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Topic 2: Asymptotic Properties of Various Regression Estimators 

 Our results to date apply for any finite sample size (n). 

 In more general models we often can’t obtain exact results for estimators’ properties. 

 In this case, we might consider their properties as 𝑛 → ∞. 

 A way of “approximating” results. 

 Also of interest in own right – inferential procedures should “work well” when we have 

lots of data 

 Previous example – hypothesis tests that are “consistent”. 

Definition:   An estimator, �̂�, for θ, is said to be (weakly) consistent if 

                  lim
𝑛→∞

{𝑃𝑟. [|�̂�𝑛 − 𝜽| < 𝝐]} = 1. 

Note: A sufficient condition for this to hold is that both 

(i) 𝐵𝑖𝑎𝑠(�̂�𝑛) → 𝟎  ; as 𝑛 → ∞. 

(ii) 𝑉(�̂�𝑛) → 0  ; as 𝑛 → ∞. 

We call this “Mean Square Consistency”.  (Often useful for checking.) 

If  �̂� is weakly consistent for θ, we say that “the probability limit of �̂� equals θ. 

We denote this by using “plim” operator, and we write 

      𝑝𝑙𝑖𝑚(�̂�𝑛) = 𝜽      or,       �̂�𝑛

𝑝
→ 𝜽 

Example  𝑥𝑖  ~ [𝜇 , 𝜎2]                    (i.i.d) 

  �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

  𝐸[�̅�] =
1

𝑛
∑ 𝐸(𝑥𝑖)𝑛

𝑖=1 =
1

𝑛
(𝑛𝜇) = 𝜇             (unbiased, for all n) 

  𝑣𝑎𝑟. [�̅�] =
1

𝑛2 𝑣𝑎𝑟. [∑ 𝑥𝑖
𝑛
𝑖=1 ] =

1

𝑛2
∑ 𝑣𝑎𝑟. (𝑥𝑖)

𝑛
𝑖=1  

=
1

𝑛2
(𝑛𝜎2) = 𝜎2

𝑛⁄  
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So, �̅� is an unbiased estimator of 𝜇, and lim
𝑛→∞

{𝑣𝑎𝑟. [�̅�]} = 0. 

This implies that �̅� is both a mean-square consistent, and weakly consistent estimator of  𝜇 . 

Note: 

 If an estimator is inconsistent, then it is a pretty useless estimator! 

 There are many situations in which our LS estimator is inconsistent! 

 For example – 

(i) 𝑦𝑡 = 𝛽1 + 𝛽2𝑥𝑡 + 𝛽3𝑦𝑡−1 + 휀𝑡 

and       휀𝑡 = 𝜌휀𝑡−1 + 𝑢𝑡 

(ii)  𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡+휀1𝑡 

and       𝑥2𝑡 = 𝛾1𝑦𝑡 + 𝛾3𝑥3𝑡 + 𝛾4𝑥4𝑡+휀2𝑡 

 

Slutsky’s Theorem 

Let 𝑝𝑙𝑖𝑚(�̂�𝑛) = 𝒄, and let 𝑓( . ) be any continuous function. 

Then,     𝑝𝑙𝑖𝑚[𝑓(�̂�𝑛)] = 𝑓(𝒄). 

For example – 

𝑝𝑙𝑖𝑚 (
1

�̂�
) =

1

𝑐
                    ;    scalars 

𝑝𝑙𝑖𝑚(𝑒�̂�) = 𝑒𝒄                ;     vectors  

𝑝𝑙𝑖𝑚(�̂�−1) = 𝐶−1           ;      matrices   

 

A very useful result – the “plim” operator can be used very flexibly. 
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Asymptotic Properties of LS Estimator(s) 

 Consider LS estimator of β under our standard assumptions, in the “large n” asymptotic 

case. 

 Can relax some assumptions: 

(i) Don’t need Normality assumption for the error term of our model 

(ii) Columns of X can be random – just assume that {𝒙𝑖
′ , 휀𝑖} is a random and 

independent sequence;  i = 1, 2, 3, …….. 

(iii) Last assumption implies 𝑝𝑙𝑖𝑚[𝑛−1𝑋′𝜺] = 𝟎.  (Greene, pp. 64-65.) 

 Amend (extend) our assumption about X having full column rank – 

assume instead that  𝑝𝑙𝑖𝑚[𝑛−1𝑋′𝑋] = 𝑄  ;            positive-definite & finite 

 Note that Q is (k × k), symmetric, and unobservable. 

 What are we assuming about the elements of X, which is (n × k), as n increases without 

limit? 

Theorem:  The LS estimator of β is weakly consistent. 

Proof:  𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                                               = 𝜷 + (𝑋′𝑋)𝑋′𝜺 

                                               = 𝜷 + [
1

𝑛
(𝑋′𝑋)]

−1

[
1

𝑛
𝑋′𝜺] . 

If we now apply Slutsky’s Theorem repeatedly, we have: 

𝑝𝑙𝑖𝑚(𝒃) = 𝜷 + 𝑄−1. 𝟎 = 𝜷 . 

 We can also show that 𝑠2 is a consistent estimator for 𝜎2. 

 Do this in two ways (different assumptions). 

 First, assume the errors are Normally distributed – get a strong result. 

 Then, relax this assumption and get a weaker result. 

Theorem:  If the regression model errors are Normally distributed, then 𝑠2 is a mean-square 

consistent estimator for 𝜎2. 
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Proof:   

If the errors are Normal, then we know that 

 
(𝑛−𝑘)𝑠2

𝜎2
~ 𝜒(𝑛−𝑘)

2  

Now,      (1) 𝐸[𝜒(𝑛−𝑘)
2 ] = (𝑛 − 𝑘) 

     (2) 𝑣𝑎𝑟. [𝜒(𝑛−𝑘)
2 ] = 2(𝑛 − 𝑘)  

So,       𝐸(𝑠2) =
𝜎2𝐸[𝜒(𝑛−𝑘)

2 ]

𝑛−𝑘
= 𝜎2       ;           unbiased 

                  𝑣𝑎𝑟. [
(𝑛−𝑘)𝑠2

𝜎2 ] = 2(𝑛 − 𝑘) 

⇒     [
(𝑛−𝑘)2

𝜎4 ] 𝑣𝑎𝑟. (𝑠2) = 2(𝑛 − 𝑘) 

⇒     𝑣𝑎𝑟. (𝑠2) = 2𝜎4/(𝑛 − 𝑘) 

So,    𝑣𝑎𝑟. (𝑠2) → 0 ,  as 𝑛 → ∞                   (and unbiased) 

This implies that 𝑠2 is a mean-square consistent estimator for 𝜎2. 

(Implies, in turn, that it is also a weakly consistent estimator.) 

 With the addition of the (relatively) strong assumption of Normally distributed errors, we 

get the (relatively) strong result. 

 Note that �̂�2 = (𝑒′𝑒)/𝑛  is also a consistent estimator, even though it is biased. 

 What other assumptions did we use in the above proof? 

 What can we say if we relax the assumption of Normality? 

 We need a preliminary result to help us. 

Theorem (Khintchine ; WLLN):  

Suppose that {𝑥𝑖}𝑖=1
𝑛  is a sequence of random variables that are uncorrelated, and all drawn from 

the same distribution with a finite mean, μ, and a finite variance, 𝜎2. 
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Then,   𝑝𝑙𝑖𝑚(�̅�) = 𝜇 . 

Theorem:  In our regression model, 𝑠2 is a weakly consistent estimator for 𝜎2. 

(Notice that this also means that �̂�2 is also a weakly consistent estimator, so start with the latter 

estimator.) 

Proof:    

 �̂�2 = (
𝒆′𝒆

𝑛
) =

1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  

      =
1

𝑛
(𝑀𝜺)′(𝑀𝜺) =

1

𝑛
𝜺′𝑀𝜺 

      =
1

𝑛
[𝜺′𝜺 − 𝜺′𝑋(𝑋′𝑋)−1𝑋′𝜺] 

      = [(
1

𝑛
𝜺′𝜺) − (

1

𝑛
𝜺′𝑋) (

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜺)] . 

 

So,          𝑝𝑙𝑖𝑚(�̂�2) = 𝑝𝑙𝑖𝑚 (
1

𝑛
𝜺′𝜺) − 𝟎′𝑄−1𝟎 = 𝑝𝑙𝑖𝑚 [

1

𝑛
∑ 휀𝑖

2𝑛
𝑖=1 ].   

 

Now, if the errors are pair-wise uncorrelated, so are their squared values. 

Also,     𝐸[휀𝑖
2] = 𝑣𝑎𝑟. (휀𝑖) = 𝜎2. 

By Khintchine’s Theorem, we immediately have the result: 

                 𝑝𝑙𝑖𝑚(�̂�2) = 𝜎2, 

and so          𝑝𝑙𝑖𝑚(𝑠2) = 𝜎2. 

 

 Relaxing the assumption of Normally distributed errors led to a weaker result for the 

consistent estimation of the error variance. 

 What other assumptions were used, and where? 
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An Issue 

 Suppose we want to compare the (large n) asymptotic behaviour of our LS estimators 

with those of other potential estimators. 

 These other estimators will presumably also be consistent. 

 This means that in each case the sampling distributions of the estimators collapse to a 

“spike”, located exactly at the true parameter values. 

 So, how can we compare such estimators when n is very large – aren’t they 

indistinguishable? 

 If the limiting density of any consistent estimator is a degenerate “spike”, it will have 

zero variance, in the limit. 

 Can we still compare large-sample variances of consistent estimators? 

In other words, is it meaningful to think about the concept of asymptotic efficiency? 

Asymptotic Efficiency 

 The key to asymptotic efficiency is to “control” for the fact that the distribution of 

any consistent estimator is “collapsing”, as 𝒏 → ∞. 

 The rate at which the distribution collapses is crucially important. 

 This is probably best understood by considering an example. 

 {𝑥𝑖}𝑖=1
𝑛    ;   random sampling from [𝜇 , 𝜎2]. 

 𝐸[�̅�] = 𝜇  ;      𝑣𝑎𝑟. [�̅�] = 𝜎2/𝑛   

 Now construct:  𝑦 = √𝑛(�̅� − 𝜇). 

 Note that     𝐸(𝑦) = √𝑛(𝐸(�̅�) − 𝜇) = 0. 

 Also,   𝑣𝑎𝑟. [𝑦] = (√𝑛)
2

𝑣𝑎𝑟. (�̅� − 𝜇) = 𝑛 𝑣𝑎𝑟. (�̅�) = 𝜎2. 

 The scaling we’ve used results in a finite, non-zero, variance. 

 𝐸(𝑦) = 0, and  𝑣𝑎𝑟. [𝑦] = 𝜎2 ; unchanged as 𝒏 → ∞. 

 So, 𝑦 = √𝑛(�̅� − 𝜇) has a well-defined “limiting” (asymptotic) distribution. 

 The asymptotic mean of y is zero, and the asymptotic variance of y is 𝜎2. 

 Question – Why did we scale by √𝑛, and not (say), by n itself ? 
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 In fact, because we had independent xi’s (random sampling), we have the additional 

result that  𝑦 = √𝑛(�̅� − 𝜇)
𝑑
→ 𝑵[0 , 𝜎2], the Lindeberg-Lévy Central Limit Theorem. 

 Now we can define “Asymptotic Efficiency” in a meaningful way. 

Definition:   Let 𝜃 and �̃� be two consistent estimator of θ ; and suppose that 

√𝑛(𝜃  − 𝜃)
𝑑
→ [0 , 𝜎2]  , and   √𝑛(�̃�  − 𝜃)

𝑑
→ [0 , 𝜑2]  . 

Then 𝜃 is “asymptotically efficient” relative to �̃� if  𝜎2 < 𝜑2 . 

In the case where θ is a vector, �̂� is “asymptotically efficient” relative to �̃� if   

∆= 𝑎𝑠𝑦. 𝑉(�̃�) − 𝑎𝑠𝑦. 𝑉(�̂�) is positive definite. 

 

Asymptotic Distribution of the LS Estimator: 

Let’s consider the full asymptotic distribution of the LS estimator, b, for β in our linear 

regression model. 

We’ll actually have to consider the behaviour of   √𝑛(𝒃 − 𝜷): 

√𝑛(𝒃 − 𝜷) = √𝑛[(𝑋′𝑋)−1𝑋′𝜺] 

                    = [
1

𝑛
(𝑋′𝑋)]

−1

(
1

√𝑛
𝑋′𝜺). 

 

It can be shown, by the Lindeberg-Feller Central Limit Theorem, that 

                   (
1

√𝑛
𝑋′𝜺)

𝑑
→ 𝑁[0 , 𝜎2𝑄], 

where              𝑄 = 𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)] . 

So, the asymptotic covariance matrix of  √𝑛(𝒃 − 𝜷) is 
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            𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

(𝜎2𝑄)𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

= 𝜎2𝑄−1. 

In full, the asymptotic distribution of  b is correctly stated by saying that: 

√𝑛(𝒃 − 𝜷)
𝑑
→ 𝑁[𝟎 , 𝜎2𝑄−1] 

The asymptotic covariance matrix is unobservable, for two reasons: 

1.  𝜎2 is typically unknown. 

2.  Q is unobservable. 

 We can estimate 𝜎2 consistently, using s2. 

 To estimate 𝜎2𝑄−1 consistently,  we can use 𝑛𝑠2(𝑋′𝑋)−1  : 

𝑝𝑙𝑖𝑚[𝑛𝑠2(𝑋′𝑋)−1] = 𝑝𝑙𝑖𝑚(𝑠2)𝑝𝑙𝑖𝑚 [
1

𝑛
(𝑋′𝑋)]

−1

= 𝜎2𝑄−1 . 

The square roots of the diagonal elements of 𝑛𝑠2(𝑋′𝑋)−1 are the asymptotic std. errors for the 

elements of  √𝑛(𝒃 − 𝜷).  

Loosely speaking, the asymptotic covariance matrix for b itself is  𝑠2(𝑋′𝑋)−1; and the square 

roots of the diagonal elements of this matrix are the asymptotic std. errors for the bi’s 

themselves. 

Instrumental Variables 

 We have been assuming either that the columns of X are non-random; or that the 

sequence {𝒙𝒊
′, 휀𝑖} is independent. Often, neither of these assumptions is tenable. 

 This implies that 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) ≠ 𝟎, and then the LS estimator is inconsistent (prove this). 

 In order to motivate a situation where {𝒙𝒊
′, 휀𝑖} are dependent, consider an omitted, or 

unobservable variable. 
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We will consider a situation where the unobservable variable is correlated with one of the 

regressors, and correlated with the dependent variable. 

Consider the population model: 

 𝒚 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜺1. [1] 

Consider that 𝑐𝑜𝑣(𝑋1, 𝑋2) ≠ 0. For example, 𝑋2 causes 𝑋1: 

 𝑋1 = 𝑋2𝛾 + 𝜺2. [2] 

Now consider that 𝑋2 is unobservable, so that the observable model is: 

 𝒚 = 𝑋1𝛽1 + 𝜺3. [3] 

 Notice that in [3], 𝜺3 contains 𝛽2𝑋2, so that 𝑋1 and 𝜺3 are not independent (𝑋1 is 

endogenous) 

 OLS will be biased, since 𝐸[𝜺3|𝑋1] ≠ 𝟎  

 Note that when estimating from [3], 𝐸[𝑏1] = 𝛽1 + 𝛾−1𝛽2 

 OLS will be inconsistent, since 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋1′𝜺3) ≠ 𝟎 

 In such cases we want a safe way of estimating 𝛽1. 

 We just want to ensure that we have an estimator that is (at least) consistent.  

 One general family of such estimators is the family of Instrumental Variables (I.V.) 

Estimators. 

An instrumental variable, 𝑍, must be: 

1. Correlated with the endogenous variable(s) 𝑋1 

 Sometimes called the “relevance” of an I.V. 

 This condition can be tested  

2. Uncorrelated with the error term, or equivalently, uncorrelated with the dependent 

variable other than through its correlation with 𝑋1 

 Sometimes called the “exclusion” restriction 

 This restriction cannot be tested directly 
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Suppose now that we have a variable 𝑍 which is 

 Relevant: 𝑐𝑜𝑣(𝑍, 𝑋1) ≠ 0 

 Satisfies exclusion restriction: 𝑐𝑜𝑣(𝑍, 𝜺) = 0. In the above D.G.P.s ([1]- [3]), it is 

sufficient for the instrument to be uncorrelated with the unobservable variable: 

𝑐𝑜𝑣(𝑍, 𝑋2) = 0. 

Validity means that [2] becomes: 

 𝑋1 = 𝑍𝛿 + 𝑋2𝛾 + 𝜺4 [4] 

Substituting [4] into [1]: 

 𝒚 = 𝑋2𝛾𝛽1 + 𝑍𝛿𝛽1 + 𝑋2𝛽2 + 𝜺5. [5] 

𝑋2 is still unobservable, but is uncorrelated with 𝑍! The observable population model is now: 

 𝒚 = 𝑍𝛿𝛽1 + 𝜺6. [6] 

 Now, we have a population model involving 𝛽1, and where 𝑐𝑜𝑣(𝑍, 𝜺𝟔) = 0. So, (𝛿𝛽1) can be 

estimated by OLS. But we need 𝛽1! 

By Slutsky’s Theorem, if 𝑝𝑙𝑖𝑚(𝛿𝛽1̂) = 𝛿𝛽1, and if 𝑝𝑙𝑖𝑚(𝛿) = 𝛿, then 𝑝𝑙𝑖𝑚(�̂�−1𝛿𝛽1̂) = 𝛽1. So 

if we can find a consistent estimator for 𝛿, we can find one for 𝛽1. How to estimate 𝛿? 

Recall [4]. Since 𝑋2 and 𝑍 are uncorrelated, we can estimate 𝛿 by an OLS regression of 𝑋1 on 𝑍: 

 𝛿 = (𝑍′𝑍)−1𝑍′𝑋1  

Now solve for 𝛽1̂: 

 𝛽1̂ = 𝛿−1𝛿𝛽1̂ = [(𝑍′𝑍)−1𝑍′𝑋1]−1(𝑍′𝑍)−1𝑍′𝒚 

If 𝑍 and 𝑋1 have the same number of columns, then: 

 𝛽1̂ = (𝑍′𝑋1)−1𝑍′𝑍(𝑍′𝑍)−1𝑍′𝒚 = (𝑍′𝑋1)−1𝑍′𝒚 
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In this example we had one endogenous variable (𝑋1) and one instrument (𝑍). In this case, the 

I.V. estimate may be found by the OLS estimate from a regression of 𝒚 on 𝑍 by the OLS 

estimates of a regression of 𝑋1 on 𝑍. 

In more general models, we will have more explanatory variables. As long as there is one 

instrument per endogenous variable, I.V. is possible and the simple I.V. estimator is: 

𝑏𝐼𝑉 = (𝑍′𝑋)−1𝑍′𝒚 

In general, this estimator is biased. We can show it’s consistent, however: 

                                  𝒚 = 𝑋𝜷 + 𝜺  

                                  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝑋) = 𝑄   ;    p.d.  and finite 

                                  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝜸 ≠ 𝟎  

Find a (random)  (𝑛 × 𝑘) matrix, Z, such that: 

1.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑍) = 𝑄𝑍𝑍   ;    p.d.  and finite. 

2.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋) = 𝑄𝑍𝑋   ;    p.d.  and finite. 

3.   𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎  . 

Then, consider the estimator:    𝒃𝑰𝑽 = (𝑍′𝑋)−1𝑍′𝒚. This is a consistent estimator of β. 

           𝒃𝑰𝑽 = (𝑍′𝑋)−1𝑍′𝒚 = (𝑍′𝑋)−1𝑍′(𝑋𝜷 + 𝜺)   

                  = (𝑍′𝑋)−1𝑍′𝑋𝜷 + (𝑍′𝑋)−1𝑍′𝜺 

                  = 𝜷 + (𝑍′𝑋)−1𝑍′𝜺 

                  = 𝜷 + (
1

𝑛
𝑍′𝑋)

−1

(
1

𝑛
𝑍′𝜺) . 

So,      𝑝𝑙𝑖𝑚(𝒃𝑰𝑽) = 𝜷 + [𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋)]−1𝑝𝑙𝑖𝑚(

1

𝑛
𝑍′𝜺) 

                              = 𝜷 + 𝑄𝑍𝑋
−1𝟎 = 𝜷                 (consistent) 
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Choosing different Z matrices generates different members of I.V. family. 

Although we won’t derive the full asymptotic distribution of the I.V. estimator, note that it can 

be expressed as: 

 

where  𝑄𝑋𝑍 = 𝑄𝑍𝑋′.   [How would you estimate Asy. Covar. Matrix?] 

Interpreting I.V. as two-stage least squares (2SLS) 

1st stage: Regress 𝑋 on 𝑍, get �̂�. 

 �̂� contains the variation in 𝑋 due to 𝑍 only 

 �̂� is not correlated with 𝜺 

2nd stage: Estimate the model 𝒚 = �̂�𝜷 + 𝜺 

From 1st stage: �̂� = 𝑍(𝑍′𝑍)−1𝑍′𝑋 

From 2nd stage: 𝒃𝑰𝑽 = [𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋]−1𝑋′𝑍(𝑍′𝑍)−1𝑍′𝒚 

In fact, this is the Generalized I.V. estimator of 𝜷. We can actually use more instruments than 

regressors (the “Over-Identified” case). 

Note that if 𝑋 and 𝑍 have the same dimensions, then the generalized estimator collapses to the 

simple one. 

Let’s check the consistency of the I.V. estimator. Let 𝑀𝑧 = 𝑍(𝑍′𝑍)−1𝑍′. Then the generalized 

I.V. estimator is: 

 

 

𝒃𝑰𝑽 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝒚 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍(𝑋𝜷 + 𝜺) 

       = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝑋𝜷 + [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝜺 

       = 𝜷 + [𝑋′𝑍(𝑍′𝑍)−1𝑍′𝑋]−1𝑋′𝑍(𝑍′𝑍)−1𝑍′𝜺 

  

√𝑛(𝒃𝑰𝑽  − 𝜷)
𝑑
→ 𝑁[𝟎 , 𝜎2𝑄𝑍𝑋

−1𝑄𝑍𝑍𝑄𝑋𝑍
−1] 

𝒃𝑰𝑽 = [𝑋′𝑀𝑍𝑋]−1𝑋′𝑀𝑍𝒚 
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So,   

𝒃𝑰𝑽 = 𝜷 + [(
1

𝑛
𝑋′𝑍) (

1

𝑛
𝑍′𝑍)

−1

(
1

𝑛
𝑍′𝑋)]

−1

(
1

𝑛
𝑋′𝑍) (

1

𝑛
𝑍′𝑍)

−1

(
1

𝑛
𝑍′𝜺) . 

Modify our assumptions: 

We have a (random)  (𝑛 × 𝐿) matrix, Z, such that: 

1.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑍) = 𝑄𝑍𝑍   ;      (𝐿 × 𝐿),  p.d.s. and finite. 

2.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝑋) = 𝑄𝑍𝑋   ;      (𝐿 × 𝑘), rank = k, and finite. 

3.  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎        ;      (𝐿 × 1) 

So, 

𝑝𝑙𝑖𝑚(𝒃𝑰𝑽) = 𝜷 +  [𝑄𝑋𝑍𝑄𝑍𝑍
−1𝑄𝑍𝑋]−1𝑄𝑋𝑍𝑄𝑍𝑍

−1𝟎 =  𝜷     ;      consistent 

Similarly, a consistent estimator of 𝜎2 is  

                      𝑠𝐼𝑉
2 = (𝒚 − 𝑋𝒃𝑰𝑽)′(𝒚 − 𝑋𝒃𝑰𝑽)/𝑛 

 

residual vector  

 Recall that each choice of Z leads to a different I.V. estimator. 

 Z must be chosen in way that ensures consistency of the I.V. estimator. 

 How might we choose a suitable set of instruments, in practice? 

 If we have several “valid” sets of instruments, how might we choose between them? 

For the “simple” regression model, recall that: 

√𝑛(𝒃𝑰𝑽  − 𝜷)
𝑑
→ 𝑁[𝟎 , 𝜎2𝑄𝑍𝑋

−1𝑄𝑍𝑍𝑄𝑋𝑍
−1] 

so if k = 1, 

𝑄𝑍𝑍 = 𝑝𝑙𝑖𝑚(𝑛−1 ∑ 𝑧𝑖
2

𝑛

𝑖=1

) 
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𝑄𝑍𝑋 = 𝑝𝑙𝑖𝑚 (𝑛−1 ∑ 𝑧𝑖𝑥𝑖

𝑛

𝑖=1

) = 𝑄𝑋𝑍 

The asymptotic efficiency of  𝒃𝑰𝑽 will be higher, the more highly correlated are Z and X, 

asymptotically. 

We need to find instruments that are uncorrelated with the errors, but highly correlated with the 

regressors – asymptotically. 

This is not easy to do! 

 Time –series data -   

1. Often, we can use lagged values of the regressors as suitable instruments. 

2. This will be fine as long as the errors are serially uncorrelated. 

 Cross-section data –  

1. Geography, weather, biology. 

2. Various “old” tricks – e.g., using “ranks” of the data as instruments. 

Testing if I.V.  estimation is needed 

 Why does LS fail, and when do we need I.V.? 

 If  𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) ≠ 𝟎   .      

 We can test to see if this is a problem, & decide if we should use LS or I.V. 

 

The Hausman Test 

We want to test  𝐻0 : 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝟎      vs.     𝐻𝐴 : 𝑝𝑙𝑖𝑚 (

1

𝑛
𝑋′𝜺) ≠ 𝟎    

 If we reject H0, we will use I.V. estimation. 

 If we cannot reject H0, we’ll use LS estimation. 

 Hausman test is a general “testing strategy” that can be applied in many situations – not 

just for this particular situation! 

 Basic idea – construct 2 estimators of β: 
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1.  bE : estimator is both consistent and asymptotically efficient if H0 true. 

2.  bI : estimator is at least consistent, even if  H0 false. 

 In our case here, bE is the LS estimator; and bI is the I.V. estimator. 

 If H0 is true, we’d expect (bI - bE) to be “small”, at least for large n, as both estimators are 

consistent in that case. 

 Hausman shows that �̂�(𝒃𝑰 − 𝒃𝑬) = �̂�(𝒃𝑰) − �̂�(𝒃𝑬), if H0 is true. 

 So, the test statistic is,    𝐻 = (𝒃𝑰  −  𝒃𝑬)′[�̂�(𝒃𝑰) − �̂�(𝒃𝑬)]
−1

(𝒃𝑰 − 𝒃𝑬). 

 𝐻
𝒅
→ 𝝌𝑱

𝟐, if H0 is true. 

 Here, J is the number of columns in X which may be correlated with the errors, & for 

which we need instruments. 

 Problem – often, [�̂�(𝒃𝑰) − �̂�(𝒃𝑬)] is singular, so H is not defined. 

 One option is to replace the “regular inverse” with a “generalized inverse”. 

 Another option is to modify H so that it becomes: 

    𝐻∗ = (𝒃𝑰
∗  −  𝒃𝑬

∗)′[�̂�(𝒃𝑰
∗) − �̂�(𝒃𝑬

∗)]
−1

(𝒃𝑰
∗ − 𝒃𝑬

∗) 
𝒅
→ 𝝌𝑱

𝟐  ;  if H0 true. 

 Here, 𝒃𝑰
∗ and 𝒃𝑬

∗
 are the (J × 1) vectors formed by using only the elements of 𝒃𝑰 and 𝒃𝑬 

that correspond to the “problematic” regressors. 

 Constructing H* is not very convenient unless J = 1. 

 

The Durbin-Wu Test 

This test is specific to testing  

𝐻0 : 𝑝𝑙𝑖𝑚 (
1

𝑛
𝑋′𝜺) = 𝟎      vs.     𝐻𝐴 : 𝑝𝑙𝑖𝑚 (

1

𝑛
𝑋′𝜺) ≠ 𝟎    

Again, an asymptotic test. 
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Testing the exogeneity of Instruments 

The key assumption that ensures the consistency of I.V. estimators is that 

𝑝𝑙𝑖𝑚 (
1

𝑛
𝑍′𝜺) = 𝟎 . 

This condition involves the unobservable 𝜺. In general, it cannot be tested.  

“Weak Instruments” – Problems arise if the instruments are not well correlated with the 

regressors (not relevant).  

 These problems go beyond loss of asymptotic efficiency. 

 Small-sample bias of I.V. estimator can be greater than that of LS! 

 Sampling distribution of I.V. estimator can be bi-modal! 

 Fortunately, we can again test to see if we have these problems. 
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Empirical Example: Using geographic variation in college proximity to estimate the return to 

schooling1 

 Have data on wage, years of education, and demographic variables 

 Want to estimate the return to education 

 Problem: ability (intelligence) may be correlated with (cause) both wage and education 

 Since ability is unobservable, it is contained in the error term 

 The education variable is then correlated with the error term (endogenous) 

 OLS estimation of the returns to education may be inconsistent 

First, let’s try OLS. 

library(AER) 

attach(CollegeDistance) 

lm(wage ~ urban + gender + ethnicity + unemp + education) 

 
Note that the returns to education are not statistically significant. 

Now let’s try using distance from college (while attending high school) as an instrument for 

education. For the instrument to be valid, we require that distance and education be correlated: 

summary(lm(education ~ distance)) 

                                                           
1 Card, David. Using geographic variation in college proximity to estimate the return to 

schooling. No. w4483. National Bureau of Economic Research, 1993. 

Regression Estimates
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            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 13.93861    0.03290 423.683  < 2e-16 *** 

distance    -0.07258    0.01127  -6.441  1.3e-10 *** 

While distance appears to be statistically significant, this isn’t quite enough to test for validity (a 

testing problem we won’t address here).  

From the 2SLS interpretation, we know that we can get the IV estimator by: 

1.) getting the predicted values from a regression of education on distance 

educfit = predict(lm(education ~ distance)) 

 

2.) regressing wage on the same variables, but using educfit instead of education 

lm(wage ~ urban + gender + ethnicity + unemp + educfit)  

 

Note that educfit is the variation in education as it can be explained by distance. These fitted 

values are uncorrelated with ability, since distance is uncorrelated with ability (by assumption). 

Results of IV estimation: 

  

 

The estimate for the return to education is now positive, and significant. 

Regression Estimates
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