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Topic 1 – Continued……. 

Finite-Sample Properties of the LS Estimator 

 

          ;                     

                  

            ε is random               y is random                 b is random 

 b is an estimator of β. It is a function of the random sample data. 

 b is a “statistic”. 

 b has a probability distribution – called its Sampling Distribution. 

 Interpretation of sampling distribution – 

Repeatedly draw all possible samples of size n.  

Calculate values of b each time. 

Construct relative frequency distribution for the b values and probability of occurrence. 

It is a hypothetical construct. Why? 

 Sampling distribution offers one basis for answering the question: 

 

              “How good is b as an estimator of β ?” 

Note: 

Quality of estimator is being assessed in terms of performance in repeated samples. Tells us 

nothing about quality of estimator for one particular sample. 

 Let’s explore some of the properties of the LS estimator, b, and build up its sampling 

distribution. 

 Introduce some general results, and apply them to our problem. 
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Definition: An estimator,    is an unbiased estimator of the parameter vector, θ, if           . 

That is,            . 

That is,                    . 

The quantity,                    , is called the “Bias” of     . 

 

Example:                    is a random sample from population with a finite mean, μ, and a 

finite variance, σ
2
 .  

Consider the statistic       
 

 
   

 
    . 

Then,         
 

 
   

 
     

 

 
     

 
     

                      
 

 
    

    
 

 
        . 

So,    is an unbiased estimator of the parameter, μ. 

 Here, there are lots of possible unbiased estimators of μ. 

 So, need to consider additional characteristics of estimators to help choose. 

 

Return to our LS problem – 

                                      

 Recall – either assume that X is non-random, or condition on X. 

 We’ll assume X is non-random – get same result if we condition on X. 

Then:                                         
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So, 

                                          

                             

   . 

 

 

 

Definition:  Any estimator that is a linear function of the random sample data is called a Linear 

Estimator. 

Example:                    is a random sample from population with a finite mean, μ, and a 

finite variance, σ
2
 .  

Consider the statistic       
 

 
   

 
    

 

 
             . 

This statistic is a linear estimator of μ. 

(Note that the “weights” are non-random.) 

 

Return to our LS problem – 

                                         

                    (k×1)                      (k×n)(n×1) 

Note that, under our assumptions, A is a non-random matrix. 

So, 

                     
  

 
  

   

       

   
       

  

  

 
  

   . 

The LS estimator of β is Unbiased 
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For example,                               ;     etc. 

 

   

Now let’s consider the dispersion (variability) of b, as an estimator of β. 

Definition:  Suppose we have an (n×1) random vector, x. Then the Covariance Matrix of x is 

defined as the (n×n) matrix: 

                                            
 
 . 

 Diagonal elements of V(x) are           , …….,         . 

 Off-diagonal elements are                 ; i, j = 1, …, n ; i ≠ j. 

Return to our LS problem – 

We have a (k×1) random vector, b, and we know that        . 

                                        
 
  

Now, 

                                            

                                            

                                . 

So, 

                                .                                          [*] 

Using the result, [*], in V(b), we have: 

                                              

                                              . 

The LS estimator, b, is a linear (& unbiased) estimator of β 
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We showed, earlier, that because        ,                    . 

(What other assumptions did we use to get this result?) 

So, we have: 

                                                                           

                       . 

 

 

 

Interpret diagonal and off-diagonal elements of this matrix. 

Finally, because the error term, ε is assumed to be Normally distributed, 

1.          :   this implies that y is also Normally distributed. (Why?) 

2.                   :   this implies that b is also Normally distributed. 

So, we now have the full Sampling Distribution of the LS estimator, b : 

 

                      

Note: 

 This result depends on our various, rigid, assumptions about the various components of 

the regression model. 

 The Normal distribution here is a “multivariate Normal” distribution. 

(See handout on “Spherical Distributions”.) 

 As with estimation of population mean, μ, in previous example, there are lots of other 

unbiased estimators of     in the model       . 

 How might we choose between these possibilities?  Is linearity desirable? 

               

          (k×k) 
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 We need to consider other desirable properties that these unbiased estimators may have. 

 One option is to take account of estimators' precisions. 

 Definition:  Suppose we have two unbiased estimators,    
  and   

  , of the (scalar) parameter,  . 

Then we say that    
  is at least as efficient as    

   if         
            

    . 

Note: 

1.  The variance of an estimator is just the variance of its sampling     distribution. 

2.  "Efficiency" is a relative concept. 

3.   What if there are 3 or more unbiased estimators being compared? 

 

 What if one or more of the estimators being compared is biased ? 

 In this case we can take account of both variance, and any bias, at the same time by using 

"mean squared error" (MSE) of the estimators. 

Definition:  Suppose that     is an estimator of the (scalar) parameter,  . Then the  MSE of    is 

defined as: 

                                            
 
 .      

 

Note that:                  

 

To prove this, write: 

                    
 
                              ,  

expand out, and note that 

               ;   

and 

             .
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Definition:  Suppose we have two (possibly) biased estimators,      and     , of the (scalar) 

parameter,  . Then we say       is at least as efficient as     if                   . 

If we extend all of this to the case where we have a vector of parameters,  , then we have the 

following definitions: 

Definition:  Suppose we have two unbiased estimators,     and     , of the parameter vector,  . 

Then we say that      is at least as efficient as      if                   is at least positive 

semi-definite. 

Definition:  Suppose we have two (possibly) biased estimators,    and     , of the parameter 

vector,  . Then we say that      is at least as efficient as      if                          

is at least positive semi-definite. 

Note:                          
 
                           .   

Taking account of its linearity, unbiasedness, and its precision, in what sense is the LS estimator, 

b, of   optimal? 

 

 

 

 

1.  Is this an interesting result? 

2. What assumptions about the "standard" model are we going to exploit? 

 

  

Theorem (Gauss-Markhov): 

In the "standard" linear regression model,         , the LS estimator, b, of   is Best Linear 

Unbiased (BLU). That is, it is Efficient in the class of all linear and unbiased estimators of  . 
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Proof 

Let b0 be any other linear estimator of  : 

                                                      ;         for some non-random C . 

                     (k×1)   (k×n)(n×1) 

Now,                                   
                                                                                        

                       (k×k)  

Define:                         

so that                                    . 

Now restrict b0 to be unbiased, so that                    . 

This requires that      , which in turn implies that 

                                                             

(What assumptions have we used so far?) 

Now, focus on covariance matrix of b0 : 

                                    

                                                             ;                                                                       

                                      

                                     , 

or,                                                       ;                        

 

Now we just have to "sign" this (matrix) difference: 

                                               
  

      . 
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So,                   is a p.s.d. matrix, implying that b0 is relatively less efficient  than b. 

Result:     

 

 

 What assumptions did we use, and where? 

 Were there any standard assumptions that we didn't use? 

 What does this suggest? 

 

Estimating    

 We now know a lot about estimating    . 

 There’s another parameter in the regression model -     – the variance of each    . 

 Note that                          
 
      

   . 

 The sample counterpart to this population parameter is the sample average of the 

“residuals”:       
 

 
   

  
 

 
    

    . 

 However, there is a distortion in this estimator of    . 

 Although mean of   ’s is zero (if intercept in model), not all of   ’s are independent of 

each other – only (n – k) of them are. 

 Why does this distort our potential estimator,     ? 

Note that:                       
    

    
         

   

             

 

Let’s see what properties      has as an estimator of     : 

                                                 , 

The LS estimator is the Best Linear Unbiased estimator of  . 
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where 

                                         ;        idempotent, and      . 

So,                               , 

and                                    ;              scalar 

From this, we see that: 

                                           

                                                                        

                                               

So: 

                              
 

 
     

 

 
               ;    BIASED     

Easy to convert this to an Unbiased estimator – 

 

 

 

 “(n – k)” is the “degrees of freedom” – number of independent sources of information in 

the “n” residuals (ei’s). 

 We can use “s” as an estimator of  , but it is a biased estimator. 

 Call “s” the “standard error of the regression”, or the “standard error of estimate”. 

 s
2
 is a statistic – has its own sampling distribution, etc. More on this to come. 

 Let’s see one immediate application of s
2
 and s. 

 Recall sampling distribution for LS estimator, b: 

                                                       

 So,                                  ;      
    is unobservable. 
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 If we want to report variability associated with bi as an estimator of   , we need to use 

estimator of    . 

                             . 

                                       
     . 

 We call this the “standard error” of bi. 

 This quantity will be very important when it comes to constructing interval estimates of 

our regression coefficients; and when we construct tests of hypotheses about these 

coefficients. 

                                          

Confidence Intervals & Hypothesis Testing 

 So far, we’ve concentrated on “point” estimation. 

 Need to move on – to do this we’ll need the full sampling distributions of both b and s
2
. 

 We will make use of the assumption of Normally distributed errors. 

 Recall that: 

                                                    

 

                                      
                ;    why still Normal? 

 So, we can standardize: 

                          

 But    is unknown, so we can’t use zi directly to draw inferences about bi. 

Need some preliminary results in order to proceed from here – 

Definition:  Let             . Then z
2
 has a “Chi-Square” distribution with one “degree of 

freedom”. 

Definition:  Let z2, z2, z3, ….., zm be independent  N[0 , 1] variates. Then the quantity     
   

    

has a Chi-Square distribution with “m” d.o.f. 

 
Theorem:  Let             , and let A be a fixed matrix. Then the quadratic form,     , 

follows a Chi-Square distribution with r (           degrees of freedom, iff AV is an 

idempotent matrix. 
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Definition:  Let            , and let         
 , where z and x are independent. Then the statistic,  

         follows Student’s t distribution, with “v” degrees of freedom. 

Now let’s consider the sampling distribution of s
2
: 

We have                               
 

     
    . 

So,  

                                                . 

Define the random variable 

                            
       

    
 

 
    

 

 
   ,   

where                  ; and so    
 

 
             . 

Using the Theorem from last slide, we get the following result for C: 

                             
 

 
 
 

  
 

 
         

   , 

 

because           , is idempotent, and                                 

      .    (Why?) 

 

So, we have the result:  

 

 

Next, we need to show that b and s
2
 are statistically independent. 

  

       

  
         

  

 



31 
 

 
 

 

 

How does this result help us? 

 We have            
       

    
 

 
    

 

 
  . 

 Also,                                 

                              . 

 So,     
   

 
            

 

 
  . 

 Let                      ;            ;     
 

 
  

 So,                    

 This implies that    
       

    and  
   

 
  are independent, and so b and s

2
 are also 

statistically independent. 

 C is        
 , and  

   

 
               , so we immediately get: 

 

 

 

Proof:      
   

 
               ,       

     

 
                    

so,            
     

             
           . 

Also,       
       

  
        

   ;    and we have independence. 

So,                                 
    

                          
     

             
   

       

  
       

   

 

Theorem:  Let x be a normally distributed random vector, and L and A are non-random matrices. 

Then, the “Linear Form”, Lx, and the “Quadratic Form”,     , are independent if LA = 0 . 

 

Theorem:                          

has a Student’s t distribution with (n - k) d.o.f. 
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  . 

In this case, v = (n – k), and so: 

 

 

We can use this to construct confidence intervals and test hypotheses about    . 

Note:  This last result used all of our assumptions about the linear regression model – including 

the assumption of Normality for the errors. 

Example 1: 

                     
                  

                            
  

                                                    

                    
     

        
   

     

    
                     ;    suppose n = 20 

                             ;                   ; d.o.f. = 17  

                                   . 

 

Degrees of  

Freedom 

90th  

Percentile  

95th  

Percentile 

97.5th  

Percentile 

99th  

Percentile  

99.5th 

Percentile  

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

: : : : : : 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 
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Example 2: 

                     
                  

                            
  

                                                       

                    
     

        
   

       

   
              ; d.o.f. = 17 

                                 

                                                

                (Against    , at the 5% significance level.)  

 

Example 3:     

                     
                  

                            
  

                                                       

                    
     

        
   

       

   
              ; d.o.f. = 17 

                                                       

                    

    in R:  pt(-0.1429,17) 

                   p = 0.444 

What do you conclude? 
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Some Properties of Tests: 

Null Hypothesis   (H0)         Alternative Hypothesis  (HA) 

 

Classical hypothesis testing – 

 Assume that H0 is TRUE 

 Compute value of test statistic using random sample of data 

 Determine distribution of the test statistic (when H0 is true) 

 Check of observed value of test statistic is likely to occur, if  H0 is true 

 If this event is sufficiently unlikely, then REJECT H0 (in favour of HA) 

Note: 

1.  Can never accept H0. Why not? 

2.  What constitutes “unlikely” – subjective?  

3. Two types of errors we might incur with this process 

Type I Error:  Reject H0 when in fact it is True 

 

Type II Error: Do Not Reject H0 when in fact it is False 

 

 Pr.[ I ] = α = Significance level of test = “size” of test 

 Pr.[ II ] = β   ; say 

 Value of β will depend on how H0 is False. Usually, many ways. 

 In classical testing, decide in advance on max. acceptable value of α and then try 

and design test so as to minimize β. 

 As β can take different values, may be difficult to design test optimally. 

 Why not minimize both? A trade-off for fixed value of n. 

 Consider some desirable properties for a test. 
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Definition: 

The “Power” of a test is Pr.[Reject H0 when it is False].  

So, Power = 1 – Pr.[Do Not Reject H0 | H0 is False] = 1 – β. 

 

 As β typically changes, depending on the way that H0 is false, we usually have a Power 

Curve. 

 For a fixed value of α, this curve plots Power against parameter value(s). 

 We want our tests to have high power. 

 We want the power of our tests to increase as H0 becomes increasingly false. 

 

Property 1 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is “Uniformly Most Powerful” if its power exceeds (or is no less than) that of any 

other test, for all possible ways that H0 could be False. 

 

Property 2 

Consider a fixed significance level, α. 

Then, a test is “Consistent” if its power   , as    , for all possible ways that H0 is false. 

 

Property 3 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is said to be “Unbiased” its power never falls below the significance level. 

Property 4 

Consider a fixed sample size, n, and a fixed significance level, α. 

Then, a test is said to be “Locally Most Powerful” if the slope of its power curve is greater than 

the slope of the power curves of all other size – α tests, in a neighbourhood of H0. 



36 
 

 
 

Note: 

 For many testing problems, no UMP test exists. This is why LMP tests are important. 

 Why do we use our “t-test” in the regression model – 

1.  It is UMP, against 1 –sided alternatives. 

2.  It is Unbiased. 

3.  It is Consistent. 

4.  It is LMP, against both 1-sided and 2-sided alternatives. 

Confidence Intervals 

We can also use our t-statistic to construct a confidence interval for   .  

                                 

                   
     

        
            

                                                      

                                                     

                     

                                                      

                                                      

Interpretation – 

The interval,                                     is random. 

The parameter,   , is fixed (but unknown). 

 

 

 

If we just construct an interval, for our given sample of data, we’ll never know if this particular 

interval covers   , or not. 

If we were to take a sample of n observations, and construct such an interval, and then repeat 

this exercise many, many, times, then         % of such intervals would cover the true 

value of   . 
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Example 1 

                                            

                              (0.1)   (1.1)     (0.2) 

Construct a 95% confidence interval for   when n = 30. 

          d.o.f. = (n – k) = 27   ;     (α/2) = 0.025 

                      ;              ;                 

The 95% Confidence Interval is: 

                                   

 

                 [0.3 – (2.052)(0.1)   ,   0.3 + (2.052)(0.1)] 

                 [0.0948   ,   0.5052]      

Don’t forget the units of measurement! 

Example 2 

                                            

                              (0.1)   (1.1)     (0.2) 

Construct a 90% confidence interval for   when n = 16. 

           d.o.f. = (n – k) = 13   ;     (α/2) = 0.05 

                       ;            ;                

The 95% Confidence Interval is: 

                                   

 

                 [-1.4 – (1.771)(1.1)   ,   -1.4 + (1.771)(1.1)] 

                 [-3.3481   ,   0.5481]      

Don’t forget the units of measurement! 
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Questions: 

 Why do we construct the interval symmetrically about point estimate,   ? 

 How can we use a Confidence Interval to test hypotheses? 

 For instance, in the last Example, can we reject H0:     , against a 2-sided alternative 

hypothesis? 


