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Abstract. These lecture notes introduce Maximum Likelihood Estima-
tion (MLE) of a Poisson regression model.

1 Motivating the Poisson Regression Model

There are many instances in Econometrics where the variable that we want to
explain is a count variable, i.e. y = 0, 1, 2, .... Examples of some cases are:

· calls at a call-centre
· number of customers
· doctor visits
· bank failures
· insurance claims
· patents

1.1 Why not use OLS?

OLS will not work very well here. The dependent variable y is not continuous,
and y ≥ 0. OLS ignores this information (so it will be inefficient). In addition,
OLS will not be able to provide very useful predictions (e.g. the probability of a
certain count occuring).

Instead, a count data model should be used. The Poisson model is a possibil-
ity, however, it rarely describes data well in real-world applications. The Poisson
model is likely so prevalent due to its relationship to more complicated count
data models, rather than for its practical usefulness.

2 The Probability Mass Function (PMF) for a Poisson
Distributed Random Variable

If y follows a Poisson distribution, then:

P (y = yi | λ) =
λyi

eλyi!
; y = 0, 1, 2, ... ; λ > 0. (1)

The mean and variance of this distribution is λ (this equi-dispersion property
proves too restrictive for most applications). Provided an estimate for λ, this
PMF may be used to infer probabilities of events (e.g. P (y ≥ 6)).
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2.1 Maximum Likelihood Estimation for the Poisson Distribution

Assuming independence of the yi’s, the joint log-likelihood is:

l(λ | yi) =

n∑

i=1

(yi log λ− λ− log yi!) (2)

Or:

l(λ | yi) =

n∑

i=1

yi log λ− nλ−

n∑

i=1

log yi! (3)

Taking the derivative of (3) with respect to λ we get:

∂l

∂λ
=

∑n

i=1
yi

λ
− n (4)

Setting (4) equal to zero for the first order condition, and solving for λ, yields:

λ̃ = ȳ (5)

In order to verify that (5) is the MLE for λ we take the second derivative of
(3) with respect to λ:

∂2l

∂λ2
= −

∑n

i=1
yi

λ2
(6)

Since (6) is negative, the log-likelihood is concave and (5) solves for the global
maximum. Note that (6) is the Hessian matrix, H, however, since the Poisson
distribution has only one parameter (λ) the Hessian is scalar.

2.2 The Variance of λ̃

The variance of an MLE may be found by taking the inverse of the negative of
the expected Hessian matrix (the matrix of second order derivatives and cross
derivatives of the log-likelihood). In the present context:

var(λ̃) = [−E(H)]−1 =
λ2

∑
E(yi)

=
λ2

nλ
=

λ

n
(7)

Using the invariance property of MLEs, an MLE for the variance of λ̃ is
found by substituting λ̃ into (7):

˜
var(λ̃) =

λ̃

n
(8)
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2.3 Exercise - Flying-bomb Hits on London During WWII

The following data is on number of bomb hits in south London during WWII
(Feller, 1957). The city was divided into 576 areas, and the number of areas hit
exactly y times was counted. What does the assumption of independence of the
data imply here?

Table 1. Observed and Expected Counts of Bomb Hits

Hits 0 1 2 3 4 5+

Observed 229 211 93 35 7 1
Expected 228 211 98 30 7 1

What is λ̃? What is
˜

var(λ̃)? How are the “Expected” values in the table
calculated?

2.4 Specification Testing for the Poisson Distribution

Goodness-of-fit tests for the Poisson distribution can be achieved by comparing
the observed and expected counts. For example, consider the following statistic
based on the Pearson statistic:

P =

n∑

i=1

(
yi − λ̃i

)2

λ̃i

(9)

If the Poisson model is specified correctly, then E[P ] = n (or n − 1 for
a degrees-of-freedom correction). There are several other goodness-of-fit test
statistics available based on this idea, and most follow a chi-square distribution.
Rejection of the null hypothesis does not indicate the appropriate distribution,
only that the Poisson model is misspecified (indicating the loss of some or all of
MLs asymptotic properties).

The main limitation of the Poisson distribution in applications is it’s property
of equidispersion. Most count data are overdispersed, i.e. the variance exceeds
the mean. Hence, there are several tests based on this restriction.

In many cases, there are other candidate distributions that the data may
follow (e.g. negative binomial or zero-inflated Poisson), that nest the Poisson
distribution. Wald, likelihood ratio, and score testing procedures may be used.

3 The Poisson Regression Model

One reason for overdispersion is unobserved heterogeneity. Heterogeneity can
become observed by including explanatory variables (in applications this seldom
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accounts for overdispersion). A more important reason for including explanatory
variables is to estimate how they are related to y.

In addition to the distribution assumption (1), and independence between
observations, we will now assume:

E[yi | xi] = λi = exp (x′

iβ) (10)

That is, the mean of y is conditional on x and can vary by individual or
observation, etc. The specific form of the link function is somewhat arbitrary,
but ensures that λi > 0. For example, consider the number of doctor visits.
An individual’s doctor visits may depend on age, underlying health conditions,
genetics, and insurance status. The economist may be interested in moral hazard
or adverse selection.

By substituting (10) into (1), multiplying across all observations (by inde-
pendence of the data), and taking logs, we have the following joint log-likelihood
function:

l(β | yi, Xi) =
n∑

i=1

yiX
′

iβ − expX ′

iβ − log yi! (11)

The derivative of (11) with respect to the vector, β, is:

∂l

∂β
=

n∑

i=1

(yi − expX ′

iβ)Xi (12)

Setting (12) equal to zero does not admit a closed form solution for β. Hence,
numerical methods, such as Newton-Raphson, must be used to obtaining the ML
estimate. Note that asymptotic standard errors for the βs can again be estimated
by inverting the expected Hessian matrix.

3.1 Interpreting the βs

Due to the exponent in the link function, the βs do not have as simple of an
interpretation as they do in OLS. For example, a one unit change in the jth

regressor leads to a proportionate change in E[yi | xi] of βj . Note that while
standard errors for the βs can be estimated by inverting the Hessian, estimating
standard errors of the semi-elasticities would require something called the delta

method.

3.2 Illustrative Application - Bad Health

The data is from the German Health Survey, amended in Hilbe and Greene
(2008). The variables are numvisits - number of visits to doctor during 1998,
badh - equal to 1 if patient claims to be in bad health, age - age of patient. Enter
the following code into R:
library(COUNT)
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data(badhealth))

glmbadp <- glm(numvisit badh + age, family=poisson, data=badhealth)

summary(glmbadp)
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