Topic 1 – Continued.....

Finite-Sample Properties of the LS Estimator

$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\varepsilon}$$
; $\mathbf{\varepsilon} \sim N[0, \sigma^2 I_n]$
 $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = f(\mathbf{y})$

 ε is random \longrightarrow y is random \longrightarrow b is random

- **b** is an *estimator* of β . It is a function of the *random* sample data.
- **b** is a "statistic".
- *b* has a probability distribution called its *Sampling Distribution*.
- Interpretation of sampling distribution –

Repeatedly draw all possible samples of size *n*.

Calculate values of *b* each time.

Construct relative frequency distribution for the *b* values and probability of occurrence.

It is a *hypothetical* construct. Why?

• Sampling distribution offers *one* basis for answering the question:

"How good is *b* as an estimator of β ?"

Note:

Quality of estimator is being assessed in terms of performance in *repeated samples*. Tells us nothing about quality of estimator for *one particular sample*.

- Let's explore some of the properties of the LS estimator, **b**, and build up its sampling distribution.
- Introduce some general results, and apply them to our problem.

Definition: An estimator, $\hat{\theta}$ is an *unbiased* estimator of the parameter vector, θ , if $E[\hat{\theta}] = \theta$.

That is, $E[\widehat{\theta}(\mathbf{y})] = \mathbf{\theta}$.

That is, $\int \hat{\theta}(\mathbf{y}) p(\mathbf{y} \mid \boldsymbol{\theta}) d\mathbf{y} = \boldsymbol{\theta}$.

The quantity, $B(\theta, y) = E[\widehat{\theta}(y) - \theta]$, is called the "Bias" of $\widehat{\theta}$.

Example: $\{y_1, y_2, \dots, y_n\}$ is a random sample from population with a finite mean, μ , and a finite variance, σ^2 .

Consider the *statistic* $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Then, $E[\bar{y}] = E\left[\frac{1}{n}\sum_{i=1}^{n} y_i\right] = \frac{1}{n}\sum_{i=1}^{n} E(y_i)$ $= \frac{1}{n}\sum_{i=1}^{n} \mu = \left(\frac{1}{n}n\mu\right) = \mu .$

So,
$$\overline{y}$$
 is an *unbiased estimator* of the parameter, μ .

- Here, there are lots of possible unbiased estimators of μ .
- So, need to consider additional characteristics of estimators to help choose.

Return to our LS problem -

 $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y}$

- Recall either assume that *X* is *non-random*, or condition on *X*.
- We'll assume *X* is non-random get same result if we condition on *X*.

Then: $E(\mathbf{b}) = E[(X'X)^{-1}X'\mathbf{y}] = (X'X)^{-1}X'E(\mathbf{y})$

So,

$$E(\boldsymbol{b}) = (X'X)^{-1}X'E[X\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = (X'X)^{-1}X'[X\boldsymbol{\beta} + E(\boldsymbol{\varepsilon})]$$
$$= (X'X)^{-1}X'[X\boldsymbol{\beta} + \mathbf{0}] = (X'X)^{-1}X'X\boldsymbol{\beta}$$
$$= \boldsymbol{\beta}.$$

The LS estimator of $\boldsymbol{\beta}$ is Unbiased

Definition: Any estimator that is a *linear function* of the random sample data is called a *Linear Estimator*.

Example: $\{y_1, y_2, \dots, y_n\}$ is a random sample from population with a finite mean, μ , and a finite variance, σ^2 .

Consider the *statistic* $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} [y_1 + y_2 + \dots + y_n]$.

This statistic is a *linear estimator* of μ .

(Note that the "weights" are non-random.)

Return to our LS problem -

 $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = A\boldsymbol{y}$

$$(k\times 1) \qquad (k\times n)(n\times 1)$$

Note that, under our assumptions, *A* is a *non-random* matrix.

So,

$$\begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{k1} & \cdots & a_{kn} \end{bmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \ .$$

For example, $b_1 = [a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n]$; *etc.*

The LS estimator, *b*, is a linear (& unbiased) estimator of β

Now let's consider the dispersion (variability) of \boldsymbol{b} , as an estimator of $\boldsymbol{\beta}$.

Definition: Suppose we have an $(n \times 1)$ random vector, x. Then the *Covariance Matrix* of x is defined as the $(n \times n)$ matrix:

$$V(\mathbf{x}) = E[(\mathbf{x} - E(\mathbf{x}))(\mathbf{x} - E(\mathbf{x}))'].$$

- Diagonal elements of $V(\mathbf{x})$ are var. $(x_1), \ldots, var. (x_n)$.
- Off-diagonal elements are *covar*. (x_i, x_j) ; i, j = 1, ..., n; $i \neq j$.

Return to our LS problem -

We have a $(k \times 1)$ random vector, *b*, and we know that $E(\mathbf{b}) = \boldsymbol{\beta}$.

$$V(\boldsymbol{b}) = E[(\boldsymbol{b} - E(\boldsymbol{b}))(\boldsymbol{b} - E(\boldsymbol{b}))']$$

Now,

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$
$$= (X'X)^{-1}(X'X)\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}$$
$$= I\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}.$$

So,

$$(\boldsymbol{b} - \boldsymbol{\beta}) = (X'X)^{-1}X'\boldsymbol{\varepsilon}.$$
 [*]

Using the result, [*], in *V*(*b*), we have:

$$V(\boldsymbol{b}) = E\{[(X'X)^{-1}X'\boldsymbol{\varepsilon}][(X'X)^{-1}X'\boldsymbol{\varepsilon}]'\}$$
$$= (X'X)^{-1}X'E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']X(X'X)^{-1}.$$

We showed, earlier, that because $E(\varepsilon) = 0$, $V(\varepsilon) = E(\varepsilon \varepsilon') = \sigma^2 I_n$.

(What other assumptions did we use to get this result?)

So, we have:

$$V(\boldsymbol{b}) = (X'X)^{-1}X'E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}']X(X'X)^{-1} = (X'X)^{-1}X'\sigma^2 IX(X'X)^{-1} = \sigma^2 (X'X)^{-1}(X'X)(X'X)^{-1}$$
$$= \sigma^2 (X'X)^{-1}.$$
$$V(\boldsymbol{b}) = \sigma^2 (X'X)^{-1}$$

 $(k \times k)$

Interpret diagonal and off-diagonal elements of this matrix.

Finally, because the error term, ε is assumed to be Normally distributed,

- 1. $y = X\beta + \varepsilon$: this implies that y is also Normally distributed. (Why?)
- 2. $\mathbf{b} = (X'X)^{-1}X'\mathbf{y} = A\mathbf{y}$: this implies that \mathbf{b} is also Normally distributed.

So, we now have the full **Sampling Distribution** of the LS estimator, *b* :

$$\boldsymbol{b} \sim N[\boldsymbol{\beta}, \sigma^2(X'X)^{-1}]$$

Note:

- This result depends on our various, *rigid*, assumptions about the various components of the regression model.
- The Normal distribution here is a "*multivariate* Normal" distribution. (*See handout on "Spherical Distributions*".)
- As with estimation of population mean, μ , in previous example, there are lots of other *unbiased* estimators of β in the model = $X\beta + \varepsilon$.
- How might we choose between these possibilities? Is *linearity* desirable?

- We need to consider other *desirable* properties that these unbiased estimators may have.
- One option is to take account of estimators' precisions.

Definition: Suppose we have two *unbiased* estimators, $\widehat{\theta_1}$ and $\widehat{\theta_2}$, of the (scalar) parameter, θ . Then we say that $\widehat{\theta_1}$ is **at least as efficient** as $\widehat{\theta_2}$ if $var.(\widehat{\theta_1}) \leq var.(\widehat{\theta_2})$.

Note:

- 1. The variance of an estimator is just the variance of its sampling distribution.
- 2. "Efficiency" is a *relative* concept.
- 3. What if there are 3 or more unbiased estimators being compared?
- What if one or more of the estimators being compared is *biased*?
- In this case we can take account of both variance, and any bias, at the same time by using "*mean squared error*" (MSE) of the estimators.

Definition: Suppose that $\hat{\theta}$ is an estimator of the (*scalar*) parameter, θ . Then the MSE of $\hat{\theta}$ is defined as:

$$MSE(\widehat{\theta}) = E\left[\left(\widehat{\theta} - \theta\right)^2\right].$$

Note that:

 $MSE(\hat{\theta}) = var.(\hat{\theta}) + [Bias(\hat{\theta})]^2$

To prove this, write:

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = E\left\{\left[\left(\left(\hat{\theta}\right) - E\left(\hat{\theta}\right)\right) + \left(E\left(\hat{\theta}\right) - \theta\right)\right]^2\right\},\$$

expand out, and note that

$$E[E(\hat{\theta})] = E(\hat{\theta});$$

and

$$E[\hat{\theta} - E(\hat{\theta})] = 0.$$

Definition: Suppose we have two (possibly) *biased* estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, of the (scalar) parameter, θ . Then we say $\hat{\theta}_1$ is **at least as efficient** as $\hat{\theta}_2$ if $MSE(\hat{\theta}_1) \leq MSE(\hat{\theta}_2)$.

If we extend all of this to the case where we have a vector of parameters, , then we have the following definitions:

Definition: Suppose we have two *unbiased* estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, of the parameter vector, $\boldsymbol{\theta}$. Then we say that $\hat{\theta}_1$ is **at least as efficient** as $\hat{\theta}_2$ if $\Delta = V(\hat{\theta}_2) - V(\hat{\theta}_1)$ is *at least positive semi-definite*.

Definition: Suppose we have two (possibly) *biased* estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$, of the parameter vector, $\boldsymbol{\theta}$. Then we say that $\hat{\theta}_1$ is **at least as efficient** as $\hat{\theta}_2$ if $\Delta = MMSE(\hat{\theta}_2) - MMSE(\hat{\theta}_1)$ is *at least positive semi-definite*.

Note:
$$MMSE(\hat{\theta}) = E\left[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'\right] = V[\hat{\theta}] + Bias(\hat{\theta})Bias(\hat{\theta})'$$
.

Taking account of its *linearity*, *unbiasedness*, and its *precision*, in what sense is the LS estimator, \boldsymbol{b} , of β *optimal*?

Theorem (Gauss-Markhov):

In the "standard" linear regression model, $y = X\beta + \varepsilon$, the LS estimator, *b*, of β is **Best Linear Unbiased** (BLU). That is, it is **Efficient** in the class of all linear and unbiased estimators of β .

- 1. Is this an *interesting* result?
- 2. What *assumptions* about the "standard" model are we going to exploit?

Proof

Now,

so that

Let b_0 be any other *linear* estimator of β :

 $\boldsymbol{b_0} = \boldsymbol{C}\boldsymbol{y} \qquad ; \qquad \qquad$ for *some* non-random C. $(k \times 1)$ $(k \times n)(n \times 1)$ $V(\boldsymbol{b_0}) = CV(\boldsymbol{y})C' = C(\sigma^2 I_n)C' = \sigma^2 CC'$ $(k \times k)$ $D = C - (X'X)^{-1}X'$ Define: $D\mathbf{y} = C\mathbf{y} - (X'X)^{-1}X'\mathbf{y} = \mathbf{b}_0 - \mathbf{b} \quad .$

Now restrict b_0 to be *unbiased*, so that $E(b_0) = E(Cy) = CX\beta = \beta$.

This requires that CX = I, which in turn implies that

$$DX = [C - (X'X)^{-1}X']X = CX - I = 0 \qquad (and D'X' = 0)$$

(What assumptions have we used so far?)

Now, focus on covariance matrix of b_0 :

$$V(\boldsymbol{b_0}) = \sigma^2 [D + (X'X)^{-1}X'] [D + (X'X)^{-1}X']'$$

= $\sigma^2 [DD' + (X'X)^{-1}X'X(X'X)^{-1}]$; $DX = 0$
= $\sigma^2 DD' + \sigma^2 (X'X)^{-1}$
= $\sigma^2 DD' + V(\boldsymbol{b})$,
 $[V(\boldsymbol{b_0}) - V(\boldsymbol{b})] = \sigma^2 DD'$; $\sigma^2 > 0$

or,

Now we just have to "sign" this (matrix) difference:

$$\boldsymbol{\eta}'(DD')\boldsymbol{\eta} = (D'\boldsymbol{\eta})'(D'\boldsymbol{\eta}) = v'v = \sum_{i=1}^n v_i^2 \ge 0.$$

So, $\Delta = [V(b_0) - V(b)]$ is a p.s.d. matrix, implying that b_0 is relatively less efficient than b.

Result:

The LS estimator is the Best Linear Unbiased estimator of β .

- What assumptions did we use, and where?
- Were there any standard assumptions that we *didn't* use?
- What does this suggest?

Estimating σ^2

- We now know a lot about estimating $\boldsymbol{\beta}$.
- There's another parameter in the regression model σ^2 the variance of each ε_i .
- Note that $\sigma^2 = var.(\varepsilon_i) = E[(\varepsilon_i E(\varepsilon_i))^2] = E(\varepsilon_i^2)$.
- The *sample* counterpart to this *population* parameter is the *sample* average of the "residuals": $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 = \frac{1}{n} e' e$.
- However, there is a *distortion* in this estimator of σ^2 .
- Although mean of e_i's is zero (if intercept in model), not all of e_i's are independent of each other only (n k) of them are.
- Why does this distort our potential estimator, $\hat{\sigma}^2$?

Note that: $e_i = (y_i - \hat{y}_i) = (y_i - x'_i b)$

$$= (x'_i \boldsymbol{\beta} + \varepsilon_i) - x'_i \boldsymbol{b}$$
$$= \varepsilon_i + x_i' (\boldsymbol{\beta} - \boldsymbol{b})$$

Let's see what properties $\hat{\sigma}^2$ has as an estimator of σ^2 :

$$\boldsymbol{e} = (\boldsymbol{y} - \boldsymbol{\hat{y}}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}) = \boldsymbol{y} - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} = \boldsymbol{M}\boldsymbol{y},$$

where

$$M = I_n - X(X'X)^{-1}X'$$
; *idempotent*, and $MX = 0$

So,

$$= M \mathbf{y} = M(X \boldsymbol{\beta} + \boldsymbol{\varepsilon}) = M \boldsymbol{\varepsilon} \ ,$$

and $e'e = (M\varepsilon)'(M\varepsilon) = \varepsilon'M\varepsilon$; scalar

From this, we see that:

е

$$\begin{split} E(\boldsymbol{e}'\boldsymbol{e}) &= E[\boldsymbol{\varepsilon}' M \boldsymbol{\varepsilon}] = E[tr.(\boldsymbol{\varepsilon}' M \boldsymbol{\varepsilon})] = E[tr.(M \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}')] \\ &= tr.[M E(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}')] = tr.[M \sigma^2 I_n] = \sigma^2 tr.(M) \\ &= \sigma^2 (n-k) \end{split}$$

So:

$$E(\hat{\sigma}^2) = E(\frac{1}{n}\boldsymbol{e}'\boldsymbol{e}) = \frac{1}{n}(n-k)\sigma^2 < \sigma^2 \quad ; \quad \text{BIASED}$$

Easy to convert this to an Unbiased estimator -

$$s^2 = \frac{1}{(n-k)} \boldsymbol{e}' \boldsymbol{e}$$

- "(n k)" is the "degrees of freedom" number of independent sources of information in the "n" residuals (e_i's).
- We can use "s" as an estimator of , but it is a *biased estimator*.
- Call "s" the "standard error of the regression", or the "standard error of estimate".
- s^2 is a *statistic* has its own sampling distribution, *etc*. <u>More on this to come</u>.
- Let's see one immediate *application* of s^2 and s.
- Recall sampling distribution for LS estimator, *b*:

$$\boldsymbol{b} \sim N[\boldsymbol{\beta} , \sigma^2(X'X)^{-1}]$$

• So, var. $(b_i) = \sigma^2 [(X'X)^{-1}]_{ii}$; σ^2 is unobservable.

- If we want to report variability associated with b_i as an estimator of β_i , we need to use <u>estimator</u> of σ^2 .
- $est. var. (b_i) = s^2 [(X'X)^{-1}]_{ii}$.
- $\sqrt{est.var.(b_i)} = \hat{s.d.}(b_i) = s\{[(X'X)^{-1}]_{ii}\}^{1/2}$.
- We call this the "*standard error*" of b_i .
- This quantity will be very important when it comes to constructing *interval estimates* of our regression coefficients; and when we construct *tests of hypotheses* about these coefficients.

Confidence Intervals & Hypothesis Testing

- So far, we've concentrated on "*point*" estimation.
- Need to move on to do this we'll need the full sampling distributions of <u>**both**</u> b and s^2 .
- We will make use of the assumption of *Normally distributed* errors.
- Recall that:

$$\boldsymbol{b} \sim N[\boldsymbol{\beta} , \sigma^2 (X'X)^{-1}]$$

 $b_i \sim N[\beta_i, \sigma^2((X'X)^{-1})_{ii}]$; why still *Normal*?

• So, we can *standardize*:

$$z_i = (b_i - \beta_i) / \sqrt{\sigma^2 [(X'X)^{-1}]_{ii}}$$

• But σ^2 is *unknown*, so we can't use z_i directly to draw inferences about b_i .

Need some preliminary results in order to proceed from here -

Definition: Let $z \sim N[0, 1]$. Then z^2 has a "*Chi-Square*" *distribution* with one "degree of freedom".

Definition: Let $z_2, z_2, z_3, \ldots, z_m$ be *independent* N[0, 1] variates. Then the quantity $\sum_{i=1}^{m} (z_i^2)$ has a Chi-Square distribution with "*m*" d.o.f.

Theorem: Let $\mathbf{x} \sim N[\mathbf{0}, V]$, and let *A* be a fixed matrix. Then the *quadratic form*, ' $A\mathbf{x}$, follows a Chi-Square distribution with r(=rank(A)) degrees of freedom, iff AV is an *idempotent matrix*.

Definition: Let $z \sim N[0, 1]$, and let $x \sim \chi^2_{(v)}$, where z and x are *independent*. Then the statistic, $t = z/\sqrt{x/v}$ follows *Student's t distribution*, with "v" degrees of freedom.

Now let's consider the sampling distribution of s^2 :

We have

$$s^2 = \frac{1}{(n-k)} \boldsymbol{e}' \boldsymbol{e} \; .$$

So,

$$(n-k)s^2 = (e'e) = (\varepsilon'M\varepsilon)$$

Define the random variable

$$C = \frac{(n-k)s^2}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' M\left(\frac{\varepsilon}{\sigma}\right) ,$$

where $\boldsymbol{\varepsilon} \sim N[\boldsymbol{0}, \sigma^2 I_n]$; and so $\left(\frac{\varepsilon}{\sigma}\right) \sim N[\boldsymbol{0}, I_n]$.

Using the Theorem from last slide, we get the following result for C:

$$C = \left(\frac{\varepsilon}{\sigma}\right)' M\left(\frac{\varepsilon}{\sigma}\right) \sim \chi^2_{(n-k)}$$

because AV = MI = M, is *idempotent*, and r = d. o. f. = rank(A) = rank(M) = tr. (M) = (n - k). (Why?)

So, we have the result:

$$\frac{(n-k)s^2}{\sigma^2} \sim \chi^2_{(n-k)}$$

Next, we need to show that b and s^2 are *statistically independent*.

Theorem: Let *x* be a *normally distributed* random vector, and *L* and *A* are *non-random* matrices. Then, the "Linear Form", Lx, and the "Quadratic Form", Ax, are independent if LA = 0.

How does this result help us?

- We have $C = \frac{(n-k)s^2}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' M\left(\frac{\varepsilon}{\sigma}\right).$
- Also, $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{\varepsilon})$ $= \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}$.
- So, $\left[\frac{b-\beta}{\sigma}\right] = (X'X)^{-1}X'\left(\frac{\varepsilon}{\sigma}\right)$.
- Let $L = (X'X)^{-1}X'$; A = M; $\mathbf{x} = \left(\frac{\varepsilon}{\sigma}\right)$
- So, $LA = (X'X)^{-1}X'M = 0$
- This implies that $C = \frac{(n-k)s^2}{\sigma^2}$ and $\left[\frac{b-\beta}{\sigma}\right]$ are *independent*, and so **b** and s^2 are also statistically independent.
- C is $\chi^2_{(n-k)}$, and $\left[\frac{b-\beta}{\sigma}\right] \sim N[\mathbf{0}, (X'X)^{-1}]$, so we immediately get:

Theorem: $t_i = (b_i - \beta_i) / s. e. (b_i)$

has a Student's *t* distribution with (n - k) d.o.f.

Proof:
$$\left[\frac{b-\beta}{\sigma}\right] \sim N[\mathbf{0}, (X'X)^{-1}], \quad \left[\frac{b_i-\beta_i}{\sigma}\right] \sim N[\mathbf{0}, ((X'X)^{-1})_{ii}]$$

 $\left|\frac{\sigma_l \rho_l}{\sigma \sqrt{((X'X)^{-1})_{ii}}}\right| \sim N[0, 1]$ Also, $C = \frac{(n-k)s^2}{\sigma^2} \sim \chi^2_{(n-k)}$; and we have *independence*.

So,
$$t_v = N[0, 1] / \sqrt{\chi^2_{(v)} / v}$$

$$= \left[\frac{b_i - \beta_i}{\sigma \sqrt{((X'X)^{-1})_{ii}}}\right] / \left[\frac{(n-k)s^2}{\sigma^2} / (n-k)\right]^{1/2}$$

$$= \left[\frac{b_i - \beta_i}{s\sqrt{((X'X)^{-1})_{ii}}}\right] = \left[\frac{b_i - \beta_i}{s.e.(b_i)}\right].$$

In this case, v = (n - k), and so:

$$\left[\frac{b_i - \beta_i}{s. e. (b_i)}\right] \sim t_{(n-k)}$$

We can use this to construct *confidence intervals* and *test hypotheses* about β_i .

Note: This last result used all of our assumptions about the linear regression model – including the assumption of *Normality for the errors*.

Example 1:

$$\hat{y} = 1.4 + 0.2x_2 + 0.6x_3$$
(0.7) (0.05) (1.4)
$$H_0: \beta_2 = 0 \quad vs. \quad H_A: \beta_2 > 0$$

$$t = \left[\frac{b_2 - \beta_2}{s.e.(b_2)}\right] = \left[\frac{0.2 - 0}{0.05}\right] = 4 \quad ; \text{ suppose } n = 20$$

$$t_c(5\%) = 1.74 \quad ; \quad t_c(1\%) = 2.567 \quad ; \text{ d.o.f.} = 17$$

 $t > t_c \Rightarrow Reject H_0$.

Degrees of Freedom	90th Percentile	95th Percentile	97.5th Percentile	99th Percentile	99.5th Percentile
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
:	:	:	:	:	:
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898

Example 2:

$$\hat{y} = 1.4 + 0.2x_2 + 0.6x_3$$
(0.7) (0.05) (1.4)
$$H_0: \beta_1 = 1.5 \quad vs. \quad H_A: \beta_1 \neq 1.5$$

$$t = \left[\frac{b_1 - \beta_1}{s.e.(b_1)}\right] = \left[\frac{1.4 - 1.5}{0.7}\right] = -0.1429 \quad ; \text{d.o.f.} = 17$$

$$t_c(5\%) = \pm 2.11$$

$$|t| < t_c \quad \Rightarrow \text{ Do Not Reject } H_0$$

(Against H_A , at the 5% significance level.)

Example 3:

$$\hat{y} = 1.4 + 0.2x_2 + 0.6x_3$$
(0.7) (0.05) (1.4)
$$H_0: \beta_1 = 1.5 \quad vs. \quad H_A: \beta_1 < 1.5$$

$$t = \left[\frac{b_1 - \beta_1}{s.e.(b_1)}\right] = \left[\frac{1.4 - 1.5}{0.7}\right] = -0.1429 \quad ; \text{d.o.f.} = 17$$

$$p - value = Pr. [t < -0.1429 | H_0 \text{ is True}]$$

in R: pt(-0.1429,17)

p = 0.444

What do you conclude?

Some Properties of Tests:

Null Hypothesis (H_0) Al

Alternative Hypothesis (H_A)

Classical hypothesis testing -

- Assume that H₀ is *TRUE*
- Compute value of test statistic using random sample of data
- Determine *distribution* of the test statistic (*when* H₀ *is true*)
- Check of observed value of test statistic is likely to occur, *if* H₀ *is true*
- If this event is sufficiently *unlikely*, then **REJECT** H_0 (in favour of H_A)

Note:

- 1. Can never **accept** H_0 . Why not?
- 2. What constitutes "*unlikely*" subjective?
- 3. Two types of errors we might incur with this process

Type I Error: Reject H₀ when in fact it is **True**

Type II Error: Do Not Reject H_0 when in fact it is **False**

- Pr.[I] = α = Significance level of test = "size" of test
- Pr.[II] = β ; say
- Value of β will depend on <u>how</u> H₀ is **False**. Usually, many ways.
- In classical testing, decide in advance on max. acceptable value of *α* and then try and design test so as to *minimize β*.
- As β can take different values, may be difficult to design test optimally.
- Why not minimize both? A trade-off for fixed value of *n*.
- Consider some desirable properties for a test.

Definition:

The "Power" of a test is Pr.[Reject H₀ when it is False].

So, Power = $1 - Pr.[Do Not Reject H_0 | H_0 is False] = 1 - \beta.$

- As β typically changes, depending on the *way* that H₀ is false, we usually have a Power Curve.
- For a fixed value of α , this curve plots Power against parameter value(s).
- We want our tests to have *high power*.
- We want the power of our tests to *increase* as H₀ becomes *increasingly false*.

Property 1

Consider a fixed sample size, *n*, and a fixed significance level, α .

Then, a test is "<u>Uniformly</u> Most Powerful" if its power exceeds (or is no less than) that of *any other test*, for <u>all possible ways</u> that H_0 could be False.

Property 2

Consider a fixed significance level, α .

Then, a test is "Consistent" if its power $\rightarrow 1$, as $n \rightarrow \infty$, for <u>all possible ways</u> that H₀ is false.

Property 3

Consider a fixed sample size, *n*, and a fixed significance level, α .

Then, a test is said to be "Unbiased" its power never falls below the significance level.

Property 4

Consider a fixed sample size, *n*, and a fixed significance level, α .

Then, a test is said to be "Locally Most Powerful" if the *slope* of its power curve is greater than the slope of the power curves of all other size $-\alpha$ tests, in a neighbourhood of H₀.

Note:

- For many testing problems, no UMP test exists. This is why LMP tests are important.
- Why do we use our "t-test" in the regression model
 - 1. It is UMP, against 1 –sided alternatives.
 - 2. It is Unbiased.
 - 3. It is Consistent.
 - 4. It is LMP, against both 1-sided and 2-sided alternatives.

Confidence Intervals

We can also use our t-statistic to construct a confidence interval for β_i .

$$Pr.\left[-t_c \le t \le t_c\right] = (1 - \alpha)$$

 $\Rightarrow \qquad Pr.\left[-t_c \le \left[\frac{b_i - \beta_i}{s.e.(b_i)}\right] \le t_c\right] = (1 - \alpha)$

$$\Rightarrow \qquad Pr.\left[-t_c \, s. \, e. \, (b_i) \le (b_i - \beta_i) \le t_c \, s. \, e. \, (b_i)\right] = (1 - \alpha)$$

$$\Rightarrow \qquad Pr. \left[-b_i - t_c \, s. \, e. \, (b_i) \le (-\beta_i) \le -b_i + t_c \, s. \, e. \, (b_i)\right]$$

$$= (1 - \alpha)$$

$$\Rightarrow \qquad Pr.\left[b_i + t_c \ s. \ e. \ (b_i) \ge \beta_i \ge b_i - t_c \ s. \ e. \ (b_i)\right] = (1 - \alpha)$$

$$\Rightarrow \qquad Pr.\left[b_i - t_c \ s. \ e. \ (b_i) \le \beta_i \le b_i + t_c \ s. \ e. \ (b_i)\right] = (1 - \alpha)$$

Interpretation -

The interval, $[b_i - t_c s. e. (b_i)]$, $b_i + t_c s. e. (b_i)$ is random.

The parameter, β_i , is *fixed* (but unknown).

If we were to take a sample of *n* observations, and construct such an interval, and then repeat this exercise many, many, times, then $100(1 - \alpha)\%$ of such intervals would cover the true value of β_i .

If we just construct an interval, for our *given* sample of data, we'll never know if *this particular* interval covers β_i , or not.

Example 1

$$\hat{y} = 0.3 - 1.4x_2 + 0.7x_3$$

(0.1) (1.1) (0.2)

Construct a 95% confidence interval for β_1 when n = 30.

d.o.f. =
$$(n - k) = 27$$
; $(\alpha/2) = 0.025$
 $t_c = \pm 2.052$; $b_1 = 0.3$; $s.e.(b_1) = 0.1$

The 95% Confidence Interval is:

$$[b_1 - t_c \, s. \, e. \, (b_1) \, , \qquad b_1 + t_c \, s. \, e. \, (b_1)]$$

 $\Rightarrow \qquad [0.3 - (2.052)(0.1) , 0.3 + (2.052)(0.1)] \\\Rightarrow \qquad [0.0948 , 0.5052]$

Don't forget the units of measurement!

Example 2

$$\hat{y} = 0.3 - 1.4x_2 + 0.7x_3$$

(0.1) (1.1) (0.2)

Construct a 90% confidence interval for β_2 when n = 16.

d.o.f. =
$$(n - k) = 13$$
; $(\alpha/2) = 0.05$
 $t_c = \pm 1.771$; $b_2 = -1.4$; $s.e.(b_2) =$

The 95% Confidence Interval is:

$$[b_2 - t_c \ s. e. (b_2)], \qquad b_2 + t_c \ s. e. (b_2)]$$

1.1

 $\Rightarrow \qquad [-1.4 - (1.771)(1.1) , -1.4 + (1.771)(1.1)]$

⇒ [-3.3481 , 0.5481]

Don't forget the units of measurement!

Questions:

- Why do we construct the interval *symmetrically* about point estimate, b_i ?
- How can we use a Confidence Interval to test hypotheses?
- For instance, in the last Example, can we reject H_0 : $\beta_2 = 0$, against a 2-sided alternative hypothesis?