticity) 

 

𝑐𝑜𝑣(휀𝑖, 휀𝑗) = 0  ;   ∀𝑖 ≠ 𝑗   (no Autocorrelation) 

 

Putting these assumptions together we can determine the form of the “covariance matrix” for the 

random vector, 𝜺. 

 

𝑉(𝜺) = 𝐸 [(𝜺 − 𝐸(𝜺))(𝜺 − 𝐸(𝜺))
′
] = 𝐸[𝜺𝜺′] = [

𝐸(휀1휀1) ⋯ 𝐸(휀1휀𝑛)
⋮ ⋱ ⋮

𝐸(휀𝑛휀1) ⋯ 𝐸(휀𝑛휀𝑛)
] 

 

but... 

 

𝐸(휀𝑖휀𝑖) = 𝐸(휀𝑖
2) = 𝐸[(휀𝑖 − 0)2] = 𝑣𝑎𝑟(휀𝑖) = 𝜎2 

 

and 

 

𝐸(휀𝑖휀𝑗) = 𝐸[(휀𝑖 − 0)(휀𝑗 − 0)] = 𝑐𝑜𝑣(휀𝑖, 휀𝑗) = 0. 

 

So: 
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𝑉(𝜺) = [
𝜎2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎2

] = 𝜎2 𝐼𝑛 

 

a scalar matrix. 

A.5: Generating Process for X 

The classical regression model assumes that the regressors are “fixed in repeated samples” 

(laboratory situation). We can assume this – very strong, though. 

 

Alternatively, allow x’s to be random, but restrict the form of their randomness – assume that the 

regressors are uncorrelated with the disturbances. The process that generates 𝑿 is unrelated to the 

process that generates 𝜺 in the population. 

A.6: Normality of Errors 

(𝜺|𝑋) ~ 𝑁[0, 𝜎2𝐼𝑛] 

 

This assumption is not as strong as it seems: 

 often reasonable due to the Central Limit Theorem (C.L.T.) 

 often not needed 

 when some distributional assumption is needed, often a more general one is ok 

Summary 

 

The classical linear regression model is: 

 𝒚 = 𝑋𝜷 + 𝜺 

 (𝜺|𝑋) ~ 𝑁[0, 𝜎2𝐼𝑛] 

 𝑅𝑎𝑛𝑘(𝑋) = 𝑘 

 Data generating processes (D.G.P.s) of 𝑋 and 𝜺 are unrelated. 

 

Implications for y (if X is non-random; or conditional on X): 

                      𝐸(𝒚) = 𝑋𝜷 + 𝐸(𝜺) = 𝑋𝜷 

         𝑉(𝒚) = 𝑉(𝜺) = 𝜎2𝐼𝑛 

Because linear transformations of a Normal random variable are themselves Normal, we also 

have:    𝒚 ~ 𝑁[𝑋𝜷 , 𝜎2𝐼𝑛] . 
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Some Questions 

 How reasonable are the assumptions associated with the classical linear regression 

model? 

 How do these assumptions affect the estimation of the model’s parameters? 

 How do these assumptions affect the way we test hypotheses about the model’s 

parameters? 

 Which of these assumptions are used to establish the various results we’ll be concerned 

with? 

 Which assumptions can be “relaxed” without affecting these results? 

Least Squares Regression 

Our first task is to estimate the parameters of our model, 

                      𝒚 = 𝑋𝜷 + 𝜺        𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛]  . 

Note that there are (k + 1) parameters, including σ2. 

 Many possible procedures for estimating parameters. 

 Choice should be based not only on computational convenience, but also on the 

“sampling properties” of the resulting estimator. 

 To begin with, consider one possible estimation strategy – Least Squares. 

For the ith data-point, we have: 

                      𝑦𝑖 = 𝒙𝒊
′𝜷 + 휀𝑖     , 

and the population regression is: 

                     𝐸(𝑦𝑖 | 𝒙′𝒊) = 𝒙𝒊′𝜷     . 

We’ll estimate 𝐸(𝑦𝑖 | 𝒙′𝒊) by 

               �̂�𝑖 = 𝒙𝒊
′𝒃. 

In the population, the true (unobserved) disturbance is εi  [ = 𝑦𝑖 − 𝒙𝒊
′𝜷] . 

When we use b to estimate β, there will be some “estimation error”, and the value, 𝑒𝑖 = 𝑦𝑖 −

𝒙𝒊′𝒃 will be called the ith “residual”. 
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So,            

 

                      

The Least Squares Criterion: 

“Choose b so as to minimize the sum of the squared residuals.” 

 Why squared residuals? 

 Why not absolute values of residuals? 

 Why not use a “minimum distance” criterion? 

 

Fig 1.1. Minimizing the sum of squared residuals, for 𝑦 = {4, 2, 4, 8, 7} ; 𝑥 = {0, 2, 4, 6, 8}. 

 

  

𝑦𝑖 = (𝒙𝒊
′𝜷 + 휀𝑖)  =  (𝒙𝒊

′𝒃 + 𝑒𝑖)  =  (�̂�𝑖 + 𝑒𝑖) 

 

unobserved             observed 

           [Population]   [Sample] 
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Minimizing the Sum of Squared Residuals: An Optimization Problem 

𝑀𝑖𝑛.(𝒃)  ∑𝑒𝑖
2

𝑛

𝑖=1

       ⇔     𝑀𝑖𝑛.(𝑏)  (𝒆
′𝒆)      

                                   ⇔      𝑀𝑖𝑛.(𝒃) [(𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃)]. 

Now, let: 

    𝑆 = (𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃) = 𝒚′𝒚 − 𝒃′𝑋′𝒚 − 𝒚′𝑋𝒃 + 𝒃′𝑋′𝑋𝒃. 

Note that, 

                    𝒃′𝑋′𝒚      =     𝒚′𝑋𝒃. 

            (1×k)(k×n)(n×1)      (1×1)   

So,         𝑆 = 𝒚′𝒚 − 2(𝒚′𝑋)𝒃 + 𝒃′(𝑋′𝑋)𝒃. 

Note: 

(i) 𝜕(𝒂′𝒙)/𝜕𝒙 = 𝒂 

(ii) 𝜕(𝒙′𝐴𝒙)/𝜕𝒙 = 2𝐴𝒙       ;         if A is symmetric  

Applying these 2 results – 

      𝜕𝑆/𝜕𝒃 = 𝟎 − 2(𝒚′𝑋)′ + 2(𝑋′𝑋)𝒃 = 2[𝑋′𝑋𝒃 − 𝑋′𝒚] . 

Set this to zero (for a turning point): 

          𝑋′𝑋𝒃       =        𝑋′𝒚 ,                          (k equations in k unknowns) 

  (k×n)(n×k)(k×1)      (k×n)(n×1)                    (the “normal equations”) 

so: 

     

Notice that 𝑋′𝑋  is (k×k), and 𝑟𝑎𝑛𝑘(𝑋′𝑋) = 𝑟𝑎𝑛𝑘(𝑋) = 𝑘  (assumption). 

This implies that (𝑋′𝑋)−1 exists. 

We need the “full rank” assumption for the Least Squares estimator, b, to exist. 

None of our other assumptions have been used so far. 

Check – have we minimized S ? 

 𝒃 = (𝑋′𝑋)−1𝑋′𝒚       ;     provided that (𝑋′𝑋)−1 exists 
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(
𝜕2𝑆

𝜕𝒃𝜕𝒃′
) = 𝝏/𝝏𝒃′[2𝑋′𝑋𝒃 − 2𝑋′𝒚] = 2(𝑋′𝑋)   ;         a (k×k) matrix. 

Note that  𝑋′𝑋  is at least positive semi-definite – 

                   𝜂′(𝑋′𝑋)𝜂 = (𝑋𝜂)′(𝑋𝜂) = (𝑢′𝑢) = ∑ 𝑢𝑖
2 ≥ 0𝑛

𝑖=1   ; 

and so if  𝑋′𝑋  has full rank, it will be positive-definite, not negative-definite. 

So, our assumption that X has full rank has two implications – 

1.   The Least Squares estimator, b, exists. 

2.   Our optimization problem leads to the minimization of S, not its maximization! 

 

Aside – OLS formula in scalar form 

For a population model with an intercept and a single regressor, you may have seen the 

following formulas used in undergraduate textbooks: 

𝑏1 =
∑ (𝑋𝑖 − �̅�)𝑛

𝑖=1 (𝑌𝑖 − �̅�)

∑ (𝑋𝑖 − �̅�)2𝑛
𝑖=1

=
𝑠𝑋,𝑌

𝑠𝑋
2   , 

𝑏0 = �̅� − 𝑏1�̅�  , 

where 𝑠𝑋,𝑌 is the sample covariance between 𝑋𝑖 and 𝑌𝑖, and 𝑠𝑋
2 is the sample variance of 𝑋𝑖. 

 

Some Basic Properties of Least Squares 

First, note that the LS residuals are “orthogonal” to the regressors – 

              𝑋′𝑋𝒃 − 𝑋′𝒚 = 𝟎                         (“normal equations”;  (k×1) ) 

So, 

            −𝑋′(𝒚 − 𝑋𝒃) = −𝑋′𝒆 = 0  ;    

or,          

 

 If the model includes an intercept term, then one regressor (say, the first column of X) is a unit 

vector. 

In this case we get some further results: 

𝑋′𝒆 = 0 
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1.  The LS residuals sum to zero 

    𝑋′𝒆 = (
1 ⋯ 𝑥1𝑘

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛𝑘

)

′

(

𝑒1

⋮
𝑒𝑛

) = (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(

𝑒1

⋮
𝑒𝑛

) 

           = (
∑ 𝑒𝑖𝑖

?
?

) = (
0
⋮
0
)  

From the first element: 

   

2.  Fitted regression passes through sample mean       

                  𝑋′𝒚 = 𝑋′𝑋𝒃  , 

or,      (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(

𝑦1

⋮
𝑦𝑛

) = (
1 ⋯ 1
⋮ ⋱ ⋮

𝑥1𝑘 ⋯ 𝑥𝑛𝑘

)(
1 ⋯ 𝑥1𝑘

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑛𝑘

)(
𝑏1

⋮
𝑏𝑘

)  . 

So,           (
∑ 𝑦𝑖𝑖

?
?

) = (
𝑛 ∑ 𝑥𝑖2𝑖 …
? … ?
? … ?

)(
𝑏1

⋮
𝑏𝑘

)   . 

From the first row of this vector equation – 

          ∑ 𝑦𝑖𝑖 = 𝑛𝑏1 + 𝑏2 ∑ 𝑥𝑖2 + ⋯+ 𝑏𝑘 ∑ 𝑥𝑖𝑘𝑖𝑖  

or,     

 

3.  Sample mean of the fitted y-values equals sample mean of actual y-values 

         𝑦𝑖 = 𝒙𝒊
′𝜷 + 휀𝑖 = 𝒙𝒊

′𝒃 + 𝑒𝑖 = 𝑦�̂� + 𝑒𝑖  . 

So,            

        
1

𝑛
∑ 𝑦𝑖 =

1

𝑛
∑ 𝑦�̂�

𝑛
𝑖=1 +

1

𝑛
∑ 𝑒𝑖

𝑛
𝑖=1

𝑛
𝑖=1   , 

or,    

              

 

Note: These last 3 results use the fact that the model includes an intercept. 

∑𝑒𝑖 = 0

𝑛

𝑖=1

 

�̅� = 𝑏1 + 𝑏2𝑥2̅̅ ̅ + ⋯+ 𝑏𝑘𝑥𝑘̅̅ ̅ 

�̅� = �̅̂� + 0 = �̅̂� 
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Partitioned & Partial Regression 

Suppose the regressor matrix can be partitioned into 2 blocks – 

                                   𝒚     =   𝑋1𝜷1      +       𝑋2𝜷2      +      𝜺  

                                (n×1)  (n×k1)(k1×1)   (n×k2)(k2×1)     (n×1)   

The algebra (geometry) of LS estimation provides us with some important results that we’ll be 

able to use to help us at various stages. 

The model is: 

                             𝒚 =     [ 𝑋1 ∶  𝑋2] [
𝜷𝟏

𝜷𝟐
]         +         𝜺  = 𝑋𝜷 + 𝜺  , 

                           (n×1)    (n×(k1+k2)) ((k1+k2)×1))   (n×1)      

and                        𝒃 = (𝑋′𝑋)−1𝑋′𝒚     ;                     k = (k1+k2) 

We can write this LS estimator as: 

        𝒃 = {[𝑋1 ∶  𝑋2]
′[𝑋1 ∶  𝑋2]}

−1[𝑋1 ∶  𝑋2]
′𝒚 

              = {[
𝑋1

. .
𝑋2

]

′

[𝑋1 : 𝑋2]}

−1

[
𝑋1

. .
𝑋2

]

′

𝒚 

So, 

         (
𝑏1

𝑏2
) = [

𝑋1′𝑋1 𝑋1′𝑋2

𝑋2′𝑋1 𝑋2′𝑋2
]
−1

(
𝑋1′𝑦

𝑋2′𝑦
)   . 

The “normal equations” underlying this are – 

                             (𝑋′𝑋)𝒃 = 𝑋′𝒚 , 

or: 

                 [
𝑋1′𝑋1 𝑋1′𝑋2

𝑋2′𝑋1 𝑋2′𝑋2
] (

𝒃𝟏

𝒃𝟐
) = (

𝑋1′𝒚

𝑋2′𝒚
)  . 

Let’s solve these “normal equations” for b1 and b2: 

                𝑋1′𝑋1𝒃𝟏 + 𝑋1′𝑋2𝒃𝟐 = 𝑋1′𝒚 [1] 

                𝑋2′𝑋1𝒃𝟏 + 𝑋2′𝑋2𝒃𝟐 = 𝑋2′𝒚 [2] 
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From [1]: 

            (𝑋1′𝑋1)𝒃𝟏 = 𝑋1′𝒚 − 𝑋1′𝑋2𝒃𝟐  , 

or,         𝒃𝟏 = (𝑋1′𝑋1)
−1𝑋1′𝒚 − (𝑋1′𝑋1)

−1𝑋1′𝑋2𝒃𝟐  

                   = (𝑋1′𝑋1)
−1[𝑋1′𝒚 − 𝑋1′𝑋2𝒃𝟐] [3] 

Note: If   𝑋1
′𝑋2 = 0   , then    𝒃𝟏 = (𝑋1′𝑋1)

−1𝑋1′𝒚 . 

(Why do the “partial” and “full” regression estimators coincide in this case?) 

Now substitute [3] into [2]: 

(𝑋2′𝑋1)[(𝑋1′𝑋1)
−1𝑋1′𝒚 − (𝑋1′𝑋1)

−𝟏𝑋1′𝑋2𝒃𝟐] + (𝑋2′𝑋2)𝒃𝟐 = 𝑋2′𝒚  , 

or, 

[(𝑋2′𝑋2) − (𝑋2′𝑋1)(𝑋1′𝑋1)
−1(𝑋1′𝑋2)]𝒃𝟐 = 𝑋2′𝒚 − (𝑋2′𝑋1)(𝑋1

′𝑋1)
−1𝑋1′𝒚  , 

and so: 

𝒃𝟐 = [(𝑋2′𝑋2) − (𝑋2′𝑋1)(𝑋1
′𝑋1)

−1(𝑋1′𝑋2)]
−1[𝑋2′(𝐼 − 𝑋1(𝑋1′𝑋1)

−1𝑋1′)𝒚]. 

Define: 

             𝑀1 = (𝐼 − 𝑋1(𝑋1′𝑋1)
−1𝑋1′) . 

Then, we can write – 

                    

If we repeat the whole exercise, with X1 and X2 interchanged, we get: 

 

 

where:            𝑀2 = (𝐼 − 𝑋2(𝑋2′𝑋2)
−1𝑋2′)  . 

 M1 and M2 are “idempotent” matrices  

 𝑀𝑖𝑀𝑖 = 𝑀𝑖𝑀𝑖′ = 𝑀𝑖 = 𝑀𝑖′𝑀𝑖    ;             i = 1, 2. 

So, finally, we can write: 

 

 

𝒃𝟐 = (𝑋2′𝑀1𝑋2)
−1𝑋2′𝑀1𝒚 

𝒃𝟏 = (𝑋1′𝑀2𝑋1)
−1𝑋1′𝑀2𝒚 

𝒃𝟏 = (𝑋1
∗′𝑋1

∗)−1𝑋1
∗′𝒚𝟏

∗  𝒃𝟐 = (𝑋2
∗′𝑋2

∗)−1𝑋2
∗′𝒚𝟐

∗  
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where: 

            𝑋1
∗ = 𝑀2𝑋1  ;  𝑋2

∗ = 𝑀1𝑋2  ;   𝒚𝟏
∗ = 𝑀2𝒚   ;    𝒚𝟐

∗ = 𝑀1𝒚    

Why are these results useful? 

“Frisch-Waugh-Lovell Theorem”                                    (Greene, 7th ed.,  p.33) 

Goodness-of-Fit  

 One way of measuring the “quality” of fitted regression model is by the extent to which 

the model “explains” the sample variation for y. 

 Sample variance of y is    
1

(𝑛−1)
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1  . 

 Or, we could just use   ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1  to measure variability. 

 Our “fitted” regression model, using LS, gives us 

 

                        𝒚 = 𝑋𝒃 + 𝒆 = �̂� + 𝒆 

where              �̂� = 𝑋𝒃 = 𝑋(𝑋′𝑋)−1𝑋′𝒚 

 Recall that if the model includes an intercept, then the residuals sum to zero, and  �̅� = �̅̂� . 

 

To simplify things, introduce the following matrix: 

                           𝑀0 = [𝐼𝑛 −
1

𝑛
𝒊𝒊′] 

where:              𝒊 = (
1
⋮
1
)                ;                    (n×1) 

Note that: 

 𝑀0is an idempotent matrix. 

 𝑀0𝒊 = 𝟎 . 

 𝑀0 transforms elements of a vector into deviations from sample mean. 

  𝒚′𝑀0𝒚 = 𝒚′𝑀0𝑀0𝒚 = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1  . 
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Let’s check the third of these results: 

      𝑀0𝒚 = {[
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] − [[
1/𝑛 ⋯ 1/𝑛
⋮ ⋱ ⋮

1/𝑛 ⋯ 1/𝑛
]]}(

𝑦1

⋮
𝑦𝑛

) 

               = [

𝑦1 −
1

𝑛
𝑦1 −

1

𝑛
𝑦2 …−

1

𝑛
𝑦𝑛

⋮

𝑦𝑛 −
1

𝑛
𝑦1 −

1

𝑛
𝑦2 − ⋯−

1

𝑛
𝑦𝑛

] = (
𝑦1 − �̅�

⋮
𝑦𝑛 − �̅�

) . 

Returning to our “fitted” model: 

                   𝒚 = 𝑋𝒃 + 𝒆 = �̂� + 𝒆  

So, we have: 

                     𝑀0𝒚 = 𝑀0�̂� + 𝑀0𝒆 = 𝑀0�̂� + 𝒆 . 

[𝑀0𝒆 = 𝒆  ;  because the residuals sum to zero.] 

Then – 

                     𝒚′𝑀0𝒚 = 𝒚′𝑀0′𝑀0𝒚 = (𝑀0�̂� + 𝒆)′(𝑀0�̂� + 𝒆) 

                                 = �̂�′𝑀0�̂� + 𝒆′𝒆 + 2𝒆′𝑀0�̂�  

However,  

  𝒆′𝑀0�̂� = 𝒆′𝑀0′
�̂� = (𝑀0𝒆)′�̂� = 𝒆′�̂� = 𝒆′𝑋(𝑋′𝑋)−1𝑋′𝒚 = 0 . 

So, we have – 

 

 

 

 

 

Recall:   �̅̂� = �̅� . 

 

 

𝒚′𝑀0𝒚     =      �̂�′𝑀0�̂�          +     𝒆′𝒆 

∑(𝑦𝑖 − �̅�)2  = ∑(𝑦�̂� − �̅�)2 + ∑𝑒𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

SST         =     SSR        +        SSE 
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This lets us define the “Coefficient of Determination” – 

𝑅2 = (
𝑆𝑆𝑅

𝑆𝑆𝑇
) = 1 − (

𝑆𝑆𝐸

𝑆𝑆𝑇
) 

Note: 

 The second equality in definition of R2 holds only if model includes an intercept. 

 𝑅2 = (
𝑆𝑆𝑅

𝑆𝑆𝑇
) ≥ 0 

 𝑅2 = 1 − (
𝑆𝑆𝐸

𝑆𝑆𝑇
) ≤ 1 

 So, 0 ≤ 𝑅2 ≤ 1 

 Interpretation of “0” and “1” ? 

 𝑅2 is unitless . 

What happens if we add any regressor(s) to the model? 

                             𝒚 = 𝑋1𝜷1 + 𝜺                    ; [1] 

Then:  

                             𝒚 = 𝑋1𝜷1 + 𝑋2𝜷2 + 𝒖      ; [2] 

(A)  Applying LS to [2]: 

                   𝑚𝑖𝑛. (�̂�′�̂�)             ;      �̂� = 𝒚 − 𝑋1𝒃𝟏 − 𝑋2𝒃𝟐 

(B) Applying LS to [1]: 

                   𝑚𝑖𝑛. (𝒆′𝒆)               ;      𝒆 = 𝒚 − 𝑋1�̂�𝟏 

Problem (B) is just Problem (A), subject to restriction: 𝜷𝟐 = 0 . Minimized value in (A) must be  

≤  minimized value in (B). So, �̂�′�̂� ≤ 𝒆′𝒆 . 

What does this imply? 

 Adding any regressor(s) to the model cannot increase (and typically will decrease) the 

sum of squared residuals. 

 So, adding any regressor(s) to the model cannot decrease (and typically will increase) the 

value of R2. 
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 Means that R2 is not really a very interesting measure of the “quality” of the regression 

model, in terms of explaining sample variability of the dependent variable. 

 For these reasons, we usually use the “adjusted” Coefficient of Determination.  

We modify   𝑅2 = [1 −
𝒆′𝒆

𝒚′𝑀0𝒚
 ] to become: 

                                 �̅�2 = [1 −
𝒆′𝒆/(𝑛−𝑘)

𝒚′𝑀0𝒚/(𝑛−1)
] . 

 What are we doing here? 

We’re adjusting for “degrees of freedom” in numerator and denominator. 

 “Degrees of freedom” = number of independent pieces of information. 

 𝒆 = 𝒚 − 𝑋𝒃  .  We estimate k parameters from the n data-points. We have (n – k) 

“degrees of freedom” associated with the fitted model. 

 In denominator – have constructed �̅� from sample. “Lost” one degree of freedom. 

 Possible for �̅�2 < 0   (even with intercept in the model). 

 �̅�2 can increase or decrease when we add regressors. 

 When will it increase (decrease)? 

In multiple regression, �̅�2 will increase (decrease) if a variable is deleted, if and only if 

the associated t-statistic has absolute value less than (greater than) unity. 

 If model doesn’t include an intercept, then  SST ≠ SSR + SSE, and in this case no longer 

any guarantee that 0 ≤ 𝑅2 ≤ 1 . 

 Must be careful comparing 𝑅2 and �̅�2 values across models. 

Example –  

(1)    𝐶�̂� = 0.5 + 0.8𝑌𝑖               ;          𝑅
2 = 0.90 

(2)  log (𝐶�̂�) = 0.2 + 0.75𝑌𝑖      ;          𝑅
2 = 0.80 

Sample variation is in different units. 
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Topic 1 Appendix 

R code for Fig 1.1 

#Input the data 

y = c(4,2,4,8,7) 

x = c(0,2,4,6,8) 

 

### Two ways to get the OLS estimates: 

# Calculate slope coefficient using sample covariance and variance 

b1 = cov(x,y)/var(x) 

b0 = mean(y) - b1*mean(x) 

 

### OR 

#Calculate slope and intercept using an R function 

summary(lm(y~x)) 

b0 = lm(y~x)$coeff[1] 

b1 = lm(y~x)$coeff[2] 

 

#Get the estimated/fitted/predicted y-values 

yhat = b0 + b1*x 

 

#Get the ols residuals 

resids = y - yhat 

 

###Graphics### 

#Plot the data 

plot(x,y,xlim=c(0,10),ylim=c(0,10),pch = 16,col = 2) 

#Draw the estimated line 

abline(b0,b1,col=3) 

#Plot the predicted values (yhat) 

par(new=TRUE) 

plot(x,yhat,xlim=c(0,10),ylim=c(0,10),pch = 4,col = 1,ylab="") 

#Draw the residuals 

for(ii in 1:length(y)){ 

segments(x[ii],y[ii],x[ii],b0+b1*x[ii],col=4) 

} 

#Display the squared residuals 

for(ii in 1:length(y)){ 

text(x[ii]+.25,(b0+b1*x[ii]+y[ii])/2,round((y[ii]-b0-

b1*x[ii])^2,1),col="purple") 

} 

#Label the graph 

legend("topleft", c("y data", "estimated line","y-

hat","residual","squared resid."), pch = c(16,NA,4,NA,15) 

,col=c(2,3,1,4,"purple"), inset = .02) 

legend("topleft", c("y data", "estimated line","y-

hat","residual","squared resid."), pch = c(NA,"_",NA,"|",NA) 

,col=c(2,3,1,4,"purple"), inset = .02) 

legend("bottomright", paste("Sum of squared residuals:",sum((y-b0-

b1*x)^2))) 
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R Introduction ECON 7010, Ryan Godwin 

R is open-source and free, and has a large online user-support base. If you have a problem, 

Google-ing it will likely provide ample solutions. 

For PC: http://cran.r-project.org/bin/windows/base/ 

For Mac: http://cran.r-project.org/bin/macosx/ 

Instructions for installation and download can be found on the above pages, but installation is 

simple. Download the file, and double-click it. 

For Windows: 

 

For Mac: 

Students have successfully run R on their Macs, however, many students have had problems. I 

will be unable to help you to get R running on a Mac, as I do not own a Mac. 

When you first run R, the window should look something like this: 

 

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
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The red cursor is the command prompt, where you can enter R commands. A good way to keep 

track of your work is to create a script, which you can save, and run commands from. Do this by 

clicking File, New script. 

Our first task is to get some data into R. In the script window, type: 

data7010=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/cornwell

&rupert.csv") 

To run a command from the script window, highlight it, right-click, and select “Run line or 

selection”. 

 

This data is from Cornwell and Rupert (1988), where the main interest of the study is the effect 

of education (ED) on the log of wages (LWAGE). A full description of the data is in Greene 

(2011, Example 8.5, pg. 232). To take a look at the data, you can type: 

summary(data7010) 

To see what the first six rows of the data looks like: 

head(data7010) 

There are several variables in the dataframe. To load all of these variables into memory, so that 

each may be referred to easily: 

attach(data7010) 

To look at an individual variable, ED for example (years of education), simply type ED. This will 

print out the variable. Not very helpful since there are 4165 observations!  
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Try typing summary(ED). Some other useful commands, besides the summary command, are: 

sum mean var sd range min max length 

 

What do these commands do? You can always type ?length to get help with a command, but 

Googling is your best bet. 

A good place to start is by visualizing the data. For example, type: 

hist(ED) 

It seems most people in the sample have a high-school education. 

To visualize two variables at once, type: 

plot(ED,LWAGE) 

Do you see a positive relationship? You could always verify what you see with: 

cov(ED,LWAGE) 

or 

cor(ED,LWAGE) 

If you want to visualize the relationship between more than one variable, try: 

pairs(~LWAGE+EXP+WKS+ED) 

Finally, run an OLS regression by typing: 

summary(lm(LWAGE ~ EXP + EXP^2 + WKS + OCC + IND + SOUTH + SMSA + MS + 

UNION + ED + FEM + BLK)) 

What are the estimated returns to schooling? Is this estimate statistically significant? 

To save your work, make sure the script window is active, then click File, Save. 

 

REFERENCES 

Cornwell, C., & Rupert, P. (1988). Efficient estimation with panel data: An empirical 

comparison of instrumental variables estimators. Journal of Applied Econometrics, 3(2), 149-

155. 

Greene, W. H. (2011). Econometric analysis 7th edition. Prentice Hall, Upper Saddle River. 
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ECON 7010: Econometrics I 

 

Matrices: Concepts, Definitions & 

Some Basic Results 

 

 

 

 

1. Concepts and Definitions 

 

Vector 

 

A “vector” is a set of scalar values, or “elements”, placed in a particular order, and then displayed 

either as a column of values, or a row of values. The number of elements in the vector gives us the 

vector’s “dimension”. 

 

So, the vector  83621 v  is a row vector with 4 elements – it is a (1 4) vector, because it 

has 1 row with 4 elements. We can also think of these elements as being located in “column” 

positions, so the vector essentially has one row and 4 columns. 

 

Similarly, the vector 























2

8

5

2

2v  is a column vector with 4 elements – it is a (4 1) vector, because 

it has 1 column with 4 elements. We can think of these elements as being located in “row” 

positions, so the vector essentially has one column and 4 rows. 

 

Matrix 

 

A “matrix” is rectangular array of values, or “elements”, obtained by taking several column vectors 

(of the same dimension) and placing them side-by-side in a specific order. Alternatively, we can 

think of a matrix as being formed by taking several row vectors (of the same dimension) and 

placing them one above the other, in a particular order. 

 

For example, if we take the vectors  























2

8

5

2

2v  and 























7

2

6

1

3v  we can form the matrix 
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7

2

2

8

65

12

1V . If we place the vectors side-by-side in the opposite order, we get a  

 

different matrix, of course, namely: 

 























2

8

7

2

56

21

2V . 

 

Dimension of a Matrix 

 

The “dimension” of a matrix is the number of rows and the number of columns. If there are “m” 

rows and “n” columns, the dimension of the matrix is (m   n). You can see how the way in which 

the dimension of a vector was defined above is just a special case of this concept. 

 

For example, the matrix 



















985

346

137

A  is a (3   3) matrix, while the dimension of the matrix 



















98

56

81

D  is (3   2). 

 

 

Square Matrix 

 

A matrix is “square” if it has the same number of rows as columns. 

 

The matrix 



















985

346

137

A  is square, as it has 3 rows and 3 columns. The matrices 

 



















98

56

81

D  and 



















928

801

E  are not square – they are “rectangular”. 

Rectangular Matrix 
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A rectangular matrix is one whose number of columns is different from its number of rows. 

The matrices 



















98

56

81

D  and 



















928

801

E  are “rectangular”. The matrix D has 3 rows and 

2 columns – it is (3 2). The matrix E has 2 rows and 3 columns – it is (2 3). 

 

Leading Diagonal 

 

If the matrix is square, the “leading diagonal” is the string of elements from the top left corner of 

the matrix to the bottom right corner. 

 

If 



















985

346

137

A , its leading diagonal contains the elements (7, 4, 9). 

 

Diagonal Matrix 

 

A square matrix is said to be “diagonal” if the only non-zero elements in the matrix occur along 

the leading diagonal. 

 

The matrix 



















900

040

007

C  is a diagonal matrix. 

 

 

Scalar Matrix 

 

A square matrix is said to be “scalar” if it is diagonal, and all of the elements of its leading diagonal 

are the same. 

 

The matrix 



















700

070

007

B  is “scalar”, but the matrix 



















900

040

007

C  is not. 

 

 

Identity Matrix 
 

An “identity” matrix is one which is scalar, with the value “1” for each element on the leading 

diagonal. (Because this matrix is scalar, it is also a square and diagonal matrix.)  
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The matrix   



















100

010

001

I  is an identity matrix. (We might also name it I3 to indicate  

that it is a (3 3) identity matrix.) 

 

An identity matrix serves the same purpose as the number “1” for scalars – if we pre-multiply or 

post-multiply a matrix by the identity matrix (of the right dimensions), the original matrix is 

unchanged. 

 

So, if   



















100

010

001

I  and  



















98

56

81

D , then  ID = D = DI. 

 

Null Matrix 
 

A “null matrix” is one which has the value zero for all of its elements. The matrices 

 



















000

000

000

Z  and 



















00

00

00

N  are both null matrices. 

 

A null matrix serves the same purpose as the number “0” for scalars – if we pre-multiply or post-

multiply a matrix by the identity matrix (of the right dimensions), the result is a null matrix. 

 

So, if   



















000

000

000

Z  and  



















98

56

81

D , then ZD = N. [Note that Z is (3 3), and D  

 

is (3 2), so ZD must be (3 2).] 

 

Trace 

 

The “trace” of a square matrix is the sum of the elements on its leading diagonal. 

 

For example, if 



















985

346

137

A , then trace(A) = (7 + 4 + 9) = 20. 

 

 

Transpose 
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The “transpose” of a matrix is obtained by exchanging all of the rows for all of the columns. That 

is, the first row becomes the first column; the second row becomes the second column; and so on.  

 

If  



















98

56

81

D , then the transpose of D  is 



















958

861

'D . Sometimes we write DT  

 

rather than 'D  to denote the transpose of a matrix. Note that if the original matrix is an (m n) 

matrix, then its transpose will be an (n m). 

 

Recall that a vector is just a special type of matrix – a matrix with either just one row, or just one 

column. So, when we transpose a row vector we just get a column vector with the elements in the 

same order; and when we transpose a column vector we just get a row vector, with the order of the 

elements unaltered. 

 

For example, when we transpose the (1 4) row vector,  83621 v , we get  a column 

vector which is (4 1): 























8

3

6

2

'1v . 

 

 Symmetric Matrix 

 

A square matrix is “symmetric” if it is equal to its own transpose – that is, transposing the rows 

and columns of the matrix leaves it unchanged. In other words, as we look at elements above and 

below the leading diagonal, we see the same values in corresponding positions – the (i, j)’th. 

element equals the (j , i)th. element, for all ji  . 

 

For example, let 



















946

425

651

F . Here the (1 , 3) element and the (3 , 1) element are both 6, etc. 

Note that FF ' , so F  is symmetric. 

 

Linear Dependency 

 

Two vectors (and hence two rows, or two columns of a matrix) are “linearly independent” if one 

vector cannot be written as a multiple of the other. So, for example, the vectors x1 = (1 , 3 , 4 , 6) 

and x2 = (5 , 4 , 1 , 8) are linearly independent, but the vectors x3 = (1 , 2 , 4 , 8) and x4 = (2 , 4 , 8, 

16) are “linearly dependent”, because x4 = 2x3. 

 

More generally, a collection of (say) n vectors is linearly independent if no one of the vectors can 

be written as a linear combination (weighted sum) of the remaining (n - 1) vectors. Consider the 
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vectors x1 and x2 above, together with the vector x5 = (4 , 1 , -3 , 2). These three vectors are not 

linearly independent, because x5 = x2 – x1. 

 

Rank of a Matrix 

 

The “rank” of a matrix is the (smaller of the) number of linearly independent rows or columns in 

the matrix. 

 

For example, the matrix 



















98

56

81

D  has a rank of “2”. It has 2 columns, and the first  

 

column is not a multiple of the second column. The columns are linearly independent. It has 3 

rows – these three rows make up a group of 3 linearly independent vectors, but by convention we 

define “rank” in terms of the smaller of the number of rows and columns. So this matrix has “full 

rank”. 

 

On the other hand, the matrix 



















1046

725

651

G  has a rank of “2”, because the third  

 

 

column is the sum of the first two columns. In this case the matrix has “less than full rank”, because 

potentially it could have had a rank of “3”, but the one linear dependency reduces the rank below 

this potential value. 

 

Determinant of a Matrix 

 

The determinant of a (square) matrix is a particular polynomial in the elements of the matrix, and 

is a scalar quantity. We usually denote the determinant of a matrix A by |A|, or det.(A).  

 

The determinant of a scalar is just the scalar itself. 

 

The determinant of a (2 2) matrix is obtained as follows: 

 

)()( 12212211

2221

1211
aaaa

aa

aa
 . 

 

If the matrix is (3 3), then 
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which can then be expanded out completely, and we see that it is just a polynomial in the aij 

elements. 

 

Principal Minor Matrices 

 

Let A be an (n  n) matrix. Then the “principal minor matrices” of A are the sub-matrices formed 

by deleting the last (n - 1) rows and columns (which leaves only first diagonal element); then 

deleting the last (n - 2) rows and columns (which leaves the leading (2  2) block of A); then 

deleting the last (n - 3) rows and columns; etc.  

 

If  



















985

346

137

A , its first principal minor matrix is A(1) = 7; the second principal minor  

 

matrix is 
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37
)2(A ; and the third is just A itself. 

 

Note: The term “principal minor” is often used as an abbreviation for “determinant of the principal 

minor matrix”, so you need to be careful. 

 

Inverse Matrix 

 

Suppose that we have a square matrix, A. If we can find a matrix B, with the same dimension as A, 

such that AB = BA = I (an identity matrix), then B is called the “inverse matrix” for A, and we 

denote it as B = A-1. 

 

Clearly, the inverse matrix corresponds to the reciprocal when we are dealing with scalar numbers. 

Note, however, that many square matrices do not have an inverse.  

 

Singular Matrix 

 

A square matrix that does not have an inverse is said to be a “singular matrix”. On the other hand, 

if the inverse matrix does exist, the matrix is said to be “non-singular”. 

 

For example, every null matrix is singular. Similarly every identity matrix is non-singular, and 

equal to its own inverse (just as 1/1 = 1 in the case of scalars). 

 

Computing an Inverse Matrix 

 

)()()( 223132211323313311122332332211

3231

2221

13

3331

2311

12

3332

2322

11

333231

232221

131211

aaaaaaaaaaaaaaa

aa

aa
a

aa

aa
a

aa

aa
a

aaa

aaa

aaa
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You will not have to construct inverse matrices by hand, except in very simple cases – a computer 

can be used instead. It is worth knowing how to obtain the inverse of a (non-singular) matrix when 

the matrix is just (2  2). In this case we first obtain the determinant of the matrix. We then 

interchange the 2 elements on the leading diagonal of the matrix, and change the signs of the 2 off-

diagonal elements. Finally, we divide this transformed matrix by the determinant. Of course, this 

can only be done if the determinant is non-zero! So, a necessary (but not sufficient) condition for 

a matrix to be non-singular is that its determinant is non-zero. 

 

To illustrate these calculations, consider the matrix  

 















21

14
R . Its determinant is Δ = [(4)(-2) – (1)(-1)] = [-8 + 1} = -7. So, the inverse of  

 

R is the matrix 

 






































7/47/1

7/17/2
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1211R . You can check that 







 

10

01
11 RRRR . 

 

Definiteness of a Matrix 
 

Suppose that A is any square (n  n) matrix. The A is “positive definite” if the (scalar) quadratic form, 

Axx'  > 0, for all non-zero (n  1) vectors, x; A is “positive semi-definite” if the (scalar) quadratic form, 

Axx'   0, for all non-zero (n  1) vectors, x; A is “negative definite” if the (scalar) quadratic form, Axx'  

< 0, for all non-zero (n  1) vectors, x; and A is “negative semi-definite” if the (scalar) quadratic form, 

Axx'   0, for all non-zero (n  1) vectors, x. If the sign of Axx'  varies with the choice of x, then A is 

said to be “indefinite”. 

 

For example, let 









20

04
A . Then  

 

    024
2

4

20

04

20

04
'' 2

2

2

1

2

1

21

2

1

21

2

1

2

1



















































 xx

x

x
xx

x

x
xx

x

x

x

x
Axx , unless  

 

both x1 and x2 are zero. So, A is positive definite in this case. 

 

 

 

 

Idempotent Matrix 

 

Suppose that we have a square and symmetric matrix, Q, which has the property that Q2 = Q. 

Because Q is symmetric, this means that QQQQQQQQ  2'' . Any matrix with this property 

is called an “idempotent matrix”.  
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Clearly, the identity matrix, and the null matrix are idempotent. This corresponds with the fact that 

the only two idempotent scalar numbers are unity and zero. However, other matrices can also be 

idempotent. 

 

Let X be an (T k) matrix, with T > k, and such that the square, (k k) matrix )'( XX has an inverse 

(i.e., it is non-singular). Let ')'( 1 XXXXP  . Note that P is an (T T) matrix, so it is square; and 

also note that  

 

PXXXXXXXXXXXXXXXXP   ')'('])''[(']')'[()''(]'')'([' 1111 . 

That is, P is symmetric. Now, observe that 

 

PXXXX

XXXIXXXXXXXXXXXXXXXXXPP









')'(

')'(')'('])''[(')'(]'')'(['

1

11111

 

and so P is idempotent. You can also check that the matrix )( PIM T   is another example of an 

idempotent matrix. 

 

2. Some Basic Matrix Results 
 

Let A be a square (n  n) matrix. Then: 

 

1. Let X be an (m  n) matrix with full rank. Then (XAX’) is positive definite if A is positive 

definite. 
 

2. If A is non-singular (that is, it has an inverse) then it is either positive definite, or negative 

definite, and its determinant is non-zero. 
 

3. If A is positive semi-definite or negative semi-definite, then its determinant is zero, and it is 

singular (it does not have an inverse). 

 

4. If A is positive definite then the determinant of A is positive. 

 

5. If A is positive (semi-) definite then all of the leading diagonal elements of A are positive (non-

negative). 

 

6. If A is negative (semi-) definite then all of the leading diagonal elements of A are negative (non-

positive). 

 

7. A is positive definite if and only if the determinants of all of its principal minor matrices are 

positive. 

 

8. A is negative definite if and only if the determinants of the principal minor matrices of order k 

have sign (-1)k, k = 1, 2, ....., n. (That is, - , +,  - , +,...........) 

 

9. Suppose that B is also (n  n), and that both A and B are non-singular. Then the definiteness of (A 

- B)-1 is the same as the definiteness of (B -1 - A -1). 
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10. If A is either positive definite or negative definite, then rank(A) = n. 

 

11. If A is positive semi-definite or negative semi-definite, then rank(A) = r < n. 

 

12. If A is idempotent then it is positive semi-definite. 

13. If A is idempotent then rank(A) = trace(A), where the trace is the sum of the leading diagonal 

elements. 

 

14. If C is an (m  n) matrix, then the rank of C cannot exceed min.(m , n). 

 

15. If A is positive semi-definite or negative semi-definite, then rank(A) = r < n, and it has “r” non-

zero eigenvalues 

 

16. If A is either positive definite or negative definite then all of its eigenvalues are non-zero. 

 

17. Suppose that A and B are both (n  n) matrices. Then trace(A + B) = trace(A) + trace( B). 

 

18.  Suppose that A and B are both (n  n) matrices. Then )''()'( BABA  . 

 

19. Suppose that A is a non-singular (n  n) matrix, then 
11 )'()'(   AA . 

 

20. Suppose that A and B have dimensions such that AB is defined. Then )''()'( ABAB  . 

 

21. Suppose that A and B are non-singular (n  n) matrices such that both AB and BA are defined. 

Then )()( 111   ABAB . 

 

22. If D is a square diagonal matrix which is non-singular, then D-1 is also diagonal, and the elements 

of the leading diagonal are the reciprocals of those on the diagonal of D itself. 
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Topic 1 – Continued……. 

Finite-Sample Properties of the LS Estimator 

 

𝒚 = 𝑿𝜷 + 𝜺    ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛] 

𝒃 = (𝑿′𝑿)−1𝑿′𝒚 = 𝑓(𝒚) 

            ε is random               y is random                 b is random 

 b is an estimator of β. It is a function of the random sample data. 

 b is a “statistic”. 

 b has a probability distribution – called its Sampling Distribution. 

 Interpretation of sampling distribution – 

Repeatedly draw all possible samples of size n.  

Calculate values of b each time. 

Construct relative frequency distribution for the b values and probability of occurrence. 

It is a hypothetical construct. Why? 

 Sampling distribution offers one basis for answering the question: 

 

              “How good is b as an estimator of β ?” 

Note: 

Quality of estimator is being assessed in terms of performance in repeated samples. Tells us 

nothing about quality of estimator for one particular sample. 

 Let’s explore some of the properties of the LS estimator, b, and build up its sampling 

distribution. 

 Introduce some general results, and apply them to our problem. 
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Definition: An estimator, �̂� is an unbiased estimator of the parameter vector, θ, if   𝐸[�̂�] = 𝜽 . 

That is, 𝐸[�̂�(𝒚)] = 𝜽 . 

That is, ∫𝜃(𝒚)𝑝(𝒚 | 𝜽)𝑑𝒚 = 𝜽 . 

The quantity,  𝑩(𝜽, 𝒚) = 𝐸[�̂�(𝒚) − 𝜽] , is called the “Bias” of  �̂� . 

 

Example:     {𝑦1, 𝑦2, …… , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  . 

Then, 𝐸[�̅�] = 𝐸 [
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ] =

1

𝑛
∑ 𝐸(𝑦𝑖

𝑛
𝑖=1 ) 

                     =
1

𝑛
∑ 𝜇 =𝑛

𝑖=1 (
1

𝑛
𝑛𝜇 ) = 𝜇  . 

So, �̅� is an unbiased estimator of the parameter, μ. 

 Here, there are lots of possible unbiased estimators of μ. 

 So, need to consider additional characteristics of estimators to help choose. 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚   

 Recall – either assume that X is non-random, or condition on X. 

 We’ll assume X is non-random – get same result if we condition on X. 

Then:        𝐸(𝒃) = 𝐸[(𝑋′𝑋)−1𝑋′𝒚] = (𝑋′𝑋)−1𝑋′𝐸(𝒚) 
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So, 

 𝐸(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝑋𝜷 + 𝜺] = (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝐸(𝜺)] 

= (𝑋′𝑋)−1𝑋′[𝑋𝜷 + 𝟎] = (𝑋′𝑋)−1𝑋′𝑋𝜷 

= 𝜷 . 

 

 

 

Definition:  Any estimator that is a linear function of the random sample data is called a Linear 

Estimator. 

Example:     {𝑦1, 𝑦2, …… , 𝑦𝑛}  is a random sample from population with a finite mean, μ, and a 

finite variance, σ2 .  

Consider the statistic    �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 =

1

𝑛
[𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛] . 

This statistic is a linear estimator of μ. 

(Note that the “weights” are non-random.) 

 

Return to our LS problem – 

                       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚   

                    (k×1)                      (k×n)(n×1) 

Note that, under our assumptions, A is a non-random matrix. 

So, 

                    (
𝑏1

⋮
𝑏𝑘

) = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋯ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑛

] (

𝑦1

⋮
𝑦𝑛

)  . 

The LS estimator of β is Unbiased 
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For example,    𝑏1 = [𝑎11𝑦1 + 𝑎12𝑦2 + ⋯+ 𝑎1𝑛𝑦𝑛]   ;     etc. 

 

   

Now let’s consider the dispersion (variability) of b, as an estimator of β. 

Definition:  Suppose we have an (n×1) random vector, x. Then the Covariance Matrix of x is 

defined as the (n×n) matrix: 

                     𝑉(𝒙) = 𝐸[(𝒙 − 𝐸(𝒙))(𝒙 − 𝐸(𝒙))
′
]. 

 Diagonal elements of V(x) are   𝑣𝑎𝑟. (𝑥1), ……., 𝑣𝑎𝑟. (𝑥𝑛). 

 Off-diagonal elements are  𝑐𝑜𝑣𝑎𝑟. (𝑥𝑖 , 𝑥𝑗) ; i, j = 1, …, n ; i ≠ j. 

Return to our LS problem – 

We have a (k×1) random vector, b, and we know that  𝐸(𝒃) = 𝜷. 

                 𝑉(𝒃) = 𝐸[(𝒃 − 𝐸(𝒃))(𝒃 − 𝐸(𝒃))
′
] 

Now, 

               𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                  = (𝑋′𝑋)−1(𝑋′𝑋)𝜷 + (𝑋′𝑋)−1𝑋′𝜺 

                  = 𝐼𝜷 + (𝑋′𝑋)−1𝑋′𝜺. 

So, 

               (𝒃 − 𝜷) = (𝑋′𝑋)−1𝑋′𝜺 .                                          [*] 

Using the result, [*], in V(b), we have: 

            𝑉(𝒃) = 𝐸{[(𝑋′𝑋)−1𝑋′𝜺][(𝑋′𝑋)−1𝑋′𝜺]′} 

                     = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 . 

The LS estimator, b, is a linear (& unbiased) estimator of β 
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We showed, earlier, that because  𝐸(𝜺) = 𝟎,   𝑉(𝜺) = 𝐸(𝜺𝜺′) = 𝜎2𝐼𝑛 . 

(What other assumptions did we use to get this result?) 

So, we have: 

   𝑉(𝒃) = (𝑋′𝑋)−1𝑋′𝐸[𝜺𝜺′]𝑋(𝑋′𝑋)−1 = (𝑋′𝑋)−1𝑋′𝜎2𝐼𝑋(𝑋′𝑋)−1 = 𝜎2(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1 

             = 𝜎2(𝑋′𝑋)−1. 

 

 

 

Interpret diagonal and off-diagonal elements of this matrix. 

Finally, because the error term, ε is assumed to be Normally distributed, 

1.   𝒚 = 𝑋𝜷 + 𝜺 :   this implies that y is also Normally distributed. (Why?) 

2.   𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = 𝐴𝒚 :   this implies that b is also Normally distributed. 

So, we now have the full Sampling Distribution of the LS estimator, b : 

 

                      

Note: 

 This result depends on our various, rigid, assumptions about the various components of 

the regression model. 

 The Normal distribution here is a “multivariate Normal” distribution. 

(See handout on “Spherical Distributions”.) 

 As with estimation of population mean, μ, in previous example, there are lots of other 

unbiased estimators of  𝜷  in the model = 𝑋𝜷 + 𝜺 . 

 How might we choose between these possibilities?  Is linearity desirable? 

𝑉(𝒃) = 𝜎2(𝑋′𝑋)−1 

          (k×k) 

𝒃 ~ 𝑁[𝜷 , 𝜎2(𝑋′𝑋)−1] 



39 
 

 We need to consider other desirable properties that these unbiased estimators may have. 

 One option is to take account of estimators' precisions. 

 Definition:  Suppose we have two unbiased estimators,  𝜃1̂ and 𝜃2̂ , of the (scalar) parameter, 𝜃. 

Then we say that  𝜃1̂ is at least as efficient as  𝜃2̂  if 𝑣𝑎𝑟. ( 𝜃1̂ ) ≤ 𝑣𝑎𝑟. ( 𝜃2̂ ) . 

Note: 

1.  The variance of an estimator is just the variance of its sampling     distribution. 

2.  "Efficiency" is a relative concept. 

3.   What if there are 3 or more unbiased estimators being compared? 

 

 What if one or more of the estimators being compared is biased ? 

 In this case we can take account of both variance, and any bias, at the same time by using 

"mean squared error" (MSE) of the estimators. 

Definition:  Suppose that  𝜃 is an estimator of the (scalar) parameter, 𝜃. Then the  MSE of 𝜃 is 

defined as: 

                          𝑀𝑆𝐸( 𝜃 ̂) = 𝐸 [(𝜃 − θ)
2
].      

 

Note that:                  

 

To prove this, write: 

  𝑀𝑆𝐸( 𝜃 ̂) = 𝐸 [(𝜃 − 𝜃)
2
] = 𝐸{[((𝜃) − 𝐸(𝜃)) + (𝐸(𝜃) − 𝜃)]2},  

expand out, and note that 

𝐸[𝐸(𝜃)] = 𝐸(𝜃) ;   

and 

𝐸[𝜃 − 𝐸(𝜃)] = 0.

𝑀𝑆𝐸( 𝜃 ̂) = 𝑣𝑎𝑟. ( 𝜃 ) + [𝐵𝑖𝑎𝑠( 𝜃 )]2   
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Definition:  Suppose we have two (possibly) biased estimators,  𝜃1 and 𝜃2 , of the (scalar) 

parameter, 𝜃. Then we say   𝜃1 is at least as efficient as 𝜃2 if 𝑀𝑆𝐸(𝜃1) ≤ 𝑀𝑆𝐸(𝜃2) . 

If we extend all of this to the case where we have a vector of parameters,  , then we have the 

following definitions: 

Definition:  Suppose we have two unbiased estimators, 𝜃1 and 𝜃2 , of the parameter vector, 𝜽. 

Then we say that  𝜃1 is at least as efficient as 𝜃2  if 𝛥 = 𝑉(𝜃2 ) − 𝑉( 𝜃1) is at least positive 

semi-definite. 

Definition:  Suppose we have two (possibly) biased estimators, 𝜃1and 𝜃2 , of the parameter 

vector, 𝜽. Then we say that  𝜃1 is at least as efficient as  𝜃2 if 𝛥 = 𝑀𝑀𝑆𝐸(𝜃2 ) − 𝑀𝑀𝑆𝐸( 𝜃1 ) 

is at least positive semi-definite. 

Note:   𝑀𝑀𝑆𝐸(𝜃) = 𝐸 [(𝜃 − 𝜃)(𝜃 − 𝜃)
′
] = 𝑉[𝜃] + 𝐵𝑖𝑎𝑠(𝜃)𝐵𝑖𝑎𝑠(𝜃 ̂)′ .   

Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator, 

b, of 𝛽 optimal? 

 

 

 

 

1.  Is this an interesting result? 

2. What assumptions about the "standard" model are we going to exploit? 

 

  

Theorem (Gauss-Markhov): 

In the "standard" linear regression model,  𝒚 = 𝑋𝜷 + 𝜺 , the LS estimator, b, of 𝜷 is Best Linear 

Unbiased (BLU). That is, it is Efficient in the class of all linear and unbiased estimators of 𝛽. 

 



41 
 

Proof 

Let b0 be any other linear estimator of 𝜷: 

                         𝒃𝟎 = 𝐶𝒚                        ;         for some non-random C . 

                     (k×1)   (k×n)(n×1) 

Now,             𝑉(𝒃𝟎) = 𝐶𝑉(𝒚)𝐶′ = 𝐶(𝜎2𝐼𝑛)𝐶′ = 𝜎2𝐶𝐶′                                                                                 

                       (k×k)  

Define:           𝐷 = 𝐶 − (𝑋′𝑋)−1𝑋′ 

so that            𝐷𝒚 = 𝐶𝒚 − (𝑋′𝑋)−1𝑋′𝒚 = 𝒃𝟎 − 𝒃   . 

Now restrict b0 to be unbiased, so that  𝐸(𝒃𝟎) = 𝐸(𝐶𝒚) = 𝐶𝑋𝜷 = 𝜷 . 

This requires that  𝐶𝑋 = 𝐼, which in turn implies that 

         𝐷𝑋 = [𝐶 − (𝑋′𝑋)−1𝑋′]𝑋 = 𝐶𝑋 − 𝐼 = 0               (𝑎𝑛𝑑 𝐷′𝑋′ = 0) 

(What assumptions have we used so far?) 

Now, focus on covariance matrix of b0 : 

𝑉(𝒃𝟎) = 𝜎2[𝐷 + (𝑋′𝑋)−1𝑋′][𝐷 + (𝑋′𝑋)−1𝑋′]′ 

                             = 𝜎2[𝐷𝐷′ + (𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1]      ;         𝐷𝑋 = 0                                                          

                     = 𝜎2𝐷𝐷′ + 𝜎2(𝑋′𝑋)−1 

                          = 𝜎2𝐷𝐷′ + 𝑉(𝒃), 

or,                [𝑉(𝒃𝟎) − 𝑉(𝒃)] = 𝜎2𝐷𝐷′                     ;                   𝜎2 > 0 

 

Now we just have to "sign" this (matrix) difference: 

                   𝜼′(𝐷𝐷′)𝜼 = (𝐷′𝜼)′(𝐷′𝜼) = 𝑣′𝑣 = ∑ 𝑣𝑖
2𝑛

𝑖=1 ≥ 0 . 
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So,    𝛥 = [𝑉(𝒃𝟎) − 𝑉(𝒃)] is a p.s.d. matrix, implying that b0 is relatively less efficient  than b. 

Result:     

 

 

 What assumptions did we use, and where? 

 Were there any standard assumptions that we didn't use? 

 What does this suggest? 

 

Estimating 𝝈𝟐 

 We now know a lot about estimating  𝜷 . 

 There’s another parameter in the regression model -  𝜎2 – the variance of each 휀𝑖 . 

 Note that  𝜎2 = 𝑣𝑎𝑟. (휀𝑖) = 𝐸[(휀𝑖 − 𝐸(휀𝑖))
2
] = 𝐸(휀𝑖

2) . 

 The sample counterpart to this population parameter is the sample average of the 

“residuals”:   �̂�2 =
1

𝑛
∑ 𝑒𝑖

2 =
1

𝑛
𝒆′𝒆𝑛

𝑖=1  . 

 However, there is a distortion in this estimator of 𝜎2 . 

 Although mean of 𝑒𝑖’s is zero (if intercept in model), not all of 𝑒𝑖’s are independent of 

each other – only (n – k) of them are. 

 Why does this distort our potential estimator, �̂�2 ? 

Note that:     𝑒𝑖 = (𝑦𝑖 − 𝑦�̂�) = (𝑦𝑖 − 𝑥𝑖
′𝒃) 

= (𝑥𝑖
′𝜷 + 휀𝑖) − 𝑥𝑖

′𝒃 

= 휀𝒊 + 𝒙𝒊′(𝜷 − 𝒃) 

 

Let’s see what properties  �̂�2 has as an estimator of  𝜎2 : 

                𝒆 = (𝒚 − �̂�) = (𝒚 − 𝑋𝒃) = 𝒚 − 𝑋(𝑋′𝑋)−1𝑋′𝒚 = 𝑀𝒚 , 

The LS estimator is the Best Linear Unbiased estimator of 𝜷. 
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where 

                   𝑀 = 𝐼𝑛 − 𝑋(𝑋′𝑋)−1𝑋′       ;        idempotent, and 𝑀𝑋 = 0 . 

So,              𝒆 = 𝑀𝒚 = 𝑀(𝑋𝜷 + 𝜺) = 𝑀𝜺  , 

and          𝒆′𝒆 = (𝑀𝜺)′(𝑀𝜺) = 𝜺′𝑀𝜺        ;              scalar 

From this, we see that: 

  𝐸(𝒆′𝒆) = 𝐸[𝜺′𝑀𝜺] = 𝐸[𝑡𝑟. (𝜺′𝑀𝜺)] = 𝐸[𝑡𝑟. (𝑀𝜺𝜺′)] 

                                  = 𝑡𝑟. [𝑀𝐸(𝜺𝜺′)] = 𝑡𝑟. [𝑀𝜎2𝐼𝑛] = 𝜎2𝑡𝑟. (𝑀)     

                                  = 𝜎2(𝑛 − 𝑘)     

So: 

                     𝐸(�̂�2) = 𝐸(
1

𝑛
𝒆′𝒆) =

1

𝑛
(𝑛 − 𝑘)𝜎2 < 𝜎2     ;    BIASED     

Easy to convert this to an Unbiased estimator – 

 

 

 

 “(n – k)” is the “degrees of freedom” – number of independent sources of information in 

the “n” residuals (ei’s). 

 We can use “s” as an estimator of  , but it is a biased estimator. 

 Call “s” the “standard error of the regression”, or the “standard error of estimate”. 

 s2 is a statistic – has its own sampling distribution, etc. More on this to come. 

 Let’s see one immediate application of s2 and s. 

 Recall sampling distribution for LS estimator, b: 

                                  𝒃 ~ 𝑁[𝜷  , 𝜎𝟐(𝑋′𝑋)−1] 

 So, 𝑣𝑎𝑟. (𝑏𝑖) = 𝜎2[(𝑋′𝑋)−1]𝑖𝑖           ;     𝜎
2   is unobservable. 

𝑠2 =
1

(𝑛 − 𝑘)
𝒆′𝒆 
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 If we want to report variability associated with bi as an estimator of 𝛽𝑖, we need to use 

estimator of 𝜎2 . 

 𝑒𝑠𝑡. 𝑣𝑎𝑟. (𝑏𝑖) = 𝑠2[(𝑋′𝑋)−1]𝑖𝑖  . 

 √𝑒𝑠𝑡. 𝑣𝑎𝑟. (𝑏𝑖) = 𝑠. 𝑑.̂ (𝑏𝑖) = 𝑠{[(𝑋′𝑋)−1]𝑖𝑖}
1/2  . 

 We call this the “standard error” of bi. 

 This quantity will be very important when it comes to constructing interval estimates of 

our regression coefficients; and when we construct tests of hypotheses about these 

coefficients. 

                                          

Confidence Intervals & Hypothesis Testing 

 So far, we’ve concentrated on “point” estimation. 

 Need to move on – to do this we’ll need the full sampling distributions of both b and s2. 

 We will make use of the assumption of Normally distributed errors. 

 Recall that: 

                                𝒃 ~ 𝑁[𝜷 , 𝜎2(𝑋′𝑋)−1] 

 

                          𝑏𝑖 ~ 𝑁[𝛽𝑖 , 𝜎
2((𝑋′𝑋)−1)𝑖𝑖]   ;    why still Normal? 

 So, we can standardize: 

𝑧𝑖 = (𝑏𝑖 − 𝛽𝑖)/√𝜎2[(𝑋′𝑋)−1]𝑖𝑖 

 But 𝜎2 is unknown, so we can’t use zi directly to draw inferences about bi. 

Need some preliminary results in order to proceed from here – 

Definition:  Let  𝑧 ~ 𝑁[0 , 1]. Then z2 has a “Chi-Square” distribution with one “degree of 

freedom”. 

Definition:  Let z2, z2, z3, ….., zm be independent  N[0 , 1] variates. Then the quantity ∑ (𝑧𝑖
2)𝑚

𝑖=1  

has a Chi-Square distribution with “m” d.o.f. 

 
Theorem:  Let  𝒙 ~ 𝑁[𝟎 , 𝑉], and let A be a fixed matrix. Then the quadratic form, ′𝐴𝒙 , 

follows a Chi-Square distribution with r ( = 𝑟𝑎𝑛𝑘(𝐴)) degrees of freedom, iff AV is an 

idempotent matrix. 
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Definition:  Let 𝑧 ~ 𝑁[0 , 1], and let 𝑥 ~ 𝜒(𝑣)
2 , where z and x are independent. Then the statistic,  

𝑡 = 𝑧/√𝑥/𝑣 follows Student’s t distribution, with “v” degrees of freedom. 

Now let’s consider the sampling distribution of s2: 

We have                            𝑠2 =
1

(𝑛−𝑘)
𝒆′𝒆 . 

So,  

                          (𝑛 − 𝑘)𝑠2 = (𝒆′𝒆) = (𝜺′𝑀𝜺)  . 

Define the random variable 

                          𝐶 =
(𝑛−𝑘)𝑠2

𝜎2 = (
𝜀

𝜎
) ′𝑀 (

𝜀

𝜎
)  ,   

where  𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛]  ; and so   (
𝜀

𝜎
)~ 𝑁[𝟎 , 𝐼𝑛]  . 

Using the Theorem from last slide, we get the following result for C: 

                          𝐶 = (
𝜀

𝜎
)
′

𝑀 (
𝜀

𝜎
)~ 𝜒(𝑛−𝑘)

2   , 

 

because   𝐴𝑉 = 𝑀𝐼 = 𝑀 , is idempotent, and 𝑟 = 𝑑. 𝑜. 𝑓. = 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝑀) = 𝑡𝑟. (𝑀) =

(𝑛 − 𝑘) .    (Why?) 

 

So, we have the result:  

 

 

Next, we need to show that b and s2 are statistically independent. 

  

(𝑛 − 𝑘)𝑠2

𝜎2
 ~ 𝜒(𝑛−𝑘)

2  
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How does this result help us? 

 We have          𝐶 =
(𝑛−𝑘)𝑠2

𝜎2 = (
𝜺

𝜎
) ′𝑀 (

𝜺

𝜎
) . 

 Also,    𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

 So,    [
𝒃−𝜷

𝜎
] = (𝑋′𝑋)−1𝑋′ (

𝜺

𝜎
) . 

 Let       𝐿 = (𝑋′𝑋)−1𝑋′    ;     𝐴 = 𝑀    ;  𝒙 = (
𝜺

𝜎
) 

 So,    𝐿𝐴 = (𝑋′𝑋)−1𝑋′𝑀 = 𝟎 

 This implies that  𝐶 =
(𝑛−𝑘)𝑠2

𝜎2   and [
𝒃−𝜷

𝜎
] are independent, and so b and s2 are also 

statistically independent. 

 C is  𝜒(𝑛−𝑘)
2 , and [

𝑏−𝛽

𝜎
]~𝑁[𝟎 , (𝑋′𝑋)−1], so we immediately get: 

 

 

 

Proof:     [
𝑏−𝛽

𝜎
]~𝑁[𝟎 , (𝑋′𝑋)−1],      [

𝑏𝑖−𝛽𝑖

𝜎
]~𝑁[𝟎 , ((𝑋′𝑋)−1)𝑖𝑖] 

so,           [
𝑏𝑖−𝛽𝑖

𝜎√((𝑋′𝑋)−1)𝑖𝑖
]~𝑁[0 , 1]  . 

Also,     𝐶 =
(𝑛−𝑘)𝑠2

𝜎2  ~𝜒(𝑛−𝑘)
2   ;    and we have independence. 

So,                 𝑡𝑣 = 𝑁[0 , 1]/√𝜒(𝑣)
2 /𝑣 

                        = [
𝑏𝑖−𝛽𝑖

𝜎√((𝑋′𝑋)−1)𝑖𝑖
] / [

(𝑛−𝑘)𝑠2

𝜎2 /(𝑛 − 𝑘)]
1/2

 

Theorem:  Let x be a normally distributed random vector, and L and A are non-random matrices. 

Then, the “Linear Form”, Lx, and the “Quadratic Form”, ′𝐴𝒙 , are independent if LA = 0 . 

 

Theorem:     𝑡𝑖 = (𝑏𝑖 − 𝛽𝑖)/ 𝑠. 𝑒. (𝑏𝑖) 

has a Student’s t distribution with (n - k) d.o.f. 
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                        = [
𝑏𝑖−𝛽𝑖

𝑠√((𝑋′𝑋)−1)𝑖𝑖
] = [

𝑏𝑖−𝛽𝑖

𝑠.𝑒.(𝑏𝑖)
] . 

In this case, v = (n – k), and so: 

 

 

We can use this to construct confidence intervals and test hypotheses about 𝛽𝑖 . 

Note:  This last result used all of our assumptions about the linear regression model – including 

the assumption of Normality for the errors. 

Example 1: 

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽2 = 0       𝑣𝑠.      𝐻𝐴:  𝛽2 > 0 

                 𝑡 = [
𝑏2−𝛽2

𝑠.𝑒.(𝑏2)
] = [

0.2−0

0.05
] = 4                  ;    suppose n = 20 

                𝑡𝑐(5%) = 1.74  ;  𝑡𝑐(1%) = 2.567     ; d.o.f. = 17  

                𝑡 > 𝑡𝑐   ⇒   𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 . 

 

Degrees of  

Freedom 

90th  

Percentile  

95th  

Percentile 

97.5th  

Percentile 

99th  

Percentile  

99.5th 

Percentile  

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

: : : : : : 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 

[
𝑏𝑖 − 𝛽𝑖

𝑠. 𝑒. (𝑏𝑖)
] ~ 𝑡(𝑛−𝑘) 
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Example 2: 

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽1 = 1.5      𝑣𝑠.      𝐻𝐴:  𝛽1 ≠ 1.5 

                 𝑡 = [
𝑏1−𝛽1

𝑠.𝑒.(𝑏1)
] = [

1.4−1.5

0.7
] = −0.1429     ; d.o.f. = 17 

                    𝑡𝑐(5%) = ±2.11 

                   |𝑡| < 𝑡𝑐    ⇒   𝐷𝑜 𝑁𝑜𝑡 𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 

                (Against 𝐻𝐴 , at the 5% significance level.)  

 

Example 3:     

                     
�̂� = 1.4 + 0.2𝑥2 + 0.6𝑥3

    (0.7)  (0.05)    (1.4)  
  

                 𝐻0:  𝛽1 = 1.5      𝑣𝑠.      𝐻𝐴:  𝛽1 < 1.5 

                 𝑡 = [
𝑏1−𝛽1

𝑠.𝑒.(𝑏1)
] = [

1.4−1.5

0.7
] = −0.1429     ; d.o.f. = 17 

                    𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟. [𝑡 < −0.1429 |𝐻0 𝑖𝑠 𝑇𝑟𝑢𝑒] 

                    

    in R:  pt(-0.1429,17) 

                   p = 0.444 

What do you conclude? 
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Some Properties of Tests: 

Null Hypothesis   (H0)         Alternative Hypothesis  (HA) 

 

Classical hypothesis testing – 

 Assume that H0 is TRUE 

 Compute value of test statistic using random sample of data 

 Determine distribution of the test statistic (when H0 is true) 

 Check of observed value of test statistic is likely to occur, if  H0 is true 

 If this event is sufficiently unlikely, then REJECT H0 (in favour of HA) 

Note: 

1.  Can never accept H0. Why not? 

2.  What constitutes “unlikely” – subjective?  

3. Two types of errors we might incur with this process 

Type I Error:  Reject H0 when in fact it is True 

 

Type II Error: Do Not Reject H0 when in fact it is False 

 

 Pr.[ I ] = α = Significance level of test = “size” of test 

 Pr.[ II ] = β   ; say 

 Value of β will depend on how H0 is False. Usually, many ways. 

 In classical testing, decide in advance on max. acceptable value of α and then try 

and design test so as to minimize β. 

 As β can take different values, may be difficult to design test optimally. 

 Why not minimize both? A trade-off for fixed value of n. 

 Consider some desirable properties for a test. 
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Definition: 

The “Power” of a test is Pr.[Reject H0 when it is False].  

So, Power = 1 – Pr.[Do Not Reject H0 | H0 is False] = 1 – β. 

 

 As β typically changes, depending on the way that H0 is false, we usually have a Power 

Curve. 

 For a fixed value of α, this curve plots Power against parameter value(s). 

 We want our tests to have high power. 

 We want the power of our tests to increase as H0 becomes increasingly false. 

 

Property 1 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is “Uniformly Most Powerful” if its power exceeds (or is no less than) that of any 

other test, for all possible ways that H0 could be False. 

 

Property 2 

Consider a fixed significance level, α. 

Then, a test is “Consistent” if its power → 1, as 𝑛 → ∞, for all possible ways that H0 is false. 

 

Property 3 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is said to be “Unbiased” its power never falls below the significance level. 

Property 4 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is said to be “Locally Most Powerful” if the slope of its power curve is greater than 

the slope of the power curves of all other size – α tests, in a neighbourhood of H0. 
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Note: 

 For many testing problems, no UMP test exists. This is why LMP tests are important. 

 Why do we use our “t-test” in the regression model – 

1.  It is UMP, against 1 –sided alternatives. 

2.  It is Unbiased. 

3.  It is Consistent. 

4.  It is LMP, against both 1-sided and 2-sided alternatives. 

Confidence Intervals 

We can also use our t-statistic to construct a confidence interval for 𝛽𝑖.  

             𝑃𝑟. [−𝑡𝑐 ≤ 𝑡 ≤ 𝑡𝑐] = (1 − α) 

⇒         𝑃𝑟. [−𝑡𝑐 ≤ [
𝑏𝑖−𝛽𝑖

𝑠.𝑒.(𝑏𝑖)
] ≤ 𝑡𝑐] = (1 − α) 

⇒         𝑃𝑟. [−𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ (𝑏𝑖 − 𝛽𝑖) ≤ 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

⇒         𝑃𝑟. [−𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ (−𝛽𝑖) ≤ −𝑏𝑖 + 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)] 

              = (1 − α) 

⇒         𝑃𝑟. [𝑏𝑖 + 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≥ 𝛽𝑖 ≥ 𝑏𝑖 − 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

⇒         𝑃𝑟. [𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖) ≤ 𝛽𝑖 ≤ 𝑏𝑖 + 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] = (1 − α) 

Interpretation – 

The interval,  [𝑏𝑖 − 𝑡𝑐 𝑠. 𝑒. (𝑏𝑖)  , 𝑏𝑖 + 𝑡𝑐  𝑠. 𝑒. (𝑏𝑖)] is random. 

The parameter, 𝛽𝑖, is fixed (but unknown). 

 

 

 

If we just construct an interval, for our given sample of data, we’ll never know if this particular 

interval covers 𝛽𝑖, or not. 

If we were to take a sample of n observations, and construct such an interval, and then repeat 

this exercise many, many, times, then 100(1 − α)% of such intervals would cover the true 

value of 𝛽𝑖. 
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Example 1 

                        �̂� = 0.3 − 1.4𝑥2 + 0.7𝑥3  

                              (0.1)   (1.1)     (0.2) 

Construct a 95% confidence interval for 𝛽1when n = 30. 

          d.o.f. = (n – k) = 27   ;     (α/2) = 0.025 

          𝑡𝑐 = ±2.052   ;     𝑏1 = 0.3   ;    𝑠. 𝑒. (𝑏1) = 0.1 

The 95% Confidence Interval is: 

[𝑏1 − 𝑡𝑐 𝑠. 𝑒. (𝑏1)  , 𝑏1 + 𝑡𝑐  𝑠. 𝑒. (𝑏1)] 

 

⇒                [0.3 – (2.052)(0.1)   ,   0.3 + (2.052)(0.1)] 

⇒                [0.0948   ,   0.5052]      

Don’t forget the units of measurement! 

Example 2 

                        �̂� = 0.3 − 1.4𝑥2 + 0.7𝑥3  

                              (0.1)   (1.1)     (0.2) 

Construct a 90% confidence interval for 𝛽2when n = 16. 

           d.o.f. = (n – k) = 13   ;     (α/2) = 0.05 

           𝑡𝑐 = ±1.771   ;  𝑏2 = −1.4   ;   𝑠. 𝑒. (𝑏2) = 1.1 

The 95% Confidence Interval is: 

[𝑏2 − 𝑡𝑐  𝑠. 𝑒. (𝑏2)  , 𝑏2 + 𝑡𝑐  𝑠. 𝑒. (𝑏2)] 

 

⇒                [-1.4 – (1.771)(1.1)   ,   -1.4 + (1.771)(1.1)] 

⇒                [-3.3481   ,   0.5481]      

Don’t forget the units of measurement! 
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Questions: 

 Why do we construct the interval symmetrically about point estimate, 𝑏𝑖? 

 How can we use a Confidence Interval to test hypotheses? 

 For instance, in the last Example, can we reject H0: 𝛽2 = 0, against a 2-sided alternative 

hypothesis? 
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Introduction to the Monte Carlo Method 

Ryan Godwin 

ECON 7010 

 

The Monte Carlo method provides a laboratory in which the properties of estimators and tests 

can be explored. Although the Monte Carlo method is older than the computer, it is associated 

with repetitive calculations and random number generation, which is greatly assisted by 

computers. 

 

The Monte Carlo method was used as early as 1933 by Enrico Fermi, and likely contributed to 

the work that won him the Nobel Prize in 1938 (Anderson, 1986, p. 99). The term “Monte Carlo” 

was coined in 1947 by Stanislaw Ulam, Nicolas Metropolis, and John von Neumann, and refers 

to Stanislaw Ulam’s gambling uncle (Metropolis, 1987). The spirit of the method is well 

captured in the sentiments of Stanislaw Ulam, as he recalls his first thoughts and attempts at 

practising the method. He was trying to determine the chances that a hand of solitaire would 

come out successfully. He wondered if the most practical method would be to deal one-hundred 

hands, and simply observe the outcome (Eckhardt, 1987).  

 

The use of random generation and repetitive calculation are the two central tenets to Monte Carlo 

experimentation, a method which has flourished since the first electronic computer was built in 

1945, and a method which has had a profound impact on mathematics and statistics.  

 

“At long last, mathematics achieved a certain parity - the twofold aspect of experiment and 

theory - that all other sciences enjoy” (Metropolis, 1987, p.130). 

 

A Simple Monte Carlo Experiment 

 

We have seen the derivation of some of the properties of the OLS estimator 𝒃 for 𝜷, in the 

simple linear regression model. Namely, we have seen that OLS is unbiased and efficient. What 

if we could observe these properties? One of the uses of the Monte Carlo method is to guess at 

the properties of statistics; properties which may be difficult to derive theoretically. 



55 
 

Let’s consider the unbiasedness property of OLS, which says that the mean of the sampling 

distribution of 𝒃 is 𝜷. If we could mimic the sampling distribution, we should be able to observe 

this property. Recall how we interpreted the sampling distribution: 

 

1. Repeatedly draw all possible samples of size n. 

2. Calculate values of 𝒃 each time. 

3. Construct a relative frequency distribution for 𝒃. 

 

If we replace “all possible” in Step #1 with “10,000” or “100,000”, then the sampling 

distribution may easily be synthesized using a computer. 

 

Our Monte Carlo experiment will begin by pretending that the true unobservable population 

model is known. Then, when we calculate the OLS estimates, we pretend that the population 

model is unknown. This way, we can compare 𝒃 to 𝜷. Let’s begin with an overview of the 

experiment before writing computer code: 

 

1. Specify the (unobservable) population model: 𝒚 = 𝑋𝜷 + 𝜺. This involves choosing 

values for 𝜷, choosing the distribution for 𝜺, and creating some arbitrary 𝑋 data (which 

will be fixed in repeated samples, in accordance with assumption A.5).  

2. “Draw” a sample of 𝒚 from the population model. This involves using a random number 

generator to create the 𝜺 values. 

3. Calculate 𝒃. 

4. Repeat the above steps many (10,000) times, storing each 𝒃. 

5. Take the average of all 10,000 𝒃. If 𝒃 is unbiased, this average should be close to 𝜷. 
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R Code 

 

First we need to determine some parameters for our experiment, such as sample size and the 

number of Monte Carlo repitions we would like to use. 

 

n = 50 

rep = 10000 

 

Next, choose values for 𝜷. We’ll just use an intercept and single 𝑥 variable. 

 

beta1 = 0.5 

beta2 = 2 

 

We also need to create the 𝑥 variable. To do this, we will create n random numbers from the 

uniform (0,1) distribution. 

 

x = runif(n) 

 

Take a look at 𝑥: 

 

 > x  

 [1] 0.16113175 0.95362471 0.47450286 0.89152313 0.12962974 0.01736195 

 [7] 0.45421529 0.75819744 0.09663753 0.51222232 0.47904268 0.93851048 

[13] 0.57261715 0.22855245 0.42623832 0.69128449 0.91723239 0.86308324 

[19] 0.83708109 0.70848409 0.02601843 0.38442663 0.23403509 0.80584167 

[25] 0.70558551 0.54727753 0.98413499 0.63819489 0.21897050 0.98055095 

[31] 0.69164831 0.32517447 0.36495332 0.90024951 0.54707758 0.92455957 

[37] 0.41021164 0.99205363 0.40688771 0.11455678 0.98368243 0.06997619 

[43] 0.85802275 0.58978543 0.13004962 0.45697634 0.12341920 0.62945295 

[49] 0.67256565 0.63599985 

 

Let’s create vectors of zeros, that will later be used to store the OLS estimates for the intercept 

and slope: 
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b1 = b2 = rep(0,n) 

 

Start the Monte Carlo loop: 

 

for(j in 1:rep){ 

 

Create the disturbances vector (𝜺) by randomly generating numbers from the N(0,1) distribution. 

 

eps = rnorm(n) 

 

Now "draw" a random sample of y values: 

 

y = beta1 + beta2*x + eps 

 

Calculate and record OLS estimates, and end the Monte Carlo loop: 

 

b1[j] = lm(y~x)$coefficient[1] 

b2[j] = lm(y~x)$coefficient[2] 

} 

 

Now, we let’s see if b2 appears to be unbiased: 

> mean(b2) 

[1] 2.003847  

 

We can also take a look at the simulated sampling distribution: 

> hist(b1) 
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Topic 2: Asymptotic Properties of Various Regression Estimators 

 Our results to date apply for any finite sample size (n). 

 In more general models we often can’t obtain exact results for estimators’ properties. 

 In this case, we might consider their properties as 𝑛 → ∞. 

 A way of “approximating” results. 

 Also of interest in own right – inferential procedures should “work well” when we have 

lots of data 

 Previous example – hypothesis tests that are “consistent”. 

Definition:   An estimator, �̂�, for θ, is said to be (weakly) consistent if 

                  lim
𝑛→∞

{𝑃𝑟. [|�̂�𝑛 − 𝜽| < 𝝐]} = 1. 

Note: A sufficient condition for this to hold is that both 

(i) 𝐵𝑖𝑎𝑠(�̂�𝑛) → 𝟎  ; as 𝑛 → ∞. 

(ii) 𝑉(�̂�𝑛) → 0  ; as 𝑛 → ∞. 

We call this “Mean Square Consistency”.  (Often useful for checking.) 

If  �̂� is weakly consistent for θ, we say that “the probability limit of �̂� equals θ. 

We denote this by using “plim” operator, and we write 

      𝑝𝑙𝑖𝑚(�̂�𝑛) = 𝜽      or,       �̂�𝑛

𝑝
→ 𝜽 

Example  𝑥𝑖  ~ [𝜇 , 𝜎2]                    (i.i.d) 

  �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

  𝐸[�̅�] =
1

𝑛
∑ 𝐸(𝑥𝑖)

𝑛
𝑖=1 =

1

𝑛
(𝑛𝜇) = 𝜇             (unbiased, for all n) 

  𝑣𝑎𝑟. [�̅�] =
1

𝑛2 𝑣𝑎𝑟. [∑ 𝑥𝑖
𝑛
𝑖=1 ] =

1

𝑛2
∑ 𝑣𝑎𝑟. (𝑥𝑖)

𝑛
𝑖=1  

=
1

𝑛2
(𝑛𝜎2) = 𝜎2

𝑛⁄  
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So, �̅� is an unbiased estimator of 𝜇, and lim
𝑛→∞

{𝑣𝑎𝑟. [�̅�]} = 0. 

This implies that �̅� is both a mean-square consistent, and weakly consistent estimator of  𝜇 . 

Note: 

 If an estimator is inconsistent, then it is a pretty useless estimator! 

 There are many situations in which our LS estimator is inconsistent! 

 For example – 

(i) 𝑦𝑡 = 𝛽1 + 𝛽2𝑥𝑡 + 𝛽3𝑦𝑡−1 + 휀𝑡 

and       휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡 

(ii)  𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡+휀1𝑡 

and       𝑥2𝑡 = 𝛾1𝑦𝑡 + 𝛾3𝑥3𝑡 + 𝛾4𝑥4𝑡+휀2𝑡 

 

Slutsky’s Theorem 

Let 𝑝𝑙𝑖𝑚(�̂�𝑛) = 𝒄, and let 𝑓( . ) be any continuous function. 

Then,     𝑝𝑙𝑖𝑚[𝑓(�̂�𝑛)] = 𝑓(𝒄). 

For example – 

𝑝𝑙𝑖𝑚 (
1

�̂�
) =

1

𝑐
                    ;    scalars 

𝑝𝑙𝑖𝑚(𝑒�̂�) = 𝑒𝒄                ;     vectors  

𝑝𝑙𝑖𝑚(�̂�−1) = 𝐶−1           ;      matrices   

 

A very useful result – the “plim” operator can be used very flexibly. 
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Asymptotic Properties of LS Estimator(s) 

 Consider LS estimator of β under our standard assumptions, in the “large n” asymptotic 

case. 

 Can relax some assumptions: 

(i) Don’t need Normality assumption for the error term of our model 

(ii) Columns of X can be random – just assume that {𝒙𝑖
′ , 휀𝑖} is a random and 

independent sequence;  i = 1, 2, 3, …….. 

(iii) Last assumption implies 𝑝𝑙𝑖𝑚[𝑛−1𝑋′𝜺] = 𝟎.  (Greene, pp. 64-65.) 

 Amend (extend) our assumption about X having full column rank – 

assume instead that  𝑝𝑙𝑖𝑚[𝑛−1𝑋′𝑋] = 𝑄  ;            positive-definite & finite 

 Note that Q is (k × k), symmetric, and unobservable. 

 What are we assuming about the elements of X, which is (n × k), as n increases without 

limit? 

Theorem:  The LS estimator of β is weakly consistent. 

Proof:  𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                                               = 𝜷 + (𝑋′𝑋)𝑋′𝜺 

                                               = 𝜷 + [
1

𝑛
(𝑋′𝑋)]

−1

[
1

𝑛
𝑋′𝜺] . 

If we now apply Slutsky’s Theorem repeatedly, we have: 

𝑝𝑙𝑖𝑚(𝒃) = 𝜷 + 𝑄−1. 𝟎 = 𝜷 . 

 We can also show that 𝑠2 is a consistent estimator for 𝜎2. 

 Do this in two ways (different assumptions). 

 First, assume the errors are Normally distributed – get a strong result. 

 Then, relax this assumption and get a weaker result. 

Theorem:  If the regression model errors are Normally distributed, then 𝑠2 is a mean-square 

consistent estimator for 𝜎2. 
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Proof:   

If the errors are Normal, then we know that 

 
(𝑛−𝑘)𝑠2

𝜎2
~ 𝜒(𝑛−𝑘)

2  

Now,      (1) 𝐸[𝜒(𝑛−𝑘)
2 ] = (𝑛 − 𝑘) 

     (2) 𝑣𝑎𝑟. [𝜒(𝑛−𝑘)
2 ] = 2(𝑛 − 𝑘)  

So,       𝐸(𝑠2) =
𝜎2𝐸[𝜒(𝑛−𝑘)

2 ]

𝑛−𝑘
= 𝜎2       ;           unbiased 

                  𝑣𝑎𝑟. [
(𝑛−𝑘)𝑠2

𝜎2 ] = 2(𝑛 − 𝑘) 

⇒     [
(𝑛−𝑘)2

𝜎4 ] 𝑣𝑎𝑟. (𝑠2) = 2(𝑛 − 𝑘) 

⇒     𝑣𝑎𝑟. (𝑠2) = 2𝜎4/(𝑛 − 𝑘) 

So,    𝑣𝑎𝑟. (𝑠2) → 0 ,  as 𝑛 → ∞                   (and unbiased) 

This implies that 𝑠2 is a mean-square consistent estimator for 𝜎2. 

(Implies, in turn, that it is also a weakly consistent estimator.) 

 With the addition of the (relatively) strong assumption of Normally distributed errors, we 

get the (relatively) strong result. 

 Note that �̂�2 = (𝑒′𝑒)/𝑛  is also a consistent estimator, even though it is biased. 

 What other assumptions did we use in the above proof? 

 What can we say if we relax the assumption of Normality? 

 We need a preliminary result to help us. 

Theorem (Khintchine ; WLLN):  

Suppose that {𝑥𝑖}𝑖=1
𝑛  is a sequence of random variables that are uncorrelated, and all drawn from 

the same distribution with a finite mean, μ, and a finite variance, 𝜎2. 
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Then,   𝑝𝑙𝑖𝑚(�̅�) = 𝜇 . 

Theorem:  In our regression model, 𝑠2 is a weakly consistent estimator for 𝜎2. 

(Notice that this also means that �̂�2 is also a weakly consistent estimator, so start with the latter 

estimator.) 

Proof:    

 �̂�2 = (
𝒆′𝒆

𝑛
) =

1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  

      =
1

𝑛
(𝑀𝜺)′(𝑀𝜺) =

1

𝑛
𝜺′𝑀𝜺 

      =
1

𝑛
[𝜺′𝜺 − 𝜺′𝑋(𝑋′𝑋)−1𝑋′𝜺] 

      = [(
1

𝑛
𝜺′𝜺) − (

1

𝑛
𝜺′𝑋) (

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜺)] . 

 

So,          𝑝𝑙𝑖𝑚(�̂�2) = 𝑝𝑙𝑖𝑚 (
1

𝑛
𝜺′𝜺) − 𝟎′𝑄−1𝟎 = 𝑝𝑙𝑖𝑚 [

1

𝑛
∑ 휀𝑖

2𝑛
𝑖=1 ].   

 

Now, if the errors are pair-wise uncorrelated, so are their squared values. 

Also,     𝐸[휀𝑖
2] = 𝑣𝑎𝑟. (휀𝑖) = 𝜎2. 

By Khintchine’s Theorem, we immediately have the result: 

                 𝑝𝑙𝑖𝑚(�̂�2) = 𝜎2, 

and so          𝑝𝑙𝑖𝑚(𝑠2) = 𝜎2. 

 

 Relaxing the assumption of Normally distributed errors led to a weaker result for the 

consistent estimation of the error variance. 

 What other assumptions were used, and where? 
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An Issue 

 Suppose we want to compare the (large n) asymptotic behaviour of our LS estimators 

with those of other potential estimators. 

 These other estimators will presumably also be consistent. 

 This means that in each case the sampling distributions of the estimators collapse to a 

“spike”, located exactly at the true parameter values. 

 So, how can we compare such estimators when n is very large – aren’t they 

indistinguishable? 

 If the limiting density of any consistent estimator is a degenerate “spike”, it will have 

zero variance, in the limit. 

 Can we still compare large-sample variances of consistent estimators? 

In other words, is it meaningful to think about the concept of asymptotic efficiency? 

Asymptotic Efficiency 

 The key to asymptotic efficiency is to “control” for the fact that the distribution of 

any consistent estimator is “collapsing”, as 𝒏 → ∞. 

 The rate at which the distribution collapses is crucially important. 

 This is probably best understood by considering an example. 

 {𝑥𝑖}𝑖=1
𝑛    ;   random sampling from [𝜇 , 𝜎2]. 

 𝐸[�̅�] = 𝜇  ;      𝑣𝑎𝑟. [�̅�] = 𝜎2/𝑛   

 Now construct:  𝑦 = √𝑛(�̅� − 𝜇). 

 Note that     𝐸(𝑦) = √𝑛(𝐸(�̅�) − 𝜇) = 0. 

 Also,   𝑣𝑎𝑟. [𝑦] = (√𝑛)
2
𝑣𝑎𝑟. (�̅� − 𝜇) = 𝑛 𝑣𝑎𝑟. (�̅�) = 𝜎2. 

 The scaling we’ve used results in a finite, non-zero, variance. 

 𝐸(𝑦) = 0, and  𝑣𝑎𝑟. [𝑦] = 𝜎2 ; unchanged as 𝒏 → ∞. 

 So, 𝑦 = √𝑛(�̅� − 𝜇) has a well-defined “limiting” (asymptotic) distribution. 

 The asymptotic mean of y is zero, and the asymptotic variance of y is 𝜎2. 

 Question – Why did we scale by √𝑛, and not (say), by n itself ? 
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 In fact, because we had independent xi’s (random sampling), we have the additional 

result that  𝑦 = √𝑛(�̅� − 𝜇)
𝑑
→𝑵[0 , 𝜎2], the Lindeberg-Lévy Central Limit Theorem. 

 Now we can define “Asymptotic Efficiency” in a meaningful way. 

Definition:   Let 𝜃 and �̃� be two consistent estimator of θ ; and suppose that 

√𝑛(𝜃  − 𝜃)
𝑑
→[0 , 𝜎2]  , and   √𝑛(�̃�  − 𝜃)

𝑑
→[0 , 𝜑2]  . 

Then 𝜃 is “asymptotically efficient” relative to �̃� if  𝜎2 < 𝜑2 . 

In the case where θ is a vector, �̂� is “asymptotically efficient” relative to �̃� if   

∆= 𝑎𝑠𝑦. 𝑉(�̃�) − 𝑎𝑠𝑦. 𝑉(�̂�) is positive definite. 

 

Asymptotic Distribution of the LS Estimator: 

Let’s consider the full asymptotic distribution of the LS estimator, b, for β in our linear 

regression model. 

We’ll actually have to consider the behaviour of   √𝑛(𝒃 − 𝜷): 

√𝑛(𝒃 − 𝜷) = √𝑛[(𝑋′𝑋)−1𝑋′𝜺] 

                    = [
1

𝑛
(𝑋′𝑋)]

−1

(
1

√𝑛
𝑋′𝜺). 

 

It can be shown, by the Lindeberg-Feller Central Limit Theorem, that 

                   (
1

√𝑛
𝑋′𝜺)

𝑑
→𝑁[0 , 𝜎2𝑄], 

where              𝑄 = 𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)] . 

So, the asymptotic covariance matrix of  √𝑛(𝒃 − 𝜷) is 
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            𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

(𝜎2𝑄)𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

= 𝜎2𝑄−1. 

In full, the asymptotic distribution of  b is correctly stated by saying that: 

√𝑛(𝒃 − 𝜷)
𝑑
→𝑁[𝟎 , 𝜎2𝑄−1] 

The asymptotic covariance matrix is unobservable, for two reasons: 

1.  𝜎2 is typically unknown. 

2.  Q is unobservable. 

 We can estimate 𝜎2 consistently, using s2. 

 To estimate 𝜎2𝑄−1 consistently,  we can use 𝑛𝑠2(𝑋′𝑋)−1  : 

𝑝𝑙𝑖𝑚[𝑛𝑠2(𝑋′𝑋)−1] = 𝑝𝑙𝑖𝑚(𝑠2)𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

= 𝜎2𝑄−1 . 

The square roots of the diagonal elements of 𝑛𝑠2(𝑋′𝑋)−1 are the asymptotic std. errors for the 

elements of  √𝑛(𝒃 − 𝜷).  

Loosely speaking, the asymptotic covariance matrix for b itself is  𝑠2(𝑋′𝑋)−1; and the square 

roots of the diagonal elements of this matrix are the asymptotic std. errors for the bi’s 

themselves. 

Instrumental Variables 

 We have been assuming either that the columns of X are non-random; or that the 

sequence {𝒙𝒊
′, 휀𝑖} is independent. Often, neither of these assumptions is tenable. 

 This implies that 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) ≠ 𝟎, and then the LS estimator is inconsistent (prove this). 

 In order to motivate a situation where {𝒙𝒊
′, 휀𝑖} are dependent, consider an omitted, or 

unobservable variable. 
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We will consider a situation where the unobservable variable is correlated with one of the 

regressors, and correlated with the dependent variable. 

Consider the population model: 

 𝒚 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜺1. [1] 

Consider that 𝑐𝑜𝑣(𝑋1, 𝑋2) ≠ 0. For example, 𝑋2 causes 𝑋1: 

 𝑋1 = 𝑋2𝛾 + 𝜺2. [2] 

Now consider that 𝑋2 is unobservable, so that the observable model is: 

 𝒚 = 𝑋1𝛽1 + 𝜺3. [3] 

 Notice that in [3], 𝜺3 contains 𝛽2𝑋2, so that 𝑋1 and 𝜺3 are not independent (𝑋1 is 

endogenous) 

 OLS will be biased, since 𝐸[𝜺3|𝑋1] ≠ 𝟎  

 Note that when estimating from [3], 𝐸[𝑏1] = 𝛽1 + 𝛾−1𝛽2 

 OLS will be inconsistent, since 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋1′𝜺3) ≠ 𝟎 

 In such cases we want a safe way of estimating 𝛽1. 

 We just want to ensure that we have an estimator that is (at least) consistent.  

 One general family of such estimators is the family of Instrumental Variables (I.V.) 

Estimators. 

An instrumental variable, 𝑍, must be: 

1. Correlated with the endogenous variable(s) 𝑋1 

 Sometimes called the “relevance” of an I.V. 

 This condition can be tested  

2. Uncorrelated with the error term, or equivalently, uncorrelated with the dependent 

variable other than through its correlation with 𝑋1 

 Sometimes called the “exclusion” restriction 

 This restriction cannot be tested directly 
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Suppose now that we have a variable 𝑍 which is 

 Relevant: 𝑐𝑜𝑣(𝑍, 𝑋1) ≠ 0 

 Satisfies exclusion restriction: 𝑐𝑜𝑣(𝑍, 𝜺) = 0. In the above D.G.P.s ([1]- [3]), it is 

sufficient for the instrument to be uncorrelated with the unobservable variable: 

𝑐𝑜𝑣(𝑍, 𝑋2) = 0. 

Validity means that [2] becomes: 

 𝑋1 = 𝑍𝛿 + 𝑋2𝛾 + 𝜺4 [4] 

Substituting [4] into [1]: 

 𝒚 = 𝑋2𝛾𝛽1 + 𝑍𝛿𝛽1 + 𝑋2𝛽2 + 𝜺5. [5] 

𝑋2 is still unobservable, but is uncorrelated with 𝑍! The observable population model is now: 

 𝒚 = 𝑍𝛿𝛽1 + 𝜺6. [6] 

 Now, we have a population model involving 𝛽1, and where 𝑐𝑜𝑣(𝑍, 𝜺𝟔) = 0. So, (𝛿𝛽1) can be 

estimated by OLS. But we need 𝛽1! 

By Slutsky’s Theorem, if 𝑝𝑙𝑖𝑚(𝛿𝛽1̂) = 𝛿𝛽1, and if 𝑝𝑙𝑖𝑚(𝛿) = 𝛿, then 𝑝𝑙𝑖𝑚(�̂�−1𝛿𝛽1̂) = 𝛽1. So 

if we can find a consistent estimator for 𝛿, we can find one for 𝛽1. How to estimate 𝛿? 

Recall [4]. Since 𝑋2 and 𝑍 are uncorrelated, we can estimate 𝛿 by an OLS regression of 𝑋1 on 𝑍: 

 𝛿 = (𝑍′𝑍)−1𝑍′𝑋1  

Now solve for 𝛽1̂: 

 𝛽1̂ = 𝛿−1𝛿𝛽1̂ = [(𝑍′𝑍)−1𝑍′𝑋1]
−1(𝑍′𝑍)−1𝑍′𝒚 

If 𝑍 and 𝑋1 have the same number of columns, then: 

 𝛽1̂ = (𝑍′𝑋1)
−1𝑍′𝑍(𝑍′𝑍)−1𝑍′𝒚 = (𝑍′𝑋1)

−1𝑍′𝒚 
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In this example we had one endogenous variable (𝑋1) and one instrument (𝑍). In this case, the 

I.V. estimate may be found by the OLS estimate from a regression of 𝒚 on 𝑍 by the OLS 

estimates of a regression of 𝑋1 on 𝑍. 

In more general models, we will have more explanatory variables. As long as there is one 

instrument per endogenous variable, I.V. is possible and the simple I.V. estimator is: 

𝑏𝐼𝑉 = (𝑍′𝑋)−1𝑍′𝒚 

In general, this estimator is biased. We can show it’s consistent, however: 

                                  𝒚 = 𝑋𝜷 + 𝜺  

                                  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝑋) = 𝑄   ;    p.d.  and finite 

                                  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝜸 ≠ 𝟎  

Find a (random)  (𝑛 × 𝑘) matrix, Z, such that: 

1.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑍) = 𝑄𝑍𝑍   ;    p.d.  and finite. 

2.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋) = 𝑄𝑍𝑋   ;    p.d.  and finite. 

3.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎  . 

Then, consider the estimator:    𝒃𝑰𝑽 = (𝑍′𝑋)−1𝑍′𝒚. This is a consistent estimator of β. 

           𝒃𝑰𝑽 = (𝑍′𝑋)−1𝑍′𝒚 = (𝑍′𝑋)−1𝑍′(𝑋𝜷 + 𝜺)   

                  = (𝑍′𝑋)−1𝑍′𝑋𝜷 + (𝑍′𝑋)−1𝑍′𝜺 

                  = 𝜷 + (𝑍′𝑋)−1𝑍′𝜺 

                  = 𝜷 + (
1

𝑛
𝑍′𝑋)

−1

(
1

𝑛
𝑍′𝜺) . 

So,      𝑝𝑙𝑖𝑚(𝒃𝑰𝑽) = 𝜷 + [𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋)]−1𝑝𝑙𝑖𝑚(

1

𝑛
𝑍′𝜺) 

                              = 𝜷 + 𝑄𝑍𝑋
−1𝟎 = 𝜷                 (consistent) 
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Choosing different Z matrices generates different members of I.V. family. 

Although we won’t derive the full asymptotic distribution of the I.V. estimator, note that it can 

be expressed as: 

 

where  𝑄𝑋𝑍 = 𝑄𝑍𝑋′.   [How would you estimate Asy. Covar. Matrix?] 

Interpreting I.V. as two-stage least squares (2SLS) 

1st stage: Regress 𝑋 on 𝑍, get �̂�. 

 �̂� contains the variation in 𝑋 due to 𝑍 only 

 �̂� is not correlated with 𝜺 

2nd stage: Estimate the model 𝒚 = �̂�𝜷 + 𝜺 

From 1st stage: �̂� = 𝑍(𝑍′𝑍)−1𝑍′𝑋 

From 2nd stage: 𝒃𝑰𝑽 = [𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋]−1𝑋′𝑍(𝑍′𝑍)−1𝑍′𝒚 

In fact, this is the Generalized I.V. estimator of 𝜷. We can actually use more instruments than 

regressors (the “Over-Identified” case). 

Note that if 𝑋 and 𝑍 have the same dimensions, then the generalized estimator collapses to the 

simple one. 

Let’s check the consistency of the I.V. estimator. Let 𝑀𝑧 = 𝑍(𝑍′𝑍)−1𝑍′. Then the generalized 

I.V. estimator is: 

 

 

𝒃𝑰𝑽 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝒚 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍(𝑋𝜷 + 𝜺) 

       = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝑋𝜷 + [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝜺 

       = 𝜷 + [𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋]−1𝑋′𝑍(𝑍′𝑍)−1𝑍′𝜺 

  

√𝑛(𝒃𝑰𝑽  − 𝜷)
𝑑
→𝑁[𝟎 , 𝜎2𝑄𝑍𝑋

−1𝑄𝑍𝑍𝑄𝑋𝑍
−1] 

𝒃𝑰𝑽 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝒚 
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So,   

𝒃𝑰𝑽 = 𝜷 + [(
1

𝑛
𝑋′𝑍) (

1

𝑛
𝑍′𝑍)

−1

(
1

𝑛
𝑍′𝑋)]

−1

(
1

𝑛
𝑋′𝑍) (

1

𝑛
𝑍′𝑍)

−1

(
1

𝑛
𝑍′𝜺) . 

Modify our assumptions: 

We have a (random)  (𝑛 × 𝐿) matrix, Z, such that: 

1.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑍) = 𝑄𝑍𝑍   ;      (𝐿 × 𝐿),  p.d.s. and finite. 

2.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋) = 𝑄𝑍𝑋   ;      (𝐿 × 𝑘), rank = k, and finite. 

3.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎        ;      (𝐿 × 1) 

So, 

𝑝𝑙𝑖𝑚(𝒃𝑰𝑽) = 𝜷 + [𝑄𝑋𝑍𝑄𝑍𝑍
−1𝑄𝑍𝑋]−1𝑄𝑋𝑍𝑄𝑍𝑍

−1𝟎 =  𝜷     ;      consistent 

Similarly, a consistent estimator of 𝜎2 is  

                      𝑠𝐼𝑉
2 = (𝒚 − 𝑋𝒃𝑰𝑽)′(𝒚 − 𝑋𝒃𝑰𝑽)/𝑛 

 

residual vector  

 Recall that each choice of Z leads to a different I.V. estimator. 

 Z must be chosen in way that ensures consistency of the I.V. estimator. 

 How might we choose a suitable set of instruments, in practice? 

 If we have several “valid” sets of instruments, how might we choose between them? 

For the “simple” regression model, recall that: 

√𝑛(𝒃𝑰𝑽  − 𝜷)
𝑑
→𝑁[𝟎 , 𝜎2𝑄𝑍𝑋

−1𝑄𝑍𝑍𝑄𝑋𝑍
−1] 

so if k = 1, 

𝑄𝑍𝑍 = 𝑝𝑙𝑖𝑚(𝑛−1 ∑𝑧𝑖
2

𝑛

𝑖=1

) 
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𝑄𝑍𝑋 = 𝑝𝑙𝑖𝑚(𝑛−1 ∑𝑧𝑖𝑥𝑖

𝑛

𝑖=1

) = 𝑄𝑋𝑍 

The asymptotic efficiency of  𝒃𝑰𝑽 will be higher, the more highly correlated are Z and X, 

asymptotically. 

We need to find instruments that are uncorrelated with the errors, but highly correlated with the 

regressors – asymptotically. 

This is not easy to do! 

 Time –series data -   

1. Often, we can use lagged values of the regressors as suitable instruments. 

2. This will be fine as long as the errors are serially uncorrelated. 

 Cross-section data –  

1. Geography, weather, biology. 

2. Various “old” tricks – e.g., using “ranks” of the data as instruments. 

Testing if I.V.  estimation is needed 

 Why does LS fail, and when do we need I.V.? 

 If  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) ≠ 𝟎   .      

 We can test to see if this is a problem, & decide if we should use LS or I.V. 

 

The Hausman Test 

We want to test  𝐻0 : 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝟎      vs.     𝐻𝐴 : 𝑝𝑙𝑖𝑚 (

1

𝑛
𝑋′𝜺) ≠ 𝟎    

 If we reject H0, we will use I.V. estimation. 

 If we cannot reject H0, we’ll use LS estimation. 

 Hausman test is a general “testing strategy” that can be applied in many situations – not 

just for this particular situation! 

 Basic idea – construct 2 estimators of β: 
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1.  bE : estimator is both consistent and asymptotically efficient if H0 true. 

2.  bI : estimator is at least consistent, even if  H0 false. 

 In our case here, bE is the LS estimator; and bI is the I.V. estimator. 

 If H0 is true, we’d expect (bI - bE) to be “small”, at least for large n, as both estimators are 

consistent in that case. 

 Hausman shows that �̂�(𝒃𝑰 − 𝒃𝑬) = �̂�(𝒃𝑰) − �̂�(𝒃𝑬), if H0 is true. 

 So, the test statistic is,    𝐻 = (𝒃𝑰  −  𝒃𝑬)′[�̂�(𝒃𝑰) − �̂�(𝒃𝑬)]
−1

(𝒃𝑰 − 𝒃𝑬). 

 𝐻
𝒅
→ 𝝌𝑱

𝟐, if H0 is true. 

 Here, J is the number of columns in X which may be correlated with the errors, & for 

which we need instruments. 

 Problem – often, [�̂�(𝒃𝑰) − �̂�(𝒃𝑬)] is singular, so H is not defined. 

 One option is to replace the “regular inverse” with a “generalized inverse”. 

 Another option is to modify H so that it becomes: 

    𝐻∗ = (𝒃𝑰
∗  −  𝒃𝑬

∗)′[�̂�(𝒃𝑰
∗) − �̂�(𝒃𝑬

∗)]
−1

(𝒃𝑰
∗ − 𝒃𝑬

∗) 
𝒅
→ 𝝌𝑱

𝟐  ;  if H0 true. 

 Here, 𝒃𝑰
∗ and 𝒃𝑬

∗
 are the (J × 1) vectors formed by using only the elements of 𝒃𝑰 and 𝒃𝑬 

that correspond to the “problematic” regressors. 

 Constructing H* is not very convenient unless J = 1. 

 

The Durbin-Wu Test 

This test is specific to testing  

𝐻0 : 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝟎      vs.     𝐻𝐴 : 𝑝𝑙𝑖𝑚 (

1

𝑛
𝑋′𝜺) ≠ 𝟎    

Again, an asymptotic test. 
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Testing the exogeneity of Instruments 

The key assumption that ensures the consistency of I.V. estimators is that 

𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎 . 

This condition involves the unobservable 𝜺. In general, it cannot be tested.  

“Weak Instruments” – Problems arise if the instruments are not well correlated with the 

regressors (not relevant).  

 These problems go beyond loss of asymptotic efficiency. 

 Small-sample bias of I.V. estimator can be greater than that of LS! 

 Sampling distribution of I.V. estimator can be bi-modal! 

 Fortunately, we can again test to see if we have these problems. 
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Empirical Example: Using geographic variation in college proximity to estimate the return to 

schooling1 

 Have data on wage, years of education, and demographic variables 

 Want to estimate the return to education 

 Problem: ability (intelligence) may be correlated with (cause) both wage and education 

 Since ability is unobservable, it is contained in the error term 

 The education variable is then correlated with the error term (endogenous) 

 OLS estimation of the returns to education may be inconsistent 

First, let’s try OLS. 

library(AER) 

attach(CollegeDistance) 

lm(wage ~ urban + gender + ethnicity + unemp + education) 

 
Note that the returns to education are not statistically significant. 

Now let’s try using distance from college (while attending high school) as an instrument for 

education. For the instrument to be valid, we require that distance and education be correlated: 

summary(lm(education ~ distance)) 

                                                           
1 Card, David. Using geographic variation in college proximity to estimate the return to 

schooling. No. w4483. National Bureau of Economic Research, 1993. 

Regression Estimates

-0.6

-0.4

-0.2

0.0

urban female black hispanic unemp educ
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            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 13.93861    0.03290 423.683  < 2e-16 *** 

distance    -0.07258    0.01127  -6.441  1.3e-10 *** 

While distance appears to be statistically significant, this isn’t quite enough to test for validity (a 

testing problem we won’t address here).  

From the 2SLS interpretation, we know that we can get the IV estimator by: 

1.) getting the predicted values from a regression of education on distance 

educfit = predict(lm(education ~ distance)) 

 

2.) regressing wage on the same variables, but using educfit instead of education 

lm(wage ~ urban + gender + ethnicity + unemp + educfit)  

 

Note that educfit is the variation in education as it can be explained by distance. These fitted 

values are uncorrelated with ability, since distance is uncorrelated with ability (by assumption). 

Results of IV estimation: 

  

 

The estimate for the return to education is now positive, and significant.

Regression Estimates

-0.5

0.0

0.5

1.0

urban female black hispanic unemp educfit
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Topic 3: Inference and Prediction 

We’ll be concerned here with testing more general hypotheses than those seen to date. Also 

concerned with constructing interval predictions from our regression model. 

Examples 

        𝒚 = 𝑋𝜷 + 𝜺      ;       𝐻0: 𝜷 = 𝟎    vs.        𝐻𝐴: 𝜷 ≠ 𝟎       

        log(𝑄) = 𝛽1 + 𝛽2log (𝐾) + 𝛽3log (𝐿) + 휀 

       𝐻0: 𝛽2 + 𝛽3 = 1    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 1     

        log(𝑞) = 𝛽1 + 𝛽2log (𝑝) + 𝛽3log (𝑦) + 휀 

      𝐻0: 𝛽2 + 𝛽3 = 0    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 0     

If we can obtain one model from another by imposing restrictions on the parameters of the first 

model, we say that the 2 models are “Nested ”. 

We’ll be concerned with (several) possible restrictions on β, in the usual model: 

                          𝒚 = 𝑋𝜷 + 𝜺      ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛]  

                                 (X is non-random  ;  𝑟𝑎𝑛𝑘(𝑋) = 𝑘) 

Let’s focus on linear restrictions: 

                  𝑟11𝛽1 + 𝑟12𝛽2 + ⋯+ 𝑟1𝑘𝛽𝑘 = 𝑞1 

                  𝑟21𝛽1 + 𝑟22𝛽2 + ⋯+ 𝑟2𝑘𝛽𝑘 = 𝑞2 

                                           .                                      (J restrictions) 

                                           . 

                  𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 + ⋯+ 𝑟𝐽𝑘𝛽𝑘 = 𝑞𝐽 

Some (many?) of the 𝑟𝑖𝑗′𝑠 may be zero. 

 Combine these J restrictions: 

                           𝑅𝜷 = 𝒒                 ;    R and q are known, & non-random 

                      (𝐽 × 𝑘)(𝑘 × 1)    (𝐽 × 1)   

 We’ll assume that 𝑟𝑎𝑛𝑘(𝑅) = 𝐽  (< 𝑘). 
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 No conflicting or redundant restrictions. 

 What if J = k ? 

Examples 

1.          𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 

             𝑅 = [
0 1
⋮ ⋮
0 0

    
0 0
⋮ ⋮
0 0

    
⋯ 0
⋮ ⋮
0 1

]        ;       𝒒 = [
0
⋮
0
] 

2.         𝛽2 + 𝛽3 = 1 

      𝑅 = [0 1 1    0 ⋯ 0]        ;        𝑞 = 1 

 

3.       𝛽3 = 𝛽4   ;     and     𝛽1 = 2𝛽2    

     𝑅 = [
0    0 1
1 −2 0

    
−1 0 ⋯
   0 0 ⋯

   
0
0
]   ;   𝑞 = [

0
⋮
0
] 

 Suppose that we just estimate the model by LS, and get 𝒃 = (𝑋′𝑋)−1𝑋′𝒚. 

 It is very unlikely that 𝑅𝒃 = 𝒒    !   

 Denote          𝒎 = 𝑅𝒃 − 𝒒 . 

 Clearly, m is a (𝐽 × 1)  random vector. 

 Let’s consider the sampling distribution of m: 

        𝒎 = 𝑅𝒃 − 𝒒              ;        it is a linear function of b. 

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally 

distributed. 

𝐸[𝒎] = 𝑅𝐸[𝒃] − 𝒒 = 𝑅𝜷 − 𝒒                           (What assumptions used?)        

So,  𝐸[𝒎] = 𝟎 ;     iff     𝑅𝜷 = 𝒒       

Also,       𝑉[𝒎] = 𝑉[𝑅𝒃 − 𝒒] = 𝑉[𝑅𝒃] = 𝑅𝑉[𝒃]𝑅′ 

                        = 𝑅𝜎2(𝑋′𝑋)−1𝑅′ = 𝜎2𝑅(𝑋′𝑋)−1𝑅′    

                                                                             (What assumptions used?) 
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So,              𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  . 

Let’s see how we can use this information to test if   𝑅𝜷 = 𝒒 .          (Intuition?)        

Definition:      The Wald Test Statistic for testing 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒                    is:                    

𝑊 = 𝒎′[𝑉(𝒎)]−1𝒎 . 

So, if 𝐻0 is true: 

                  𝑊 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

                       = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝜎2 . 

Because        𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  , then if 𝐻0 is true: 

                   𝑊 ~ 𝜒(𝐽)
2      ;                  provided that 𝜎2 is known. 

Notice that: 

 This result is valid only asymptotically if 𝜎2 is unobservable, and we replace it with any 

consistent estimator. 

 We would reject 𝐻0 if 𝑊 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒. (i.e., when 𝒎 = 𝑅𝒃 − 𝒒 is sufficiently 

“large”.)     

 The Wald test is a very general testing procedure – other testing problems. 

 Wald test statistic always constructed using an estimator that ignores the restrictions 

being tested. 

 As we’ll see, for this particular testing problem, we can modify the Wald test slightly, 

and obtain a test that is exact in finite samples, and has excellent power properties.         
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What is the F-statistic? 

To derive this test statistic, we need a preliminary result. 

Definition:      

Let  𝑥1~ 𝜒(𝑣1)
2      and    𝑥2~ 𝜒(𝑣2)

2                    and independent 

Then 

         𝐹 =
[
𝑥1
𝑣1

]

[
𝑥2
𝑣2

]
 ~ 𝐹(𝑣1,𝑣2)                       ;          Snedecor’s F-Distribution 

Note: 

 (𝑡(𝑣))
2

= 𝐹(1,𝑣)                                      ;       Why does this make sense? 

 𝑣1𝐹(𝑣1,𝑣2)  
𝑑
→ 𝜒(𝑣1)

2                                 ;       Explanation? 

Let’s proceed to our main result, which involves the statistic,  𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2) . 

Theorem:  

 𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2) ~ 𝐹(𝐽 ,   (𝑛−𝑘)) , if the Null Hypothesis 𝐻0: 𝑅𝜷 = 𝒒 is true. 

Proof:  

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)

𝜎2
(
1

𝐽
) (

𝜎2

𝑠2
) 

=
(𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽

[
(𝑛 − 𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘)
= (

𝑁

𝐷
) 

where     𝐷 = [
(𝑛−𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘) = 𝜒(𝑛−𝑘)
2 /(𝑛 − 𝑘)   . 

Consider the numerator: 

            𝑁 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽. 

Suppose that 𝐻0 is TRUE, so that = 𝒒 , and then 
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           (𝑅𝒃 − 𝒒) = (𝑅𝒃 −  𝑅𝜷) = 𝑹(𝒃 − 𝜷)  . 

Now, recall that 

       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,                 𝑅(𝒃 − 𝜷) = 𝑅(𝑋′𝑋)−1𝑋′𝜺 , 

and    𝑁 = [𝑅(𝑋′𝑋)−1𝑋′𝜺]′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1[𝑅(𝑋′𝑋)−1𝑋′𝜺]/𝐽  

                  = (1 𝐽⁄ ) (𝜺 𝜎⁄ )′[𝑄](𝜺 𝜎⁄ ) , 

where           𝑄 = 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ , 

and            (𝜺 𝜎⁄ ) ~ 𝑁[𝟎 , 𝐼𝑛] . 

Now,    (𝜺 𝜎⁄ )′[𝑄](𝜺 𝜎⁄ ) ~ 𝜒(𝑟)
2  if and only if Q is idempotent, where 

              𝑟 = 𝑟𝑎𝑛𝑘(𝑄) . 

Easy to check that Q is idempotent. 

So,  𝑟𝑎𝑛𝑘(𝑄) = 𝑡𝑟. (𝑄) 

                      = 𝑡𝑟. {𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ } 

                      = 𝑡𝑟. {(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′𝑋} 

                     = 𝑡𝑟. {𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

                     = {[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′} 

                     = 𝑡𝑟. (𝐼𝐽) = 𝐽 . 

So,   𝑁 = (1 𝐽⁄ ) (𝜺 𝜎⁄ )′[𝑄](𝜺 𝜎⁄ ) = 𝜒(𝐽)
2 /𝐽 . 

 In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their 

degrees of freedom. 

 Are N and D independent? 
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 The Chi-Square statistic in N is:   (𝜺 𝜎⁄ )′[𝑄](𝜺 𝜎⁄ ) . 

 The Chi-Square statistic in D is:   [
(𝑛−𝑘)𝑠2

𝜎2 ]             (see bottom of slide 13) 

Re-write this: 

            [
(𝑛−𝑘)𝑠2

𝜎2 ] =
(𝑛−𝑘)

𝜎2 (𝒆′𝒆
(𝑛 − 𝑘)⁄ ) = (𝒆′𝒆

𝜎2⁄ ) 

                             = (𝑀𝜺
𝜎⁄ )′(𝑀𝜺

𝜎⁄ ) = (𝜺 𝜎⁄ )′𝑀(𝜺 𝜎⁄ ) . 

So, we have  

        (𝜺 𝜎⁄ )′[𝑄](𝜺 𝜎⁄ )      and      (𝜺 𝜎⁄ )′𝑀(𝜺 𝜎⁄ ) . 

These two statistics are independent if and only if 𝑀𝑄 = 0 . 

𝑀𝑄 = [𝐼 − 𝑋(𝑋′𝑋)−1𝑋′] 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′  

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑄 = 0 . 

So, if 𝐻0 is TRUE, our statistic, F is the ratio of 2 independent Chi-Square variates, each divided 

by their degrees of feeedom. 

This implies that, if 𝐻0 is TRUE, 

             𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
  ~ 𝐹(𝐽,(𝑛−𝑘)) 

 

What assumptions have been used ?      What if 𝐻0 is FALSE ? 

Implementing the test – 

 Calculate F . 

 Reject 𝐻0: 𝑅𝜷 = 𝒒   in favour of  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   if > 𝑐𝛼 . 
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Why do we use this particular test for linear restrictions? 

This F-test is Uniformly Most Powerful. 

Another point to note – 

                 (𝑡(𝑣))
2

= 𝐹(1,𝑣)  

Consider       𝑡(𝑛−𝑘) = (𝑏𝑖 − 𝛽𝑖)/(𝑠. 𝑒. (𝑏𝑖))     

Then,     (𝑡(𝑛−𝑘))
2
~𝐹(1,(𝑛−𝑘))  ;  t-test is UMP against 1-sided alternatives 

Example  

Let’s return to the Card (1993) data, used as an example of I.V. 

Recall the results of the IV estimation: 

  

resiv = lm(wage ~ urban + gender + ethnicity + unemp + educfit) 

summary(resiv) 

Coefficients: 

Regression Estimates

-0.5

0.0

0.5

1.0

urban female black hispanic unemp educfit
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                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       -2.053604   1.675314  -1.226   0.2203     

urbanyes          -0.013588   0.046403  -0.293   0.7697     

genderfemale      -0.086700   0.036909  -2.349   0.0189 *   

ethnicityafam     -0.566524   0.051686 -10.961  < 2e-16 *** 

ethnicityhispanic -0.529088   0.048429 -10.925  < 2e-16 *** 

unemp              0.145806   0.006969  20.922  < 2e-16 *** 

educfit            0.774340   0.120372   6.433 1.38e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.263 on 4732 degrees of freedom 

Multiple R-squared:  0.1175,    Adjusted R-squared:  0.1163  

F-statistic:   105 on 6 and 4732 DF,  p-value: < 2.2e-16 

Let’s test the hypothesis that urban and gender are jointly insignificant. 

𝐻0:  𝛽2 = 𝛽3 = 0    vs.   𝐻𝐴: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑐𝑜𝑒𝑓𝑓𝑠. ≠ 0. (J = 2) 

 

Let’s see R-code for calculating the F-stat from the formula: 

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽

𝑠2
= (𝑅𝒃 − 𝒒)′[𝑅𝑠2(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽 

 

R = matrix(c(0,0,1,0,0,1,0,0,0,0,0,0,0,0),2,7) 

> R 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,]    0    1    0    0    0    0    0 

[2,]    0    0    1    0    0    0    0 

  

(n - k) = (4739 – 7) = 4732 
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b = matrix(resiv$coef,7,1) 

> b 

            [,1] 

[1,] -2.05360353 

[2,] -0.01358775 

[3,] -0.08670020 

[4,] -0.56652448 

[5,] -0.52908814 

[6,]  0.14580613 

[7,]  0.77433967 

 

q = matrix(c(0,0),2,1) 

> q 

     [,1] 

[1,]    0 

[2,]    0 

 

m = R%*%b – q 

> m 

            [,1]  

[1,] -0.01358775 

[2,] -0.08670020 

 

F = t(m) %*% solve(R %*% vcov(resiv) %*% t(R)) %*% m 

 

 

 

> F 

         [,1] 

[1,] 5.583774 

 

Is this F-stat “large”? 

> 1 - pf(F,2,4732) 

            [,1] 

[1,] 0.003783159 

Should we be using the F-test? 

Wald = 2*F 

> 1 - pchisq(Wald,2) 

            [,1] 

[1,] 0.003758353 

𝑠2(𝑋′𝑋)−1 invert 

transpose 
multiply 
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Why are the p-values from the Wald and F-test so similar? 

 

Restricted Least Squares Estimation: 

If we test the validity of certain linear restrictions on the elements of β, and we can’t reject them, 

how might we incorporate the restrictions (information) into the estimator? 

Definition: The “Restricted Least Squares” (RLS) estimator of β, in the model, 𝒚 = 𝑋𝜷 + 𝜺, is 

the vector, 𝒃∗ , which minimizes the sum of the squared residuals, subject to the constraint(s) 

𝑅𝒃∗ = 𝒒 . 

 Let’s obtain the expression for this new estimator, and derive its sampling distribution. 

 Set up the Lagrangian:       ℒ = (𝒚 − 𝑋𝒃∗)
′(𝒚 − 𝑋𝒃∗) + 2𝝀′(𝑅𝒃∗ − 𝒒) 

 

 Set (𝜕ℒ/𝜕𝒃∗) = 0     ;    (𝜕ℒ/𝜕𝝀) = 0   ,  and solve ………. 

ℒ = 𝒚′𝒚 + 𝒃∗′𝑋′𝑋𝒃∗ − 2𝒚′𝑋𝒃∗ + 2𝝀′(𝑅𝒃∗ − 𝒒) 

(𝜕ℒ/𝜕𝒃∗) = 2𝑋′𝑋𝒃∗ − 2𝑋′𝒚 + 2𝑅′𝝀 = 𝟎                               [1] 

(𝜕ℒ/𝜕𝝀) = 2(𝑅𝒃∗ − 𝒒) = 𝟎                                                     [2] 

From [1]: 

            𝑅′𝝀 = 𝑋′(𝒚 − 𝑋𝒃∗) 

So,      𝑅(𝑋′𝑋)−1𝑅′𝝀 = 𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

or,       𝝀 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗)             [3] 

Inserting [3] into [1], and dividing by “2”: 

(𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

So,   (𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝒃 − 𝒃∗) 

or, 

  𝒃∗ = (𝑋′𝑋)−1𝑋′𝒚 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝑅𝒃∗) 

b 
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or, using [2]: 

      

 RLS = LS + “Adjustment Factor”. 

 What if Rb = q ? 

 Interpretation of this? 

 What are the properties of this RLS estimator of β ? 

Theorem:  The RLS estimator of β is Unbiased if 𝑅𝜷 = 𝒒  is TRUE. 

                   Otherwise, the RLS estimator is Biased. 

Proof:  

𝐸(𝒃∗) = 𝐸(𝒃) − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑹𝐸(𝒃) − 𝒒) 

                   = 𝜷 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝜷 − 𝒒) . 

So, if  𝑅𝜷 = 𝒒, then 𝐸(𝒃∗) = 𝜷. 

 

Theorem:  The covariance matrix of the RLS estimator of β is 

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

 

Proof: 

        𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

             = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅}𝒃 + 𝜶 

where 

         𝜶 = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝒒                         (non-random) 

So,     𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′  , 

𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 
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where    𝐴 = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} . 

That is,        𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′ = 𝜎2𝐴(𝑋′𝑋)−1𝐴′           (assumptions?) 

Now let’s look at the matrix, 𝐴(𝑋′𝑋)−1𝐴′    .        

 

𝐴(𝑋′𝑋)𝐴′= {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} (𝑋′𝑋)−1     

× {𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

= (𝑋′𝑋)−1 + (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

−2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

= (𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

So,   

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

(What assumptions have we used to get this result?) 

We can use this result immediately to establish the following…… 

Theorem:  The matrix,  𝑉(𝒃) − 𝑉(𝒃∗) , is at least positive semi-definite. 

Proof:  

    𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

              = 𝜎2(𝑋′𝑋)−1 − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

              = 𝑉(𝒃) − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

So,    𝑉(𝒃) − 𝑉(𝒃∗) = 𝜎2∆  ,  say 

where     ∆ = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1. 

This matrix is square, symmetric, and of full rank. So, ∆ is at least p.s.d.. 
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 This tells us that the variability of the RLS estimator is no more than that of the LS 

estimator, whether or not the restrictions are true. 

 Generally, the RLS estimator will be “more precise” than the LS estimator. 

 When will the RLS and LS estimators have the same variability? 

 In addition, we know that the RLS estimator is unbiased if the restrictions are true. 

 So, if the restrictions are true, the RLS estimator, 𝒃∗, is more efficient than the LS 

estimator, b, of the coefficient vector, β . 

Also note the following: 

 If the restrictions are false, and we consider MSE(b) and MSE(𝒃∗), then the relative 

efficiency can go either way. 

 If the restrictions are false, not only is 𝒃∗ biased, it’s also inconsistent. 

So, it’s a good thing that that we know how to construct the UMP test for the validity of the 

restrictions on the elements of β ! 

In practice: 

 Estimate the unrestricted model, using LS. 

 Test 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒 . 

 If the null hypothesis can’t be rejected, re-estimate the model with RLS. 

 Otherwise, retain the LS estimates. 
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Example: Cobb-Douglas Production Function2 

> 

cobbdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/co

bb.csv") 

> attach(cobbdata) 

> res = lm(log(y) ~ log(k) + log(l)) 

> summary(res) 

 

Call: 

lm(formula = log(y) ~ log(k) + log(l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   1.8444     0.2336   7.896 7.33e-08 *** 

log(k)        0.2454     0.1069   2.297   0.0315 *   

log(l)        0.8052     0.1263   6.373 2.06e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2357 on 22 degrees of freedom 

Multiple R-squared: 0.9731,     Adjusted R-squared: 0.9706  

F-statistic: 397. 5 on 2 and 22 DF,  p-value: < 2.2e-16 

 

 

 

Let’s get the SSE from this regression, for later use: 

> sum(res$residuals^2) 

[1] 1.22226 

 

Test the hypothesis of constant returns to scale: 

 

𝑯𝟎: 𝜷𝟐 + 𝜷𝟑 = 𝟏       vs.     𝑯𝑨: 𝜷𝟐 + 𝜷𝟑 ≠ 𝟏     

> R = matrix(c(0,1,1),1,3) 

> R 

     [,1] [,2] [,3] 

[1,]    0    1    1 

                                                           
2 The data are from table F7.2, Greene, 2012 

What’s this? 

SSE = 1.22226 
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> b = matrix(res$coef,3,1) 

> b 

          [,1] 

[1,] 1.8444157 

[2,] 0.2454281 

[3,] 0.8051830 

 

> q = 1 

 

> m = R%*%b - q 

> m 

           [,1] 

[1,] 0.05061103 

 

> F = t(m) %*% solve(R %*% vcov(res) %*% t(R)) %*% m 

> F 

         [,1] 

[1,] 1.540692 

 

> 1 - pf(F,1,22) 

          [,1] 

[1,] 0.2275873 

 

Are the residuals normally distributed? 

> hist(res$residuals) 

Cannot reject at 10% sig. level 
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> library(tseries) 

> jarque.bera.test(res$residuals) 

        Jarque Bera Test 

 

data:  res$residuals  

X-squared = 5.5339, df = 2, p-value = 0.06285 

F-test “supported” the validity of the restriction on the coefficients, so now impose this 

restriction of CRTS. Use RLS: 

log(𝑄/𝐿) = 𝛽1 + 𝛽2 log(𝐾/𝐿) + 휀 

> rlsres = lm(log(y/l) ~ log(k/l)) 

> summary(rlsres) 

Call: 

lm(formula = log(y/l) ~ log(k/l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.0950     0.1189  17.615 7.55e-15 *** 

log(k/l)      0.2893     0.1020   2.835  0.00939 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Histogram of res$residuals

res$residuals

F
re

q
u

e
n

c
y

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0
2

4
6

8
1

0

Might want to use Wald test instead! 
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Residual standard error: 0.2385 on 23 degrees of freedom 

Multiple R-squared: 0.2589,     Adjusted R-squared: 0.2267  

F-statistic: 8.036 on 1 and 23 DF,  p-value: 0.009387 

 

> sum(rlsres$residuals^2) 

[1] 1.307857 

 

Form the LS and RLS results for this particular application, note that 

𝒆′𝒆 = (𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃) = 1.22226 

𝒆∗
′𝒆∗ = (𝒚 − 𝑋𝒃∗)

′(𝒚 − 𝑋𝒃∗) = 1.307857 

So,   𝒆∗
′𝒆∗ > 𝒆′𝒆  . 

 In fact this inequality will always hold . 

 What’s the intuition behind this? 

Note that: 

𝒆∗ = (𝒚 − 𝑋𝒃∗) = 𝒚 − 𝑋𝒃 + 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

     = 𝒆 + 𝑋(𝑋′𝑋)𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

Now, recall that  𝑋′𝒆 = 𝟎 . 

So,  

𝒆∗
′𝒆∗ = 𝒆′𝒆 + (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) , 

where: 

𝐴 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1 

    = [𝑅(𝑋′𝑋)−1𝑅′]−1     ;    this matrix has full rank, and is p.d.s.   

So,  𝒆∗
′𝒆∗ > 𝒆′𝒆 , because (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) > 0 . 

SSE = 1.307857 
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This last result also gives us an alternative (convenient) way of writing the formula for the F-

statistic: 

(𝒆∗
′𝒆∗ − 𝒆′𝒆) = (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒)      

                        = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) . 

Recall that: 

  𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
 

So, clearly, 

𝐹 =
(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝑠2
=

(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝒆′𝒆/(𝑛 − 𝑘)
 

For the last example: 

J = 1 ;  (n – k) = (25 – 3) = 22 

(𝒆∗′𝒆∗) = 1.307857    ;  (𝒆′𝒆) = 1.22226 

So,      𝐹 =
(1.307857−1.22226)/1

1.22226/22
= 1.54070        

In Retrospect 

 Now we can see why R2    when we add any regressor to our model (and R2    when we 

delete any regressor). 

 Deleting a regressor is equivalent to imposing a zero restriction on one of the 

coefficients.  

 The residual sum of squares    and so R2    . 

Exercise: use the R2 from the unrestricted and restricted model to calculate F. 

 

Estimating the Error Variance 
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We have considered the RLS estimator of β . What about the corresponding estimator of the 

variance of the error term, 𝜎2 ? 

Theorem: 

Let b* be the RLS estimator of β in the model,  

𝒚 = 𝑋𝜷 + 𝜺        ;   𝜺 ~ [0 , 𝜎2𝐼𝑛] 

and let the corresponding residual vector be 𝒆∗ = (𝒚 − 𝑋𝒃∗). Then the following estimator of 𝜎2 

is unbiased, if the restrictions, 𝑅𝜷 = 𝒒, are satisfied: 𝑠∗
2 = (𝒆∗′𝒆∗)/(𝑛 − 𝑘 + 𝐽) . 

See if you can prove this result! 
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Topic 4: Model Stability & Specification Analysis 

 Our results to date presume that our regression model holds for the full sample that we 

are working with. 

 Our results also presume that the model is correctly specified, in the following sense: 

o The functional form is correct. 

o All of the relevant regressors have been included. 

o No redundant regressors have been included. 

o The only “unexplained” variation in the dependent variable is purely random 

“noise”, as represented by a “well-behaved” error term. 

 In this section we’ll re-consider item 1, above, and items 2 (b) & (c). 

 The other items will be considered later. 

Specification Analysis                                                   (Henri Theil, 1957) 

We’ll consider various issues associated with the choice of regressors in our linear regression 

model. 

Omission of Relevant Regressors 

D.G.P.: 𝒚 = 𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝜺    ;        𝐸[𝜺] = 𝟎 

F.M.:   𝒚 = 𝑋1𝜷1 + 𝒖 

So,   𝒃1 = (𝑋1′𝑋1)
−1𝑋1′𝒚 

                         = (𝑋1′𝑋1)
−1𝑋1′(𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝜺) 

                       = 𝜷1 + (𝑋1′𝑋1)
−1𝑋1′𝑋2𝜷2 + (𝑋1′𝑋1)

−1𝑋1′𝜺 

 

Let’s consider the bias of this estimator – 

𝐸[𝑏1] = 𝜷1 + (𝑋1′𝑋1)
−1𝑋1′𝑋2𝜷2 

  ≠ 𝜷1    ;   unless  𝑋1′𝑋2 = 0  ;  or  𝑋2𝜷2 = 𝟎 
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 So, in general, this estimator will be Biased. 

 This is just an example of imposing false restrictions on some elements of the β vector. 

 The estimator, 𝑏1, will also be inconsistent. 

 However, there will be a reduction in the variance of the estimator, through the imposition 

of the restrictions, even though they are false. 

Now consider the converse situation – 

Inclusion of Irrelevant Regressors 

D.G.P.:  𝒚 = 𝑋1𝜷1 + 𝜺       ;                𝐸[𝜺] = 𝟎 

F.M.:  𝒚 = 𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝒖 = 𝑋𝜷 + 𝒖 

where, 

  𝑋 = [𝑋1 , 𝑋2]    ;    𝜷 = (
𝜷1

𝜷𝟐
) 

So,                 𝒃 = (
𝒃𝟏

𝒃2
) = (𝑋′𝑋)−1𝑋′𝒚   

                            = (𝑋′𝑋)−1𝑋′(𝑋1𝜷1 + 𝜺)  . 

Now, we can write:   𝑋1 = (𝑋1 , 𝑋2) (
𝐼
0
) = 𝑋𝑆   ,   say. 

So,  𝒃 = (
𝒃𝟏

𝒃2
) = (𝑋′𝑋)−1𝑋′𝑋𝑆𝜷1 + (𝑋′𝑋)−1𝑋′𝜺   

    = 𝑆𝜷1 + (𝑋′𝑋)−1𝑋′𝜺  . 

Then,  𝐸[𝒃] = 𝐸 (
𝒃1

𝒃2
) = 𝑆𝜷1 = (

𝐼
0
)𝜷1 = (

𝜷1

𝟎
)  . 

That is, 

               𝐸[𝒃1] = 𝜷1   ;   and   𝐸[𝒃2] = 𝟎  (= 𝜷2)   . 

So, in this case the LS estimator is Unbiased (and also Consistent). 
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 In the case where we include irrelevant regressors, we are effectively ignoring some valid 

restrictions on β. 

 Although the LS estimator is Unbiased, it is also Inefficient. 

 The “costs” of wrongly omitting regressors usually exceed those of wrongly including 

extraneous ones. 

 This suggests that a “General-to-Specific” model building strategy may be preferable to a 

“Specific-to-General” one.                         (David Hendry) 

 Over-fit the model, then simplify it on the basis of significance and specification testing. 

 Generally this involves a sequence of “nested” hypotheses – increasingly restrictive. Stop 

when restrictions are rejected. 

 Issues: (a) Degrees of freedom; (b) Loss of precision; (c) Dependence of test statistics, and 

distortions due to “pre-testing”. 

Testing for Structural Change 

 Suppose that a “shift” in the model occurs due to some exogenous “shock”. 

 Define a Dummy Variable: 

𝐷𝑡 = 0   ;   before the shock 

 𝐷𝑡 = 1   ;   after the shock 

 Need not involve “time”. Could be 2 regions, for example. 

 Could be more than one “shift”. 

 Do the values of the Dummy variable have to be 0 and 1? 

 Then, consider a model of the form: 

𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + ⋯+ 𝛽𝑘𝐷𝑡 + 휀𝑡 

 We could then think of testing 

        𝐻0: 𝛽𝑘 = 0    vs.   𝐻𝐴: 𝛽𝑘 ≠ 0     

 Rejection of H0 implies there is a particular type of structural change in the model. (A 

shift in the level.) 

 Or, more generally, consider a model of the form: 

         𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + ⋯+𝛽𝑘−1(𝐷𝑡 × 𝑥2𝑡) + 𝛽𝑘𝐷𝑡 + 휀𝑡 

 We could then think of testing 
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        𝐻0: 𝛽𝑘−1 = 𝛽𝑘 = 0    vs.   𝐻𝐴: 𝑁𝑜𝑡 𝐻0     

 Rejection of H0 implies there is a different type of structural change in the model. (A 

shift in the level and one of the marginal effects.) 

 Using the dummy variable fully, in this way (with intercept and all slope coefficients) 

turns out to be equivalent to the following – 

 

The Chow Test                                                        (Gregory Chow, 1960) 

 Suppose there is a natural break-point in the sample after n1 observations, and we have: 

  𝒚1 = 𝑋1𝜷1 + 𝜺1      ;   𝜺1~𝑁[0 , 𝜎2𝐼𝑛1
]                (n1) 

𝒚2 = 𝑋2𝜷2 + 𝜺2    ;   𝜺2~𝑁[0 , 𝜎2𝐼𝑛2
]              (n2) 

 X1 and X2 relate to the same regressors, but different sub-samples. Similarly for y1 and y2. 

Let   𝑛 = (𝑛1 + 𝑛2). 

 We can write the full model as: 

(
𝒚1

𝒚2
) = [

𝑋1 0
0 𝑋2

] (
𝜷1

𝜷2
) + (

𝜺1

𝜺2
) 

                                    (𝑛 × 1)          (𝑛 × 2𝑘)    (2𝑘 × 1)   (𝑛 × 1) 

or, 

𝒚 = 𝑋𝜷 + 𝜺    ;   𝜺~𝑁[0 , 𝜎2𝐼𝑛] 

 If we estimate each part of the model separately, using LS, we get: 

 

𝒃𝟏 = (𝑋1′𝑋1)
−1𝑋1′𝒚1      ;     𝒆1 = 𝒚1 − 𝑋1𝒃1 

𝒃𝟐 = (𝑋2′𝑋2)
−1𝑋2′𝒚2      ;     𝒆2 = 𝒚2 − 𝑋2𝒃2 

 

 The total sum of squared residuals for all 𝑛 = (𝑛1 + 𝑛2) observations is then: 

𝒆′𝒆 = 𝒆1′𝒆1 + 𝒆2′𝒆2 
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Suppose that we want to test       𝐻0: 𝜷1 = 𝜷2    vs.   𝐻𝐴: 𝜷1 ≠ 𝜷2    

 That is we want to test the null hypothesis “There is no structural break”. 

 One way to interpret this problem is as follows: 

𝒚 = 𝑋𝜷 + 𝜺 

𝐻0: 𝑅𝜷 = 𝒒    vs.   𝐻𝐴: 𝑅𝜷 ≠ 𝒒 

where:  𝑅 = [𝐼𝑘 −𝐼𝑘]       ;      𝜷 = (
𝜷1

𝜷2
)       ;      𝒒 = 𝟎  . 

If there are k regressors, then q is (𝑘 × 1), and 𝐽 = 𝑘. 

 Then, we can apply the usual F-test for exact linear restrictions: 

𝐹 = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/(𝑘𝑠2) 

𝐹~𝐹𝑘,𝑛−2𝑘   if H0 is True 

 Alternatively, recall that we can write the test statistic as: 

𝐹 =
[(𝒆∗′𝒆∗) − (𝒆′𝒆)]/𝑘

(𝒆′𝒆)/(𝑛1 + 𝑛2 − 2𝑘)
 

 Here, e* is the residual vector associated with the RLS estimator , b*, of β. 

 An easy way to obtain b*, and hence e*, is to write: 

                             (
𝒚1

𝒚2
) = [

𝑋1 0
0 𝑋2

] (
𝜷1

𝜷2
)   +    (

𝜺1

𝜺2
) 

                       (𝑛 × 1)   (𝑛 × 2𝑘)(2𝑘 × 1)   (𝑛 × 1) 

and then restrict 𝜷1 = 𝜷2 = �̅�  (say), yielding the model: 

                       (
𝒚1

𝒚2
) = [

𝑋1

𝑋2
] �̅� + (

𝜺1

𝜺2
) 

 That is, we just “stack up the y and X data for both sub-samples – that is, estimate the one 

model for the full sample. 

 This will yield b*, and hence  e* . 

 Notice that we assumed that 𝜎1
2 = 𝜎2

2 . 

 Major complications without this restriction:  “Behrens-Fisher Problem”. 
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 If we have random regressors, we can still use the Wald Test. 

 𝑘𝐹
𝑑
→ 𝜒(𝑘)

2   ;   if H0 is True. 

Example   

Let’s see this illustrated. We’ll see two equivalent ways of testing for this type of structural 

change. 

Consider the following model for per-capita gasoline consumption3: 

ln 𝐺𝐴𝑆 = 𝛽1 + 𝛽2𝑌𝐸𝐴𝑅 + 𝛽3 ln 𝐼𝑛𝑐𝑜𝑚𝑒/𝑃𝑜𝑝 + 𝛽4 ln 𝐺𝐴𝑆𝑃 + 𝛽5 ln 𝑃𝑁𝐶 + 𝛽6 ln 𝑃𝑈𝐶 + 휀 

Where GASP is the price of gasoline, PNC is the price of new cars, and PUC the price of used 

cars. We will consider an exogenous shock for the year 1973. 

Per Capita Gasoline Consumption (U.S.A.) 

 

  

                                                           
3 Data from Greene (2012), Table F2.2 
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Estimate the pooled model (using all observations): 

 

𝑒∗
′𝑒∗ = 0.16302 

Re-estimate the model using data up to 1973 only (pre-shock data): 

 

𝑒1
′𝑒1 = 0.00184  

Regression Estimates
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Re-estimate the model using data after 1973 only (post-shock data): 

 

𝑒2
′𝑒2 = 0.00739 

Chow test: 

𝐹 =
[(𝒆∗′𝒆∗) − (𝒆1

′ 𝒆1 + 𝒆2
′ 𝒆2)]/𝑘

(𝒆1
′ 𝒆1 + 𝒆2

′ 𝒆2)/(𝑛1 + 𝑛2 − 2𝑘)
=

[0.16302 − 0.00184 − 0.00739]/6

(0.00184 + 0.00739)/(52 − 12)
= 111.267 

From an F-distribution with 6 and 40 degrees of freedom, the p-value associated with this test 

statistic is 0.000. 

An alternate way to calculate this test statistic is to estimate a model using dummy variables, and 

perform an F-test for the joint significance of all coefficients associated with a dummy variable. 

  

Regression Estimates
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 DUM = 0 (1953 – 1973)  ;  = 1 (1974 – 2004) 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)         -60.998170   5.308283 -11.491 3.03e-14 *** 

YEAR                  0.024922   0.002960   8.420 2.15e-10 *** 

log(INCOME/POP)       0.660168   0.116328   5.675 1.35e-06 *** 

log(GASP)            -0.036362   0.205657  -0.177 0.860553     

log(PNC)              0.638100   0.146745   4.348 9.18e-05 *** 

log(PUC)             -0.279605   0.069318  -4.034 0.000240 *** 

DUM                  31.954337   5.859984   5.453 2.77e-06 *** 

YEAR:DUM             -0.015663   0.003184  -4.920 1.53e-05 *** 

log(INCOME/POP):DUM  -0.352420   0.166666  -2.115 0.040750 *   

log(GASP):DUM        -0.087200   0.206332  -0.423 0.674837     

log(PNC):DUM         -0.656235   0.164627  -3.986 0.000277 *** 

log(PUC):DUM          0.263556   0.081286   3.242 0.002394 ** 

 

 

𝑒′𝑒 = 0.00922 

 

Note that 𝑒1
′𝑒1 + 𝑒2

′𝑒2 = 𝑒′𝑒! 

 

Insufficient Degrees of Freedom 

 What if either 𝑛1 < 𝑘 , or 𝑛2 < 𝑘 ? 

 In this case we can’t fit one of the sub-sample regressions, so F can’t be computed. 

 There is a second version of the Chow test, designed for this situation (“Chow Forecast 

Test”). 

Also, note: 

 Location of break-point(s) assumed known. 

 Situation becomes much more complicated if we have to estimate break-point locations(s).  
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Using the Wald Test 

 If any of the usual assumptions that underly the F-test for exact linear restrictions are 

violated, then the usual Chow test is not valid. 

 We can, however, still use the Wald test version of the Chow test. 

 It will be valid only asymptotically (large n). 

 It may have poor performance in small samples. 

 Examples where we would use the Wald version of the Chow test – 

1. Random regressors (e.g., lagged dependent variable). 

2. Non-Normal errors. 

 

Appendix – R Code 
 

#Data is from Greene, Table F2.2 

#You will have to install the “arm” package if you wish to use “coefplot”. 

library(arm) 

gasdata = read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/gas.csv") 

attach(gasdata) 

 

#View the break-point: 

plot(YEAR,GAS) 

lines(YEAR,GAS) 

text(1973,1.4,"1973") 

arrows(1973,1.35,1973,1.2,length = 0.1) 

 

#Estimate the pooled model: 

eq1 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC)      

+ log(PUC)) 

#View the estimated coefficients: 

coefplot(eq1,vertical=FALSE,var.las = 1,cex.var=1.2) 

#Get the sum of squared residuals from the pooled (restricted) model: 

sser = sum(eq1$residuals^2) 

 

#Use only the first 21 observations (up to 1973): 

preshock = gasdata[1:21,] 

attach(preshock) 

eq2 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC)) 

coefplot(eq2,vertical=FALSE,var.las = 1,cex.var=1.2) 

sseu1 = sum(eq2$residuals^2) 

 

#Use only the last 31 observations (after 1973): 

postshock = gasdata[22:52,] 
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attach(postshock) 

eq3 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC)) 

coefplot(eq3,vertical=FALSE,var.las = 1,cex.var=1.2) 

sseu2 = sum(eq3$residuals^2) 

 

#Calculate Chow test statistic: 

chow = ((sser - sseu1 - sseu2)/6)/((sseu1 + sseu2)/(52 - 12)) 

#p-value: 

1 - pf(chow,6,40) 

 

#Estimate the model with dummy variables: 

DUM = c(rep(0,21),rep(1,31)) 

attach(gasdata) 

eq4 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC) + DUM + DUM*YEAR + DUM*log(INCOME/POP) + DUM*log(GASP) + 

DUM*log(PNC) + DUM*log(PUC)) 

summary(eq4) 

ssedum = sum(eq4$residuals^2) 
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Topic 5: Non-Linear Regression 

 The models we’ve worked with so far have been linear in the parameters. 

 They’ve been of the form:        𝒚 = 𝑋𝜷 + 𝜺 

 Many models based on economic theory are actually non-linear in the parameters. 

CES Production function: 

𝑌𝑖 = 𝛾[𝛿𝐾𝑖
−𝜌

+ (1 − 𝛿)𝐿𝑖
−𝜌

]
−𝑣/𝜌

exp (휀𝑖) 

or,         𝑙𝑛(𝑌𝑖) = 𝑙𝑛(𝛾) − (
𝑣

𝜌
) 𝑙𝑛[𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] +휀𝑖 

Linear Expenditure System:                                                    (Stone, 1954)  

 

Max. 𝑈(𝒒) = ∑ 𝛽𝑖𝑙𝑛(𝑞𝑖 − 𝛾𝑖)𝑖               (Stone-Geary /Klein-Rubin) 

s.t.   ∑ 𝑝𝑖𝑞𝑖 = 𝑀𝑖  

 Yields the following system of demand equations: 

         𝑝𝑖𝑞𝑖 = 𝛾𝑖𝑝𝑖 + 𝛽𝑖(𝑀 − ∑ 𝛾𝑗𝑝𝑗𝑗 )     ;    i = 1, 2, …., n 

 

 The 𝛽𝑖’s are the Marginal Budget Shares. 

 So, we require that 0 < 𝛽𝑖 < 1 ;   i = 1, 2, …., n. 

 Engel aggregation implies that 

1.  ∑ 𝛾𝑖 = 0𝑖  . 

2.  ∑ 𝛽𝑖 = 1𝑖  . 

 In general, suppose we have a single non-linear equation: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘; 𝜃1, 𝜃2, … , 𝜃𝑝) + 휀𝑖 

 We can still consider  a “Least Squares” approach. 

 The Non-Linear Least Squares estimator is the vector, �̂� , that minimizes the quantity:   

𝑆(𝑋, 𝜽) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑋, �̂�)]
𝟐

𝒊  . 

 Clearly the usual LS estimator is just a special case of this. 

 To obtain the estimator, we differentiate S with respect to each element of  �̂�; set up the 

“p” first-order conditions and solve. 
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 Difficulty – usually, the first-order conditions are themselves non-linear in the unknowns 

(the parameters). 

 This means there is (generally) no exact, closed-form, solution. 

 Can’t write down an explicit formula for the estimators of parameters. 

Example  

𝑦𝑖 = 𝜃1 + 𝜃2𝑥𝑖2 + 𝜃3𝑥𝑖3 + (𝜃2𝜃3)𝑥𝑖4 + 휀𝑖 

𝑆 = ∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]
2

𝑖

 

𝜕𝑆

𝜕𝜃1
= −2∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]

𝑖

 

𝜕𝑆

𝜕𝜃2
= −2∑[(𝜃3𝑥𝑖4 + 𝑥𝑖2)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

𝜕𝑆

𝜕𝜃3
= −2∑[(𝜃2𝑥𝑖4 + 𝑥𝑖3)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

Setting these 3 equations to zero, we can’t solve analytically for the estimators of the three 

parameters. 

 In situations such as this, we need to use a numerical algorithm to obtain a solution to the 

first-order conditions. 

 Lots of methods for doing this – one possibility is Newton’s algorithm (the Newton-

Raphson algorithm). 

Methods of Descent  

                     𝜽 ̃ = 𝜽0 + 𝑠 𝒅(𝜽0) 

𝜽0      =  initial (vector) value. 

s         =  step-length      (positive scalar) 

𝒅(. )  =  direction vector 
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 Usually, 𝒅(. ) Depends on the gradient vector at 𝜽0. 

 It may also depend on the change in the gradient (the Hessian matrix) at 𝜽0. 

 Some specific algorithms in the “family” make the step-length a function of the Hessian. 

 One very useful, specific member of the family of “Descent Methods” is the Newton-

Raphson algorithm: 

Suppose we want to minimize some function, 𝑓(𝜽).      

Approximate the function using a Taylor’s series expansion about �̃� , the vector value that 

minimizes 𝑓(𝜽): 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
(
𝜕𝑓

𝜕𝜽
)
�̃�

+
1

2!
(𝜽 − �̃�)

′
[

𝜕2𝑓

𝜕𝜽𝜕𝜽′
]
�̃�

(𝜽 − �̃�) 

Or: 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
𝑔(�̃�) +

1

2!
(𝜽 − �̃�)

′
𝐻(�̃�)(𝜽 − �̃�) 

So, 

𝜕𝑓(𝜽)

𝜕𝜽
≅ 0 + (𝜽 − �̃�)

′
𝑔(�̃�) +

1

2!
2𝐻(�̃�)(𝜽 − �̃�) 

However, 𝑔(�̃�) = 0 ;  as �̃� locates a minimum. 

So, 

 (𝜽 − �̃�) ≅ 𝐻−1(�̃�) (
𝜕𝑓(𝜽)

𝜕𝜽
)  ; 

or,                     �̃� ≅ 𝜽 − 𝐻−1(�̃�)𝑔(𝜽)  

This suggests a numerical algorithm: 
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Set 𝜽 = 𝜽0 to begin, and then iterate – 

𝜽1 = 𝜽0 − 𝐻−1(𝜽1)𝑔(𝜽0) 

𝜽2 = 𝜽1 − 𝐻−1(𝜽2)𝑔(𝜽1) 

                    ⋮        ⋮                     ⋮ 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛+1)𝑔(𝜽𝑛) 

or, approximately: 

𝜽𝑛+1 = 𝜽𝑛 − 𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) 

 

Stop if                      |
(𝜃𝑛+1

(𝑖)
−𝜃𝑛

(𝑖)
)

𝜃𝑛
(𝑖) | <  휀(𝑖)   ;    i = 1, 2, …, p 

Note: 

1.   s = 1. 

2.   𝒅(𝜽𝑛) = −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) . 

3.   Algorithm fails if H ever becomes singular at any iteration. 

4.  Achieve a minimum of f (.) if H is positive definite. 

5.   Algorithm may locate only a local minimum. 

6.   Algorithm may oscillate. 

The algorithm can be given a nice geometric interpretation – scalar θ. 

To find an extremum of  f (.), solve  
𝜕𝑓(𝜃)

𝜕𝜃
= 𝑔(𝜃) = 0 . 
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If 𝑓(𝜽) is quadratic in 𝜽, then the algorithm converges in one iteration: 
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In general, different choices of  𝜃0 may lead to different solutions, or no solution at all. 
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Example           (Where we actually know the answer) 

               𝑓(𝜃) = 3𝜃4 − 4𝜃3 + 1                       locate minimum 

 

Analytically: 

𝑔(𝜃) = 12𝜃3 − 12𝜃2 = 12𝜃2(𝜃 − 1) 

𝐻(𝜃) = 36𝜃2 − 24𝜃 = 12𝜃(3𝜃 − 2) 

Turning points at = 0, 0, 1 . 

𝐻(0) = 0                           saddlepoint 

𝐻(1) = 12            minimum     

         

Algorithm 

𝜃𝑛+1 = 𝜃𝑛 − 𝐻−1(𝜃𝑛)𝑔(𝜃𝑛) 

 

𝜃0 = 2                                     (say) 

𝜃1 = 2 − (
48

96
) = 1.5             

𝜃2 = 1.5 − (
13.5

45
) = 1.2                 

𝜃3 = 1.2 − (
3.456

23.040
) = 1.05             

⋮  

etc.      

 

Try:     𝜃0 = −2;    𝜃0 = 0.5               
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Topic 6: Non-Spherical Disturbances 

Our basic linear regression model is 

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

Now we’ll generalize the specification of the error term in the model: 

                   𝐸[𝜺] = 𝟎       ;     𝐸[𝜺𝜺′] = Σ = 𝜎2Ω    ;         (& Normal) 

This allows for the possibility of one or both of 

 Heteroskedasticity 

 Autocorrelation                                (Cross-section; Time-series; Panel data) 

 Spherical Disturbances – Homoskedasticity and Non-Autocorrelation 

 

In the above, consider 𝑥 = 휀𝑖 and 𝑦 = 휀𝑗. The joint probability density function, 𝑝(휀𝑖, 휀𝑗), is in 

the direction of the z axis. Below is a contour of the above perspective. If we consider the joint 

distribution of three error terms instead of two, the circles below would become spheres, hence 

the terminology “spherical disturbances.” 
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Non-Spherical Disturbances – Heteroskedasticity and Non-Autocorrelation 
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Non-Spherical Disturbances – Homoskedasticity and Autocorrelation

 

 
Non-Spherical Disturbances – Heteroskedasticity and Autocorrelation 
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 How does the more general situation of non-spherical disturbances affect our (Ordinary) 

Least Squares  estimator? 

 In particular, let’s first look at the sampling distribution of b: 

𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,  

𝐸(𝒃) = 𝜷 + (𝑋′𝑋)−1𝑋′𝐸(𝜺) = 𝜷  . 

The more general form of the covariance matrix for the error term does not alter the fact that the 

OLS estimator is unbiased. 

 Next, consider the covariance matrix of our OLS estimator in this more general situation: 

𝑉(𝒃) = 𝑉[𝜷 + (𝑋′𝑋)−1𝑋′𝜺] = 𝑉[(𝑋′𝑋)−1𝑋′𝜺] 

                      = [(𝑋′𝑋)−1𝑋′𝑉(𝜺)𝑋(𝑋′𝑋)−1] 

                      = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

                      ≠ [𝜎2(𝑋′𝑋)−1]  . 

 So, under our full set of modified assumptions about the error term: 

                      𝒃 ~ 𝑁[𝜷 , 𝑉∗] 

where 

                     𝑉∗ = 𝜎2[(𝑋′𝑋)−1𝑋′Ω𝑋(𝑋′𝑋)−1] . 

 So, the usual computer output will be misleading, numerically, as it will be based on using 

the wrong formula, namely  𝑠2(𝑋′𝑋)−1. 

 The standard errors, t-statistics, etc. will all be incorrect. 

 As well as being unbiased, the OLS point estimator of β will still be weakly consistent. 

 The I.V. estimator of  β will still be weakly consistent. 
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 The NLLS estimator of the model’s parameters will still be weakly consistent. 

 However, the usual estimator for the covariance matrix of b, namely 𝑠2(𝑋′𝑋)−1, will be 

an inconsistent estimator of the true covariance matrix of b! 

 This has serious implications for inferences based on confidence intervals, tests of 

significance, etc. 

 So, we need to know how to deal with these issues. 

 This will lead us to some generalized estimators. 

 First, let’s deal with the most pressing issue – the inconsistency of the estimator for the 

covariance matrix of  b. 

White’s Heteroskedasticity-Consistent Covariance Matrix Estimator 

 If we knew 𝜎2Ω, then the “estimator” of the covariance matrix for b would just be: 

 𝑉∗ = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜎2Ω𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′Σ𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

 If Σ is unknown, then we need to find a consistent estimator of  (
1

𝑛
𝑋′Σ𝑋). 

 (Why not an estimator of just Σ ?) 

 Note that at this stage of the discussion, the form of the Σ matrix is quite arbitrary. 

 Let               𝑄∗ = (
1

𝑛
𝑋′Σ𝑋)                               (k × k) 

=
1

𝑛
∑∑𝜎𝑖𝑗𝒙𝑖𝒙𝑗

′

𝑛

𝑗=1

𝑛

𝑖=1

 

                                                         (k × 1)  (1 × k) 

 In the case of heteroskedastic errors, things simplify, because 𝜎𝑖𝑗 = 0, for 𝑖 ≠ 𝑗. 
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Then, we have  

𝑄∗ =
1

𝑛
∑𝜎𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

 White (1980) showed that if we define  

𝑆0 =
1

𝑛
∑𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

Then ,   𝑝𝑙𝑖𝑚(𝑆0) = 𝑄∗ . 

 This means that we can estimate the model by OLS; get the associated residual vector, e ; 

and then a consistent estimator of 𝑉∗, the covariance matrix of b, will be:  

          �̂�∗ =
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′𝑛

𝑖=1 ) (
1

𝑛
𝑋′𝑋)

−1

] 

or, 

         �̂�∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋
′𝑋)−1] . 

 �̂�∗  is a consistent estimator of  𝑉∗ , regardless of the (unknown) form of the 

heteroskedasticity. 

 This includes no heteroskedasticity (i.e., homoscedastic errors). 

 Newey & West produced a corresponding consistent estimator of 𝑉∗ for when the errors 

possibly exhibit autocorrelation (of some unknown form). 

 Note that the White and the Newey-West estimators modify just the estimated covariance 

matrix of b – not b itself. 

 As a result, the t-statistics, F-statistic, etc., will be modified, but only in a manner that is 

appropriate asymptotically. 

 So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance 

estimator or not, the usual test statistics will be unreliable in finite samples. 

 A good practical solution is to use White’s (or Newey-West’s) adjustment, and then use 

the Wald test, rather than the F-test for exact linear restrictions. 

 This Wald test will incorporate the consistent estimator of the covariance matrix of b, and 

so it will still be valid, asymptotically. 
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 Now let’s turn to the estimation of β, taking account of the fact that the error term has a 

non-scalar covariance matrix. 

 Using this information should enable us to improve the efficiency of the LS estimator of 

the coefficient vector. 

Generalized Least Squares                                          (Alexander Aitken, 1935) 

 In the present context, (Ordinary) LS ignores some important information, and we’d 

anticipate that this will result in a loss of efficiency when estimating β. 

 Let’s see how to obtain the fully efficient (linear unbiased) estimator. 

 Recall that 𝑉(𝜺) = 𝐸[𝜺𝜺′] = Σ = 𝜎2Ω . 

 Generally, Ω will be unknown. However, to begin with, let’s consider the case where it is 

actually known. 

 Clearly, Ω must be symmetric, as it is a covariance matrix. 

 Suppose that Ω is also positive-definite. 

 Then, Ω−1 is also positive-definite, and so there exists a non-singular matrix, P, such that 

Ω−1 = 𝑃′𝑃.  

 In fact, 𝑃′ = 𝐶Λ−1/2, where the columns of C are the characteristic vectors of Ω, and 

Λ1/2 = 𝑑𝑖𝑎𝑔. (√𝜆𝑖). Here, the {𝜆𝑖} are the characteristic roots of Ω. 

 Our model is: 

                 𝒚 = 𝑋𝜷 + 𝜺       ;     𝜺 ~ [0 , 𝜎2Ω] 

 Pre-multiply the equation by P: 

               𝑃𝒚 = 𝑃𝑋𝜷 + 𝑃𝜺        

or, 

              𝒚∗ = 𝑋∗𝜷 + 𝜺∗       ;     say 

 Now, Ω is non-random, so P is also non-random. 

 So,           𝐸[𝜺∗] = 𝐸[𝑃𝜺] = 𝑃 𝐸[𝜺] = 𝟎       . 

 

 And      𝑉[𝜺∗] = 𝑉[𝑃𝜺]    

                     = 𝑃𝑉(𝜺)𝑃′ 

                     = 𝑃(𝜎2Ω)𝑃′ = 𝜎2𝑃ΩP′ 
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 Note that    𝑃ΩP′ = 𝑃(Ω−1)−1𝑃′ 

                               = 𝑃(𝑃′𝑃)−1𝑃′ 

                               = 𝑃𝑃−1(𝑃′)−1𝑃′ = 𝐼 

 (Because P is both square and non-singular.) 

 So,   𝐸[𝜺∗] = 𝟎       and      𝑉[휀∗] = 𝜎2𝐼 . 

 The transformed model,  𝒚∗ = 𝑋∗𝜷 + 𝜺∗  , has an error-term that satisfies the usual 

assumptions.  In particular, it has a scalar covariance matrix.    

 

 So, if we apply (Ordinary) Least Squares to the model, 𝒚∗ = 𝑋∗𝜷 + 𝜺∗, we’ll get the BLU 

estimator of β, by the Gauss-Markhov Theorem. 

 

 We call this the Generalized Least Squares Estimator of  β. 

 

 The formula for this estimator is readily determined: 

 

                    �̂� = [𝑋∗′𝑋∗]−1𝑋∗′𝒚∗ 

                        = [(𝑃𝑋)′(𝑃𝑋)]−1(𝑃𝑋)′(𝑃𝒚) 

                        = [𝑋′𝑃′𝑃𝑋]−1𝑋′𝑃′𝑃𝒚 

                              = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 

 Note that we can also write the GLS estimator  as: 

                      �̂� = [𝑋′(𝜎2Ω)−1𝑋]−1𝑋′(𝜎2Ω)−1𝒚 

                         = [𝑋′Σ−1𝑋]−1𝑋′Σ−1𝒚  = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 Clearly, because 𝐸[𝜺∗] = 𝟎 as long as the regressors are non-random, the GLS estimator,  

�̂� is unbiased.     

 Moreover, the covariance matrix of the GLS estimator is: 

𝑉(�̂�) = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑉(𝒚){[𝑋′Ω−1𝑋]−1𝑋′Ω−1}′ 
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                           = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝜎2ΩΩ−1𝑋[𝑋′Ω−1𝑋]−1 

                      = 𝜎2[𝑋′Ω−1𝑋]−1 . 

 If the errors are Normally distributed, then the full sampling distribution of the GLS 

estimator of β is: 

 

�̂� ~ 𝑁[𝜷 , 𝜎2[𝑋′Ω−1𝑋]−1, ] 

 

 The GLS estimator is just the OLS estimator, applied to the transformed model, and the 

latter model satisfies all of the usual conditions. 

 So, the Gauss-Markhov Theorem applies to the GLS estimator. 

 The GLS estimator is BLU for this more general model (with a non-scalar error covariance 

matrix). 

 Note: OLS must be inefficient in the present context. 

 Have a more general form of the GMT – the OLS version is a special case. 

 Moreover, all of the results that we established with regard to testing for linear restrictions 

and incorporating them into our estimation, also apply if we make some obvious 

modifications. 

                 �̂� = GLS estimator 

              �̂� = 𝒚∗ − 𝑋∗�̂� 

             �̂�2 = �̂�′�̂�/(𝑛 − 𝑘)  

 Then, to test    𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   we would use the test statistic,    

             𝐹 = (𝑅�̂� − 𝒒)′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅�̂� − 𝒒) /𝐽�̂�2  

 If  𝐻0 is true, then is distributed as 𝐹𝐽,𝑛−𝑘. 

 We can also construct the Restricted GLS estimator, in the same way that we obtained 

the restricted OLS estimator of β. 
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 Check for yourself that this restricted estimator is 

 

       �̂�𝑟 = �̂� − (𝑋∗′𝑋∗)−1𝑅′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅�̂� − 𝒒) 

             = �̂� − (𝑋′Ω−1𝑋)−1𝑅′[𝑅(𝑋′Ω−1𝑋)−1𝑅′]−1(𝑅�̂� − 𝒒) 

             = �̂� − (𝑋′Σ−1𝑋)−1𝑅′[𝑅(𝑋′Σ−1𝑋)−1𝑅′]−1(𝑅�̂� − 𝒒) 

 Then, if the residuals from this restricted GLS estimation are defined as �̂�𝒓 = 𝒚 − 𝑋�̂�𝑟, we 

can also write the F-test statistic as: 

                 𝐹 = [�̂�𝒓′�̂�𝒓 − �̂�′ �̂�] /(𝐽�̂�′ �̂�/(𝑛 − 𝑘)) 

 Recalling our formula for the GLS estimator, we see that it depends on the (usually 

unknown) covariance matrix of the error term: 

                 �̂� = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  . 

“Feasible” GLS Estimator 

 In order to be able to implement the GLS estimator, in practice, we’re usually going to 

have to provide a suitable estimator of  Ω (or Σ). 

 Presumably we’ll want to obtain an estimator that is at least consistent, and place this into 

the formula for the GLS estimator, yielding: 

                 �̃� = [𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚   

 Problem: The Ω matrix is (𝑛 × 𝑛), and it has 𝑛(𝑛 + 1)/2 distinct elements. However, we 

have only n observations on the data. This precludes obtaining a consistent estimator. 

 We need to constrain the elements of  Ω in some way. 

 In practice, this won’t be a big problem, because usually there will be lots of “structure” 

on the form of  Ω . 

 Typically, we’ll have Ω = Ω(𝜽), where the vector, 𝜽 has low dimension. 
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Example:                   Heteroskedasticity 

Suppose that          𝑣𝑎𝑟. (휀𝑖) ∝ (𝜃1 + 𝜃2𝑧𝑖) = 𝜎2(𝜃1 + 𝜃2𝑧𝑖) 

Then, 

Ω = (
𝜃1 + 𝜃2𝑧1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜃1 + 𝜃2𝑧𝑛

) 

There are just two parameters that have to be estimated, in order to obtain Ω̂ . 

Example:                   Autocorrelation 

Suppose that the errors follow a first-order autoregressive process: 

                 휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡   ;   𝑢𝑡  ~ 𝑁[0 , 𝜎𝑢
2]         (i.i.d.) 

Then (for reasons we’ll see later), 

 

                       Ω =
𝜎𝑢

2

1−𝜌2 [

1 𝜌 …
𝜌 1 𝜌
⋮ 𝜌 ⋱

     
𝜌𝑛−1

𝜌𝑛−2

⋮
𝜌𝑛−1 …     … 1

] = Ω(𝜌). 

 So, typically, we’ll just have to estimate a very small number of parameters in order to get 

an estimator of Ω . 

 As long as we use a consistent estimator for these parameters – the elements of 𝜃, this will 

give us a consistent estimator of  Ω and of  Ω−1, by Slutsky’s Theorem. 

 This in turn, will ensure that our Feasible GLS estimator of 𝛽 is also weakly consistent: 

𝑝𝑙𝑖𝑚(𝛽) = 𝑝𝑙𝑖𝑚 {[𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚{[𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚(�̂�) = 𝛽 . 

 Also, if  Ω̂ is consistent for Ω then 𝛽 will be asymptotically efficient. 
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 In general, we can say little about the finite-sample properties of our feasible GLS 

estimator. 

 Usually it will be biased, and the nature of the bias will depend on the form of Ω and our 

choice of  Ω̂. 

 In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know 

the form of  Ω .  

 Typically, this is achieved by postulating various forms, and testing to see if these are 

supported by the data. 

Appendix – R-Code for perspective plots and contours  

(see http://quantcorner.wordpress.com/2012/09/21/bivariate-normal-distribution-with-r/) 

# Édouard Tallent @ TaGoMa.Tech 

# September 2012 

# This code plots simulated bivariate normal distributions 

 

# Some variable definitions 

mu1 <- 0 # expected value of x 

mu2 <- 0 # expected value of y 

sig1 <- 0.5 # variance of x 

sig2 <- 1 # variance of y 

rho <- 0.5 # corr(x, y) 

 

# Some additional variables for x-axis and y-axis  

xm <- -3 

xp <- 3 

ym <- -3 

yp <- 3 

 

x <- seq(xm, xp, length= as.integer((xp + abs(xm)) * 10))  # vector 

series x 

y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10))  # vector 

series y 

 

# Core function 

bivariate <- function(x,y){ 

 term1 <- 1 / (2 * pi * sig1 * sig2 * sqrt(1 - rho^2)) 

 term2 <- (x - mu1)^2 / sig1^2 

 term3 <- -(2 * rho * (x - mu1)*(y - mu2))/(sig1 * sig2) 

 term4 <- (y - mu2)^2 / sig2^2 

 z <- term2 + term3 + term4 

 term5 <- term1 * exp((-z / (2 *(1 - rho^2)))) 

 return (term5) 

} 
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# Computes the density values 

z <- outer(x,y,bivariate) 

 

# Plot 

persp(x, y, z, main = "Bivariate Normal Distribution", 

sub = bquote(bold(mu[1])==.(mu1)~", "~sigma[1]==.(sig1)~", 

"~mu[2]==.(mu2)~ ", "~sigma[2]==.(sig2)~", "~rho==.(rho)), 

col="lightblue", theta = 55, phi = 30, r = 40, d = 0.1, expand 

= 0.5,ltheta = 90, lphi = 180, shade = 0.4, ticktype = 

"detailed", nticks=5) 

 

#In order to see the contours, use:  

#contour(x,y,z) 
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Topic 7: Heteroskedasticity 

Consider the linear regression model  

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2Ω] 

where     

𝜎2Ω = 𝜎2 [
𝜔11 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

] = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜎𝑛

2
] = 𝑑𝑖𝑎𝑔. (𝜎𝑖

2) 

Then the errors exhibit Heteroskedasticity, but they are still uncorrelated. 

 We know, from Topic 6, that in this case the OLS estimator of 𝜷 is unbiased and consistent, 

but it is inefficient. 

 We know that we can use White’s modified estimator for the covariance matrix of 𝜷 to 

ensure that the standard errors of the bi’s are consistent estimators for the true s.e.(bi)’s. 

 We also know that we can use GLS to obtain the BLU estimator of 𝜷 if Ω is known. 

 If                           Ω = [
𝜔11 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

]   , 

then                       𝑃 = [
𝜔11

−1/2 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

−1/2
] , 

so that             𝑃′𝑃 = Ω−1 

 So, in this particular case, GLS estimation involves transforming the data: 

                         𝒚∗ = 𝑃𝒚   ;    𝑋∗ = 𝑃𝑋    

 Just multiply the model by the matrix, P, or simply scale the ith observation of all variables 

by 𝜔𝑖𝑖
−1/2

 : 

     𝜔𝑖𝑖
−1/2

𝑦𝑖 = 𝛽1𝜔𝑖𝑖
−1/2

+ 𝛽2 (𝜔
𝑖𝑖

−
1

2𝑥𝑖2) + ⋯+ (𝜔
𝑖𝑖

−
1

2휀𝑖) 
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 This particular variant of GLS is often referred to as “Weighted Least Squares” 

estimation. It is just OLS applied using “weighted” data. 

 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 + 휀𝑖 

𝐸[휀𝑖] = 0      ;     𝑣𝑎𝑟. [휀𝑖] ∝ 𝑥𝑖2
2        

So, we can write: 

𝑣𝑎𝑟. [휀𝑖] = 𝜎2𝑥𝑖2
2        ;     𝜔𝑖𝑖 = 𝑥𝑖2

2       ;       𝜔𝑖𝑖
−1/2 = 1/𝑥𝑖2  

(𝑦𝑖/𝑥𝑖2) = 𝛽1(1/𝑥𝑖2) + 𝛽2 + ⋯+ 𝛽𝑘(𝑥𝑖𝑘/𝑥𝑖2) + 휀𝑖
∗ 

where         휀𝑖
∗ = (

𝜀𝑖

𝑥𝑖2
)    ;    𝐸[휀𝑖

∗] = 0              (assumption?) 

𝑣𝑎𝑟. [휀𝑖
∗] = (1/𝑥𝑖2)

2𝑣𝑎𝑟. [휀𝑖] = (1/𝑥𝑖2)
2 𝜎2𝑥𝑖2

2 = 𝜎2        

 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 + 휀𝑖 

𝐸[휀𝑖] = 0      ;     𝑣𝑎𝑟. [휀𝑖] ∝ 𝑧𝑖
𝑝
   

𝑣𝑎𝑟. [휀𝑖] = 𝜎2𝑧𝑖
𝑝
       ;     𝜔𝑖𝑖 = 𝑧𝑖

𝑝
      ;       𝜔𝑖𝑖

−1/2 = 𝑧𝑖
−𝑝/2

 

(𝑦𝑖𝑧𝑖
−𝑝/2

) = 𝛽1(𝑧𝑖
−𝑝/2

) + 𝛽2(𝑥𝑖2𝑧𝑖
−𝑝/2

) + ⋯+ 𝛽𝑘(𝑥𝑖𝑘𝑧𝑖
−𝑝/2

) + 휀𝑖
∗ 

where         휀𝑖
∗ = (휀𝑖𝑧𝑖

−𝑝/2
)    ;    𝐸[휀𝑖

∗] = 0              (assumption?) 

𝑣𝑎𝑟. [휀𝑖
∗] = (𝑧𝑖

−𝑝/2
)
2
𝑣𝑎𝑟. [휀𝑖] = 𝑧𝑖

−𝑝𝜎2𝑧𝑖
𝑝 = 𝜎2   

Note that in this case we end up with a fitted model with no intercept, but we are still estimating 

the original parameters of interest. 
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 In some cases we will actually know the form of the heteroskedasticity, so we can apply 

WLS directly. 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 + 휀𝑖 

𝐸[휀𝑖] = 0      ;     𝑣𝑎𝑟. [휀𝑖] = 𝜎2       ;     i.i.d 

However, suppose that we only observe “grouped” data, rather than the observations on the 

individual agents. 

This happens frequently in practice, when data are released in this way to preserve confidentiality. 

Suppose there are m groups (e.g., income groups), with nj observations in the jth group;   j = 1, 2, 

…., m.   

The model we can actually estimate is of the form: 

�̅�𝑗 = 𝛽1 + 𝛽2�̅�𝑗2 + ⋯+ 𝛽𝑘�̅�𝑗𝑘 + 휀�̅�    ;     j = 1, 2, ..., m 

and clearly, 

𝐸[휀�̅�] = 𝐸 [
1

𝑛𝑗
∑ 휀𝑖

𝑛𝑗

𝑖=1
] = [

1

𝑛𝑗
∑ 𝐸(휀𝑖)

𝑛𝑗

𝑖=1
] = 0       

𝑣𝑎𝑟. [휀�̅�] = 𝑣𝑎𝑟. [
1

𝑛𝑗
∑ 휀𝑖

𝑛𝑗

𝑖=1
] = [

1

𝑛𝑗
2
∑ 𝑣𝑎𝑟. (휀𝑖

𝑛𝑗

𝑖=1
)] 

                           = (𝑛𝑗𝜎
2/𝑛𝑗

2) 

                           = (𝜎2/𝑛𝑗)  . 

The nj values are generally reported, so we know the error covariance matrix: 

                           𝜎2Ω = 𝜎2 [
1/𝑛1 ⋯ 0

⋮ ⋱ ⋮
0 … 1/𝑛𝑚

] . 

Because Ω is known, we can compute the GLS estimator of the coefficient vector immediately: 
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                              �̂� = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 . 

However, in many other applications, we won’t know the values of the elements of  Ω , and we’ll 

have to use Feasible GLS estimation. 

 

FGLS Example: 

 Estimate 𝛽 by OLS (𝑏 is at least consistent) 

 Obtain the OLS residuals, 𝒆 

 Estimate Ω by: Ω̂𝑂𝐿𝑆 = 𝑑𝑖𝑎𝑔(𝑒1
2, … , 𝑒𝑛

2) 

 Estimate �̂�𝐹𝐺𝐿𝑆1 = [𝑋′Ω̂𝑂𝐿𝑆
−1 𝑋]

−1
𝑋′Ω̂𝑂𝐿𝑆

−1 𝒚  

 

The procedure can be iterated, until estimation of Ω̂ converges. Note that the benefit of iterating 

is questionable, as each estimator for 𝛽 past the first iteration is consistent. 

 

Testing for Homoskedasticity 

 Clearly, it would be very useful to have a test of the hypothesis that the errors in our 

regression model are homoscedastic, against the alternative that they exhibit some sort of 

heteroskedasticity. 

 Recall that heteroskedasticity reduces the efficiency of the OLS estimator of 𝜷 and has 

serious implications for the properties of the associated standard errors, confidence 

intervals, and tests. 

 Because OLS is still a consistent estimator of 𝜷 even if the errors are heteroskedastic, this 

means that we can use the OLS residuals to construct tests that will still be (at least) 

asymptotically valid. 

 In particular, we can use these residuals to construct asymptotically valid tests for 

homoskedasticity. 
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White’s Test 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑘𝑥𝑖𝑘 + 휀𝑖 

  𝐸[휀𝑖] = 0      ;     𝑣𝑎𝑟. [휀𝑖] = 𝜎𝑖
2       ;     i.i.d 

Consider the following null and alternative hypotheses: 

𝐻0: 𝜎𝑖
2 = 𝜎2      ;      i = 1, 2, …, n  𝐻𝐴: 𝑁𝑜𝑡 𝐻0  

 The Alternative Hypothesis is very general. 

  No specific form of heteroskedasticity is declared. 

 To implement the test – 

 

1.   Estimate the model by OLS, and get the residuals,  𝑒𝑖 ; i = 1, 2, …, n. 

2.   Using OLS, regress the 𝑒𝑖
2 values on each of the x’s in the original model; their 

squared values; all of the cross-products of the regressors; and an intercept. 

3.   𝑛𝑅2 from the regression in Step 2 is asymptotically 𝜒(𝑝)
2  if 𝐻0 is true; where p is 

the number of parameters that are estimated at Step 2. 

4.   Reject 𝐻0 in favour of 𝐻𝐴 if  𝑛𝑅2 > 𝑐(α) . 

 Note the limitations of this test: 

1.   It is valid only asymptotically. 

2.   The test is “non-constructive”, in the sense that if we reject 𝐻0, we       don’t 

know what form of heteroskedasticity we may have. 

3.   This means that it won’t be clear what form the GLS estimator should  take. 

 However, this may be enough information to alert us to the fact that we should  probably 

use White’s “heteroskedasticity-consistent” estimator of 𝑉(𝒃). 

 In fact, there is little, if anything, to be lost in using this covariance matrix estimator, 

anyway, as long as the sample is large. 
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Example   

Data is on average monthly credit card expenditure (avgexp). The explanatory variables are age, 

ownrent (= 1 if homeowner, = 0 if renter), and income (in $10,000). Produce a scatter plot of 

avgexp against income.       

 

ccard=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/credi

tcard.csv") 

attach(ccard) 

plot(income,avgexp) 

 

Does it look like heteroskedasticity is apparent? 

 

Estimate the following model by OLS: 

𝑎𝑣𝑔𝑒𝑥𝑝 =  𝛽1 + 𝛽2𝑎𝑔𝑒 + 𝛽3𝑜𝑤𝑛𝑟𝑒𝑛𝑡 + 𝛽4𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽5𝑖𝑛𝑐𝑜𝑚𝑒2 + 휀 

 

income2 = income^2 

res = lm(avgexp ~ age + ownrent + income + income2) 

summary(res) 
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -237.147    199.352  -1.190  0.23841    

age           -3.082      5.515  -0.559  0.57814    

ownrent       27.941     82.922   0.337  0.73721    

income       234.347     80.366   2.916  0.00482 ** 

income2      -14.997      7.469  -2.008  0.04870 * 

 

White’s heteroskedasticity consistent standard errors can be calculated using standard 

econometric software (e.g. Eviews, Stata). However, we can easily write R code to estimate the 

appropriate variance-covariance matrix. 

Recall that in the presence of heteroskedasticity, White’s estimator for the var-cov matrix of 𝑏 is: 

�̂�∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋
′𝑋)−1] 

where 

𝑆0 =
1

𝑛
∑𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

To code this into R:  

resids2 = res$residuals^2 

n = length(avgexp) 

X = matrix(c(rep(1,n),age,ownrent,income,income2),n,5) 

S = matrix(0,5,5)  

for(i in 1:n){ 

S = S +(resids2[i]) * X[i,] %*% t(X[i,]) 

} 

S = S/n 

diag((n*solve(t(X) %*% X) %*% S %*% solve(t(X) %*% X))^.5) 

 

212.990530   3.301661  92.187777  88.866352   6.944563 

How do these compare to the previous standard errors? 

Read the sample size from the data 

Create “empty” S matrix 
Create X matrix 

This is a “for” loop. In each iteration, 𝑒𝑖
2𝒙𝑖𝒙𝑖

′ will be added to the S matrix. 

Finally, this reports the diagonal elements of the �̂�∗ matrix. 

Get the squared resids. from 1st regression 
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White’s Heteroskedasticity Test - Example 

We’ll regress the squared residuals from the OLS regression on all explanatory variables, and 

squared and cross-products of the explanatory variables. If the 𝑅2 from this auxiliary regression 

is high enough, we’ll reject the null of homoscedasticity. 

First, create all the variables needed for the auxiliary regression, then run OLS: 

age2 = age^2 

income4 = income^4 

age_own = age*ownrent 

age_inc = age*income 

age_inc2 = age*income2 

own_inc = ownrent*income 

own_inc2 = ownrent*income2 

inc_inc2 = income^3 

summary(lm(resids2 ~ age + ownrent + income + income2 + age2 + 

income4 + age_own + age_inc + age_inc2 + own_inc + own_inc2 + 

inc_inc2)) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  1637390.4  1290979.7   1.268   0.2097   

age             5366.2    48893.8   0.110   0.9130   

ownrent       812036.8   991630.2   0.819   0.4161   

income      -2021697.6  1053559.1  -1.919   0.0598 . 

income2       669055.3   365666.7   1.830   0.0724 . 

age2            -424.1      627.5  -0.676   0.5018   

income4         3762.7     2277.4   1.652   0.1038   

age_own         4661.7    14424.6   0.323   0.7477   

age_inc        11499.9    15614.3   0.736   0.4643   

age_inc2       -1093.3     1568.1  -0.697   0.4884   

own_inc      -510192.3   469792.6  -1.086   0.2819   

own_inc2       51835.1    61799.8   0.839   0.4050   

inc_inc2      -86805.3    51162.6  -1.697   0.0950 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 274600 on 59 degrees of freedom 

Multiple R-squared:  0.199,     Adjusted R-squared:  0.0361  

F-statistic: 1.222 on 12 and 59 DF,  p-value: 0.2905  
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 Can variation in 𝒆′𝒆 be explained? 

 Should we use the F-test reported in the regression results? 

 > 1 - pchisq(n*0.199,12) 

[1] 0.280255 

 

So, even though regression seems apparent from the plot of avgexp against income, we cannot 

reject the null of homoskedasticity using White’s test. 

 

What would be the safe thing to do in this case? 
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Topic 7 Continued: Heteroskedasticity 

Goldfeld-Quandt Test 

 Suppose that we have two samples of data.  That is, we have sampled from two 

potentially different populations. 

 We want to test if the variance of the error term for our regression model is the same for 

both populations. 

 We’ll assume that we know that the coefficient vector is the same for both populations. 

 So: 

              𝒚1 = 𝑋1𝜷 + 𝜺1      ;    𝜺1 ~ 𝑁[0 , 𝜎1
2𝐼𝑛1

] 

              𝒚2 = 𝑋2𝜷 + 𝜺2      ;    𝜺2 ~ 𝑁[0 , 𝜎2
2𝐼𝑛2

] 

                                                                             (Subscripts denote samples) 

 We want to test  𝐻0: 𝜎1
2 = 𝜎2

2     vs.    𝐻𝐴: 𝜎1
2 > 𝜎2

2       (say) 

The Goldfeld-Quandt test for homoscedasticity is constructed as follows: 

1.   Fit the model, using OLS, over each of the two samples, separately. 

2.   Let the two residual vectors be 𝒆𝟏 and 𝒆𝟐. 

3.   If the errors are Normally distributed, then the statistics: 

                      (𝑒𝑖′𝑒𝑖)/(𝜎𝑖
2)~𝜒(𝑛𝑖−𝑘)

2     ;    i = 1, 2. 

4.   The two regressions are fitted quite separately, so these two statistics are statistically 

independent. 

5.   Consider the statistic: 

𝐹 = (𝑒1′𝑒1)/(𝜎1
2(𝑛1 − 𝑘))/(𝑒2′𝑒2)/(𝜎2

2(𝑛2 − 𝑘)) 

6.   If  𝐻0: 𝜎1
2 = 𝜎2

2   is true, then    𝐹 = (
𝑠1
2

𝑠2
2)~ 𝐹(𝑛1−𝑘 ; 𝑛2−𝑘)  . 

7.   We would reject 𝑯𝟎 if  𝐹 > 𝑐(𝛼) . 

 

 If we do not reject  𝐻0, then we would estimate the (common) coefficient vector, 𝜷, by 

"pooling" both samples together, and applying OLS. 

 On the other hand, if we reject 𝐻0, then we would estimate the (common) coefficient 

vector, 𝜷, by GLS. 
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 Let's see what form the latter estimator takes in this particular case. 

 Recall that we have: 

            𝒚1 = 𝑋1𝜷 + 𝜺1      ;    𝜺1 ~ 𝑁[0 , 𝜎1
2𝐼𝑛1

]                 (n1) 

            𝒚2 = 𝑋2𝜷 + 𝜺2      ;    𝜺2 ~ 𝑁[0 , 𝜎2
2𝐼𝑛2

]                 (n2) 

 Let 𝜙 = (𝜎1/𝜎2)  ;   and let �̂� = (𝑠1/𝑠2)  ; 

       where    𝑠𝑖
2 = (𝒆𝑖′𝒆𝑖)/(𝑛𝑖 − 𝑘)  ;    i = 1, 2. 

 Note that �̂� is a consistent estimator of 𝜙. 

 If we knew the value of 𝜙, we could use it to scale the model for the second sub-

sample, as follows: 

 

                 𝜙𝒚2 = 𝜙𝑋2𝜷 + 𝜙𝜺2                          (n2) 

 

where    𝐸[𝜙𝜺2] = 0    and    

𝑉[𝜙𝜺2] = 𝜙2𝑉[𝜺2] = (
𝜎1

2

𝜎2
2)𝜎2

2𝐼𝑛2
= 𝜎1

2𝐼𝑛2
 

 That is, the full error vector, 𝜺′ = (𝜺1
′ , 𝜙𝜺2′)′ , is homoscedastic. 

 GLS estimation then amounts to applying OLS to the “pooled” data, but where 

the data associated with the second sub-sample have been transformed in the 

above way. 

 Typically, we won’t know the value of  𝜙 = (𝜎1/𝜎2) , but we can use �̂� =

(𝑠1/𝑠2) instead to implement feasible GLS estimation.  

 Because �̂� is a consistent estimator of  𝜙, this feasible GLS estimator will be 

consistent for β . 
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Example 

 Investment data for 2 companies – General Electric & Westinghouse 

 20 years of annual data for each company – 1935 to 1954 

 I = Gross investment, in 1947 dollars 

 V = Market value of company as of 31 December, in 1947 dollars 

 K = Stock of plant & equipment, in 1947 dollars 

 “Pool” the data – first 20 observations are for General Electric; second 20 observations 

are for Westinghouse 

First, take a look at the data: 

fglsdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/fgls.csv

") 

attach(fglsdata) 

fglsdata 

   Year   Ige    Vge   Kge    Iw     Vw    Kw 

1  1935  33.1 1170.6  97.8 12.93  191.5   1.8 

2  1936  45.0 2015.8 104.4 25.90  516.0   0.8 

3  1937  77.2 2803.3 118.0 35.05  729.0   7.4 

4  1938  44.6 2039.7 156.2 22.89  560.4  18.1 

5  1939  48.1 2256.2 172.6 18.84  519.9  23.5 

6  1940  74.4 2132.2 186.6 28.57  628.5  26.5 

7  1941 113.0 1834.1 220.9 48.51  537.1  36.2 

8  1942  91.9 1588.0 287.8 43.34  561.2  60.8 

9  1943  61.3 1749.4 319.9 37.02  617.2  84.4 

10 1944  56.8 1687.2 321.3 37.81  626.7  91.2 

11 1945  93.6 2007.7 319.6 39.27  737.2  92.4 

12 1946 159.9 2208.3 346.0 53.46  760.5  86.0 

13 1947 147.2 1656.7 456.4 55.56  581.4 111.1 

14 1947 146.3 1604.4 543.4 49.56  662.3 130.6 

15 1949  98.3 1431.8 618.3 32.04  583.8 141.8 

16 1950  93.5 1610.5 647.4 32.24  635.2 136.7 

17 1951 135.2 1819.4 671.3 54.38  723.8 129.7 

18 1952 157.3 2079.7 726.1 71.78  864.1 145.5 

19 1953 179.5 2371.6 800.3 90.08 1193.5 174.8 

20 1954 189.6 2759.9 888.9 68.60 1188.9 213.5 

 

Estimate the “pooled” regression: 

I = c(Ige,Iw) 

V = c(Vge,Vw) 
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K = c(Kge,Kw) 

res = lm(I ~ V + K) 

summary(res) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 17.872001   7.024081   2.544   0.0153 *   

V            0.015193   0.006196   2.452   0.0191 *   

K            0.143579   0.018601   7.719 3.19e-09 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 21.16 on 37 degrees of freedom 

Multiple R-squared: 0.8098,     Adjusted R-squared: 0.7995  

F-statistic: 78.75 on 2 and 37 DF,  p-value: 4.641e-14 

 

Perform White’s Heteroskedasticity test: 

resids2 = res$residuals^2 

V2 = V^2 

K2 = K^2 

VK = V*K 

summary(lm(resids2 ~ V + K + V2 + K2 + VK)) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept) -1.643e+02  4.553e+02  -0.361   0.7204   

V           -1.591e-01  1.053e+00  -0.151   0.8808   

K            5.238e+00  2.592e+00   2.021   0.0512 . 

V2           6.041e-06  3.413e-04   0.018   0.9860   

K2          -8.899e-03  3.860e-03  -2.305   0.0274 * 

VK           1.233e-03  1.381e-03   0.893   0.3781   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 586.8 on 34 degrees of freedom 

Multiple R-squared: 0.337,      Adjusted R-squared: 0.2395  

F-statistic: 3.457 on 5 and 34 DF,  p-value: 0.01242 

 

1 - pchisq(40*0.337,5)  

0.01927276 

 

Now let’s try the Goldfeld-Quandt Test: 

resGE = lm(Ige ~ Vge + Kge) 

summary(resGE) 

 

Coefficients: 
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            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -9.95631   31.37425  -0.317    0.755     

Vge          0.02655    0.01557   1.706    0.106     

Kge          0.15169    0.02570   5.902 1.74e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 27.88 on 17 degrees of freedom 

Multiple R-squared: 0.7053,     Adjusted R-squared: 0.6706  

F-statistic: 20.34 on 2 and 17 DF,  p-value: 3.088e-05 

 

𝑒1′𝑒1

𝑛1 − 𝑘
= 27.882 = 777.45 

 

resW = lm(Iw ~ Vw + Kw) 

summary(resW)  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -0.50939    8.01529  -0.064  0.95007    

Vw           0.05289    0.01571   3.368  0.00365 ** 

Kw           0.09241    0.05610   1.647  0.11787    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 10.21 on 17 degrees of freedom 

Multiple R-squared: 0.7444,     Adjusted R-squared: 0.7144  

F-statistic: 24.76 on 2 and 17 DF,  p-value: 9.196e-06 

 

𝑒2′𝑒2

𝑛2 − 𝑘
= 10.212 = 104.31 
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In this example, there is more variability in the error term over the first sub-sample (General 

Electric) than there is over the second sub-sample (Westinghouse):   𝑠1
2 = 777.45  ;   𝑠2

2 =

104.31   

 𝐻0: 𝜎1
2 = 𝜎2

2    vs.  𝐻𝐴: 𝜎1
2 > 𝜎2

2     

 𝐹 = (777.45/104.31) = 7.45 

 If 𝐻0 is true, 𝐹 ~ 𝐹(𝑛1−𝑘 ; 𝑛2−𝑘) = 𝐹(17 ; 17) 

 5% critical value = 2.4  ;   1% critical value = 3.5 

 1 - pf(7.45,17,17) 

7.172914e-05 

 Reject  𝑯𝟎   

 So, leave the data for the first sub-sample unchanged, but multiply the data  (including 

the intercept) for the second sub-sample by�̂� =
𝑠1

𝑠2
= 27.88

10.21
= 2.73 

 This means that instead of using a constant term in our regression, we must create a 

vector that consists of 20 1’s, followed by 20 values of 2.73 (Cstar), and use this vector as 

the first term in our regression. 

Istar = c(Ige, 2.73 * Iw) 

Cstar = c(rep(1,20), rep(2.73,20)) 

Vstar = c(Vge, 2.73 * Vw) 

Kstar = c(Kge, 2.73 * Kw) 

summary(lm(Istar ~ Cstar + Vstar + Kstar -1) 

 

Coefficients: 

       Estimate Std. Error t value Pr(>|t|)     

Cstar 16.747017   4.785409   3.500  0.00123 **  

Vstar  0.020391   0.007245   2.814  0.00778 **  

Kstar  0.133713   0.024144   5.538 2.65e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 29.74 on 37 degrees of freedom 

Multiple R-squared: 0.9436,     Adjusted R-squared: 0.939  

F-statistic: 206.3 on 3 and 37 DF,  p-value: < 2.2e-16  

17.872 

0.015 

0.144 
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Topic 8: Autocorrelated Errors 

Consider the standard linear regression model  

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

 Among other things, because the off-diagonal elements of  𝑉(𝜺) are all zero in value, we 

are assuming that the elements of the error vector are pair-wise uncorrelated.  

 That is, they do not exhibit any Autocorrelation. 

 Often, this assumption is unreasonable – especially with time-series data. 

 Often, current values of the error term are correlated with past values. 

 We often say they are “Serially Correlated ”. 

 In this case, the off-diagonal elements of 𝑉(𝜺) will be non-zero. 

 The particular values they take will depend on the form of autocorrelation. 

 That is, they will depend on the pattern  of the correlations between the elements of the 

error vector. 

                           𝑉(𝜺) = [

𝜎2 𝜎12 𝜎13

𝜎12 𝜎2 𝜎23

𝜎13 𝜎23 𝜎2

] 

 If the errors themselves are autocorrelated, often this will be reflected in the regression 

residuals also being autocorrelated. 

 That is, the residuals will follow some sort of pattern, rather than just being random. 

 Typically, this reflects a mis-specification of the model structure itself. 

 If the errors of our model are autocorrelated, then the OLS estimator of 𝜷 usually will be 

unbiased and consistent, but it will be inefficient. 

 In addition 𝑉(𝒃) will be computed incorrectly, and the standard errors, etc., will be 

inconsistent. 

 So, we need to consider formal methods for 

1.   Testing for the presence/absence of autocorrelation. 

2.   Estimating models when the errors are autocorrelated. 

 It will be helpful to consider various specific forms of autocorrelation that may arise in 

practice. 
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 As we’ll see, typically we can represent the important forms of autocorrelation with the 

addition of just a small number of parameters. 

 That is, 𝑉(𝜺) will be a function of 𝜎2, and just a small number of additional (unknown) 

parameters. 

Autoregressive Process 

휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]      ;    |𝜌| < 1   

This is an AR(1) model for the error process. 

More generally: 

휀𝑡 = 𝜌1휀𝑡−1 + 𝜌2휀𝑡−2 + ⋯+ 𝜌𝑝휀𝑡−𝑝 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] 

Moving Average Process 

휀𝑡 = 𝑢𝑡 + 𝜙𝑢𝑡−1     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]       

This is an MA(1) model for the error process. 

More generally: 

휀𝑡 = 𝑢𝑡 + 𝜙1휀𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞     ;    𝑢𝑡 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an MA(q) model for the error process.  

We can combine both types of process into an ARMA(p , q) model: 

휀𝑡 = 𝜌1휀𝑡−1 + 𝜌2휀𝑡−2 + ⋯𝜌𝑝휀𝑡−𝑝 + 𝑢𝑡 + 𝜙1𝑢𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞      

where:                  𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2] . 

 Note that in the AR(1) process, we said that   |𝜌| < 1  . 

 This condition is needed to ensure that the process is “stationary”. 

 Let’s see what this actually means, more generally. 

 Note – all MA processes are stationary. 
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Stationarity 

Suppose that the following 3 conditions are satisfied: 

1.   𝐸[휀𝑡] = 0                          ;     for all t 

2.   𝑣𝑎𝑟. [휀𝑡] = 𝜎2                  ;     for all t 

3.   𝑐𝑜𝑣. [휀𝑡 , 휀𝑠 ] = 𝛾|𝑡−𝑠|       ;     for all t, s;  𝑡 ≠ 𝑠 

Then we say that the time-series sequence, {휀𝑡} is “Covariance Stationary”; or “Weakly 

Stationary”. 

 More generally, this can apply to any time-series – not just the error process. 

 Unless a time-series is stationary, we can’t identify & estimate the parameters of the 

process that is generating its values. 

 Let's see how this notion relates to the AR(1) model, introduced above. 

 We have:      휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡 

                 𝐸[𝑢𝑡] = 0 

            𝑣𝑎𝑟. [𝑢𝑡] = 𝐸[𝑢𝑡
2] = 𝜎𝑢

2 

       𝑐𝑜𝑣. [𝑢𝑡, 𝑢𝑠] = 0        ;       𝑡 ≠ 𝑠 

 So, 

                      휀𝑡 = 𝜌[𝜌휀𝑡−2 + 𝑢𝑡−1] + 𝑢𝑡 

     = 𝜌2휀𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌2[𝜌휀𝑡−3 + 𝑢𝑡−2] + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌3휀𝑡−3 + 𝜌2𝑢𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     etc. 

 Continuing in this way, eventually, we get: 

                       휀𝑡 = 𝑢𝑡 + 𝜌𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯                     (1) 

[This is an infinite-order MA process.] 

The value of 휀𝑡 embodies the entire past history of the 𝑢𝑡 values. 

 From (1),  𝐸(휀𝑡) = 0, and 

𝑣𝑎𝑟. (휀𝑡) = 𝑣𝑎𝑟. (𝑢𝑡) + 𝑣𝑎𝑟. (𝜌𝑢𝑡−1) + 𝑣𝑎𝑟. (𝜌2휀𝑡−2) + ⋯ 

                = 𝜎𝑢
2 + 𝜌2𝜎𝑢

2 + 𝜌4𝜎𝑢
2 + ⋯ 
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= 𝜎𝑢
2 ∑𝜌2𝑠

∞

𝑠=0

= 𝜎𝑢
2 ∑(𝜌2)𝑠

∞

𝑠=0

 

 Now, under what conditions will this series converge? 

The series will converge to  𝜎𝑢
2(1 − 𝜌2)−1, as long as |𝜌2| < 1, and this in turn requires 

that |𝜌| < 1. 

 This is a necessary condition needed to ensure that the process, {휀𝑡} is stationary, because 

if this condition isn't satisfied, then 𝑣𝑎𝑟. [휀𝑡] is infinite. 

 So, for the AR(1) process, as long as |𝜌| < 1, then 𝑣𝑎𝑟. [휀𝑡] = 𝜎𝑢
2(1 − 𝜌2)−1. 

 In addition, stationarity implies that 𝑣𝑎𝑟. [휀𝑡] = 𝑣𝑎𝑟. [휀𝑡−𝑠], for all 's'. 

 So, now consider the covariances of terms in the process: 

 

𝑐𝑜𝑣. [휀𝑡, 휀𝑡−1] = 𝐸[(휀𝑡 − 𝐸(휀𝑡))(휀𝑡−1 − 𝐸(휀𝑡−1))] 

= 𝐸[휀𝑡휀𝑡−1] 

= 𝐸[휀𝑡−1(𝜌휀𝑡−1 + 𝑢𝑡)] 

= 𝜌𝐸[휀𝑡−1
2 ] + 0 

= 𝜌𝑣𝑎𝑟. [휀𝑡−1] = 𝜌𝜎𝑢
2/(1 − 𝜌2) 

 Similarly, 

𝑐𝑜𝑣. [휀𝑡, 휀𝑡−2] = 𝐸[(휀𝑡 − 𝐸(휀𝑡))(휀𝑡−2 − 𝐸(휀𝑡−2))] 

= 𝐸[휀𝑡−2(𝜌휀𝑡−1 + 𝑢𝑡)] 

= 𝐸[휀𝑡−2(𝜌(𝜌휀𝑡−2 + 𝑢𝑡−1) + 𝑢𝑡)] 

= 𝜌2𝐸[휀𝑡−2
2 ] + 0 

= 𝜌2𝑣𝑎𝑟. [휀𝑡−2] = 𝜌2𝜎𝑢
2/(1 − 𝜌2) 

 In general, then, for the AR(1) process: 

𝑐𝑜𝑣. [휀𝑡, 휀𝑠] = 𝜌(𝑡−𝑠)𝜎𝑢
2/(1 − 𝜌2)  ; depends on (t – s), not values of t, s ; and we can 

reverse t and s, so it actually depends on |𝑡 − 𝑠| . 

 Also, recall that   

𝑣𝑎𝑟. [휀𝑡] = 𝜎𝑢
2/(1 − 𝜌2) 

 So, the full covariance matrix for ε is: 
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𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

If we can find a matrix, P, such that Ω−1 = 𝑃′𝑃, and if the value of 𝜌 were known, then 

we could apply GLS estimation. 

 More likely, in practice, find P, which will depend on 𝜌, and then estimate 𝜌 consistently, 

and we can implement feasible GLS estimation. 

 Before we consider  GLS estimation any further, let's first see what implications 

autocorrelation of the errors has for the OLS estimator of  𝜷. 

 

OLS Estimation 

 Given that the error term in our model now has a non-scalar covariance matrix, we know 

that the OLS estimator, b, is still linear and unbiased, but it is inefficient. 

 In general, b will still be a consistent estimator. However, there is one important situation 

where it will be inconsistent. 

 This will be the case if the errors are autocorrelated, and one or more lagged values of the 

dependent variable enter the model as regressors. 

[The GLS estimator will also be inconsistent in this case.] 

 A quick way to observe that inconsistent estimation will result in this case is as follows: 

 

 Suppose that 

           𝑦𝑡 = 𝛽𝑦𝑡−1 + 휀𝑡       ;      |𝛽| < 1                            (2) 

           휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

Now subtract 𝜌𝑦𝑡−1 from the expression for 𝑦𝑡 in equation (2): 

 

 (𝑦𝑡 − 𝜌𝑦𝑡−1) = (𝛽𝑦𝑡−1 + 휀𝑡) − 𝜌(𝛽𝑦𝑡−2 + 휀𝑡−1) 

or, 
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 𝑦𝑡 = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + (휀𝑡 − 𝜌휀𝑡−1) 

                   = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + 𝑢𝑡 

 

 So, if we estimate the model with just 𝑦𝑡−1 as the only regressor, then we are effectively 

omitting a relevant regressor, 𝑦𝑡−2, form the model. 

 This amounts to imposing a false (zero) restriction on the coefficient vector, and we 

know that this causes OLS to be not only biased, but also inconsistent. 

 As was noted when we were discussing the general situation involving a regression 

model whose error vector has a non-scalar covariance matrix (in Topic 6), the estimated 

𝑉(𝒃) will be inconsistent, regardless of the form of the regressors. 

 So, to get consistent standard errors for the elements of b, we can use the Newey-West 

correction when estimating 𝑉(𝒃). 

 

Testing for Serial Independence 

 Let’s consider the problem of testing the hypothesis, H0: “The errors in our regression 

model are serially independent”. 

 We’ll need to formulate both the null, and an alternative hypothesis, expressing them in 

terms of the underlying parameters of the model. 

 First, consider the possibility that the errors follow an AR(1) process, if they are not 

serially independent. 

 That is: 

           𝑦𝑡 = 𝒙′𝑡𝜷 + 휀𝑡             ;    t = 1, 2, …., n                   (3) 

                       휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

Then, we have     𝐻0: 𝜌 = 0    vs.    𝐻𝐴: 𝜌 ≠ 0      (> 0     ;     < 0  )  

 Notice that, as usual, we can learn something about the behaviour of the errors in our 

regression model by looking at the residuals obtained when we estimate the model. 

 So, estimate (3) by OLS (ignoring any possibility of serial correlation), and get the 

residuals, {𝑒𝑡}. 
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 Then, fit the following “auxiliary regression”: 

                 𝑒𝑡 = 𝑟𝑒𝑡−1 + 𝑣𝑡       ;      t = 2, 3, …, n 

 The OLS estimator of the coefficient, “r”, is: 

 

�̂� = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

 

 We could think of using a “z-test” to test if 𝑟 = 0. This test will be valid, asymptotically: 

𝑧 =
(�̂� − 0)

𝑠. 𝑒. (�̂�)
  

𝑑
→ 𝑁[0 , 1] 

 

 Now, testing for serial independence, against the alternative hypothesis that the process is 

AR(1) is very interesting. 

 Anderson (1948) proved that there does not exist any UMP test for this problem! 

 So, historically, there were lots of attempts to construct tests that were “approximately” 

most powerful. 

 These days we generally use tests from the so-called “Lagrange Multiplier Test” 

family. Also called the family of “Score Tests”. 

 Tests of this type can be used for all sorts of testing problems – not just for testing for 

serial independence. 

 They are especially useful when it is relatively easy to estimate the model under the 

assumption that the null hypothesis is true. 

 Here, such estimation involves just OLS. 

 LM tests have only asymptotic validity. Asymptotically, the distribution of the test 

statistic is Chi-Square, with d.o.f. equal to the number of restrictions being tested, if the 

null hypothesis is true. 

 The pay-off is that the test can be applied under very general conditions. 

 We don’t need to have normally distributed errors in our regression model. 

 The regressors can be random; etc. 
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 The Breusch-Godfrey Test for serial independence of the errors can be implemented as 

follows: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′𝑡𝜷 + 휀𝑡             ;    t = 1, 2, …., n                   by 

OLS, and get the residuals  {𝑒𝑡}. 

2.   If the Alternative Hypothesis is that the errors follow either an AR(p) process, or 

an MA(p) process, then estimate the following auxiliary regression: 

               𝑒𝑡 = 𝒙′𝑡𝜸 + 𝛿1𝑒𝑡−1 + ⋯+𝛿𝑝𝑒𝑡−𝑝 + 𝑣𝑡          (4) 

 

3.   The test statistic is 𝐿𝑀 = 𝑛𝑅2, where 𝑅2 is the “uncentered” coefficient of 

determination from (4). 

 

4.   Reject 𝐻0 : 휀𝑡 𝑠𝑒𝑟𝑖𝑎𝑙𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡; if 𝐿𝑀 > 𝜒(𝑝)
2  critical value. 

 If we reject 𝐻0 , we’re left with incomplete information about the particular form of the 

autocorrelation. 

Estimation Allowing for Autocorrelation 

 Suppose we have a regression model with AR(1) errors:  

          𝑦𝑡 = 𝒙′𝑡𝜷 + 휀𝑡             ;    t = 1, 2, …., n                    

          휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

 So, the full covariance matrix for ε is: 

𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

 We need to find a matrix, P, such that Ω−1 = 𝑃′𝑃, and then we can apply GLS 

estimation. 

 In the AR(1) case, we can show that: 
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 𝑃 = 

[
 
 
 
 
 
 √1 − 𝜌2    0    0     0    ⋯     0

−𝜌              1      0     0    ⋯     0 
   0          − 𝜌       1     0   ⋯       0   

     ⋮               ⋮           ⋮      ⋮               ⋮       
⋮               ⋮           ⋮      ⋮               ⋮  
0                  ⋯                − 𝜌    1   

  ]
 
 
 
 
 
 

 

 GLS is simply OLS, using the data 𝒚∗ and 𝑋∗, where: 

𝑦∗ =

[
 
 
 
 𝑦1√1 − 𝜌2

𝑦2 − 𝜌𝑦1

⋮
⋮

𝑦𝑛 − 𝜌𝑦𝑛−1]
 
 
 
 

    ;      𝑥𝑗
∗ =

[
 
 
 
 𝑥1𝑗√1 − 𝜌2

𝑥2𝑗 − 𝜌𝑥1𝑗

⋮
⋮

𝑥𝑛𝑗 − 𝜌𝑥𝑛−1,𝑗]
 
 
 
 

     ;    j = 1, 2, …, k 

 What if 𝜌 is unknown, as is likely to be the case? 

 We can apply feasible GLS – this is essentially what Cochrane & Orcutt (1949) did, 

except that they “dropped” the first observation as they didn’t know the leading (1 , 1) 

element of the P matrix. 

 The steps are: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′
𝑡𝜷 + 휀𝑡 , by OLS and get the    residuals, {𝑒𝑡}. 

2.   Estimate  𝜌, using  

�̂� = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

                                                                                          

3.  Construct  𝒚∗ and 𝑋∗, using �̂� in place of 𝜌 . 

4.  Apply OLS using the transformed data. This is feasible GLS estimation. 

5.   Iterate Steps 1 through 4. 

6.   Continue until convergence is achieved. 

 

 Convergence is guaranteed in a finite number of steps, unless the model includes lagged 

values of the dependent variable. 

 The same approach can be used if the errors follow a (“simple”) AR(p) process:      휀𝑡 =

𝜌휀𝑡−𝑝 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]    

 Things are more complicated if the errors follow an MA(q) or ARMA(p , q) process
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Topic 9: Maximum Likelihood Estimation 

There are many other estimation methodologies besides OLS. For example: GMM, Bayesian, 

non-parametric, and maximum likelihood (ML). In some of these methodologies, the OLS 

estimator is just a special case. 

 ML proposed by R. A. Fisher, 1921-1925 

 MLE is a parametric method.  

 That is, we assume each sample data is generated from a known probability distribution 

function (p.d.f.), 𝑝(𝑦𝑖|𝜽). i.e. 𝑦𝑖 comes from a “family”.  

Consider: 

 Random data 𝒚 = {𝑦1, … , 𝑦𝑛} 

 Parameter vector 𝜽 = (𝜃1, … , 𝜃𝑘)′ 

Objective: estimate 𝜽. 

 

The probability of jointly observing the data is 

 𝑝(𝑦1, … , 𝑦𝑛|𝜽) “joint p.d.f.” 

 

We can view 𝑝(𝑦1, … , 𝑦𝑛|𝜽) in two different ways: 

i. As a function of {𝑦1, … , 𝑦𝑛}, given 𝜽. 

ii. As a function of  (𝜃1, … , 𝜃𝑘), given 𝒚. i.e., the data is given, the parameters vary. 

The latter is called the likelihood function. 

 Note: 𝐿(𝜽) = 𝐿(𝜽|𝑦1, … , 𝑦𝑛) = 𝑝(𝑦1, … , 𝑦𝑛|𝜽) 

Definition: The Maximum Likelihood Estimator (MLE) of  𝜽 (say, �̃�) is that value of 𝜽 such that 

𝐿(�̃�) > 𝐿(�̂�), for all other �̂�. 

Idea: “given the 𝑦𝑖’s, what is the most likely 𝜽 to have generated such a sample?” 

Note: 

i. �̃� need not be unique. 
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ii. �̃� should locate the global max. of 𝐿(𝜽). 

iii. If the sample data are independent then 𝐿(𝜽|𝒚) = 𝑝(𝒚|𝜽) = ∏ 𝑝(𝑦𝑖|𝜽)𝑛
𝑖=1  

iv. Any monotonic transformation of 𝐿(𝜽) leaves location of extremum unchanged 

(e.g. log 𝐿(𝜽)) 

 

Some Basic Concepts and Notation: 

i. “Gradient/Score Vector”: [
𝜕 log𝐿(𝜽)

𝜕𝜽
]          (𝑘 × 1) 

ii. “Hessian Matrix”: [
𝜕2 log 𝐿(𝜽)

𝜕𝜽𝜕𝜽′
]        (𝑘 × 𝑘) 

iii. “Likelihood Equations”: 
𝜕 log𝐿(𝜽)

𝜕𝜽
= 0      (𝑘 × 1) 

 

The optimization problem is: 

max
𝜽

∏𝐿(𝜽|𝑦𝑖)

𝑛

𝑖=1                      

.  

So, to obtain the MLE, �̃�, we solve the likelihood equation(s) and then check the second-order 

condition(s) to make sure we have maximized (not minimized) 𝐿(𝜽). If the Hessian matrix is at 

least n.s.d., then log 𝐿(𝜽) is concave, and this is sufficient for a maximum. 

So, MLE is accomplished by: 

1) Specifying the likelihood function.  

 This involves writing down an equation which states the joint likelihood (or joint 

probability) of observing the sample data, conditional on the unknown parameter 

values of the probability distribution function.  

 Independence of the y data is usually assumed (and will be for the purposes of this 

course).  

 Given independence, the likelihood function is obtained by multiplying together 

the probability of each yi occurring. 

2) Taking the natural log of the likelihood function. This usually simplifies the next step. 

The location of the maximum will not change. 
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3) Taking the first derivative of the log-likelihood function with respect to all parameters, 

setting each derivative equal to zero, and solving for the parameter values. The solution 

of the FOCs provides the formulas for the MLEs. 

4) Checking to make sure the estimator in (3) attains a maximum (not a minimum). This 

involves taking the second derivatives of the log-likelihood function with respect to all 

parameters, so as to construct the Hessian matrix. If the Hessian is n.s.d., then the MLE 

achieves a global max. 

5) Obtaining the variance of the MLEs for use in hypothesis testing. A variance-covariance 

matrix can be found by inverting the negative of the expected Hessian. 

 

Properties of MLE 

 MLE has very desirable asymptotic properties.  

 Namely, MLE is Best Asymptotically Normal.  

 That is, under mild assumptions, ML estimators are consistent, asymptotically efficient, 

and asymptotically Normally distributed.  

 These properties are obtained by examining the asymptotic distribution of the MLE 

(which we will not derive in class): 

√𝑛(�̃� − 𝜃0)
𝑑
→ 𝑁[0, 𝐼𝐴−1(𝜃)], 

where  

𝐼𝐴−1(𝜃) = lim
𝑛→∞

(
1

𝑛
[−𝐸[𝐻(𝜃)]]

−1
) 

 𝐼𝐴−1(𝜃) is the asymptotic information matrix, and 𝐻(𝜃) is the Hessian.  

 The statement of the asymptotic distribution shows that the MLEs are consistent, 

asymptotically normal, and asymptotically efficient.  

 The efficiency result relies on the Cramer-Rao lower bound. The Cramer-Rao lower 

bound is a theoretical minimum variance that any estimator can obtain. The MLE attains 

this minimum, that is, 𝐼𝐴−1(𝜃) is equal to the asymptotic Cramer-Rao lower bound. 
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The asymptotic distribution also allows us to see the variance of the MLEs in finite samples. The 

variance-covariance of �̃� for finite samples can be solved from the asymptotic variance: 

𝑣𝑎𝑟[√𝑛(�̃�)] = 𝑛 × 𝑣𝑎𝑟(�̃�) =
1

𝑛
[−𝐸[𝐻(𝜃)]]

−1
, so 

𝑣𝑎𝑟(�̃�) = [−𝐸[𝐻(𝜃)]]
−1

. 

The matrix −𝐸[𝐻] is termed the “Information Matrix” and is denoted by 𝐼(𝜃). 

A very useful property of MLEs is their “invariance.” That is, the estimator for 𝑔(𝜃) is 𝑔(�̃�). 

Hence, an estimator for the variance-covariance of �̃� is: 

𝑣𝑎𝑟(�̃�)̃ = [−𝐸[𝐻(�̃�)]]
−1

. 

Note that if misspecification occurs (if we have selected the wrong probability density function 

to begin with), we are not assured of any of the asymptotic properties. 

 

Finite sample properties of MLEs 

MLEs can be biased in finite samples (and typically are). We can evaluate bias much like we 

have done in previous parts of the course; by taking 𝐸(�̃�). This knowledge can be used to correct 

for any bias (as in the case of �̃�2). However, in most cases, there is no closed-form solution for 

the MLE itself, and numerical methods must be used to solve for the estimate. When the 

estimator does not have a closed form solution, we cannot take 𝐸(�̃�), and we will not be able to 

“see” whether or not the estimator is biased. In this case, approximations or Monte Carlo 

experiments may be used to evaluate bias. 

 

 


