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Topic 3: Inference and Prediction 

We’ll be concerned here with testing more general hypotheses than those seen to date. Also 

concerned with constructing interval predictions from our regression model. 

Examples 

        𝒚 = 𝑋𝜷 + 𝜺      ;       𝐻0: 𝜷 = 𝟎    vs.        𝐻𝐴: 𝜷 ≠ 𝟎       

        log(𝑄) = 𝛽1 + 𝛽2log (𝐾) + 𝛽3log (𝐿) + 𝜀 

       𝐻0: 𝛽2 + 𝛽3 = 1    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 1     

        log(𝑞) = 𝛽1 + 𝛽2log (𝑝) + 𝛽3log (𝑦) + 𝜀 

      𝐻0: 𝛽2 + 𝛽3 = 0    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 0     

If we can obtain one model from another by imposing restrictions on the parameters of the first 

model, we say that the 2 models are “Nested ”. 

We’ll be concerned with (several) possible restrictions on β, in the usual model: 

                          𝒚 = 𝑋𝜷 + 𝜺      ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛]  

                                 (X is non-random  ;  𝑟𝑎𝑛𝑘(𝑋) = 𝑘) 

To begin with, let’s focus on linear restrictions: 

                  𝑟11𝛽1 + 𝑟12𝛽2 + ⋯ + 𝑟1𝑘𝛽𝑘 = 𝑞1 

                  𝑟21𝛽1 + 𝑟22𝛽2 + ⋯ + 𝑟2𝑘𝛽𝑘 = 𝑞2 

                                           .                                      (J restrictions) 

                                           . 

                  𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 + ⋯ + 𝑟𝐽𝑘𝛽𝑘 = 𝑞𝐽 

Some (many?) of the 𝑟𝑖𝑗′𝑠 may be zero. 

 Combine these J restrictions: 

                           𝑅𝜷 = 𝒒                 ;    R and q are known, & non-random 

                      (𝐽 × 𝑘)(𝑘 × 1)    (𝐽 × 1)   

 We’ll assume that 𝑟𝑎𝑛𝑘(𝑅) = 𝐽  (< 𝑘). 
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 No conflicting or redundant restrictions. 

 What if J = k ? 

Examples 

1.          𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 

             𝑅 = [
0 1
⋮ ⋮
0 0

    
0 0
⋮ ⋮
0 0

    
⋯ 0
⋮ ⋮
0 1

]        ;       𝒒 = [
0
⋮
0

] 

2.         𝛽2 + 𝛽3 = 1 

      𝑅 = [0 1 1    0 ⋯ 0]        ;        𝑞 = 1 

 

3.       𝛽3 = 𝛽4   ;     and     𝛽1 = 2𝛽2    

     𝑅 = [
0    0 1
1 −2 0

    
−1 0 ⋯
   0 0 ⋯

   
0
0

]   ;   𝑞 = [
0
⋮
0

] 

 Suppose that we just estimate the model by LS, and get 𝒃 = (𝑋′𝑋)−1𝑋′𝒚. 

 It is very unlikely that 𝑅𝒃 = 𝒒    !   

 Denote          𝒎 = 𝑅𝒃 − 𝒒 . 

 Clearly, m is a (𝐽 × 1)  random vector. 

 Let’s consider the sampling distribution of m: 

        𝒎 = 𝑅𝒃 − 𝒒              ;        it is a linear function of b. 

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally 

distributed. 

𝐸[𝒎] = 𝑅𝐸[𝒃] − 𝒒 = 𝑅𝜷 − 𝒒                           (What assumptions used?)        

So,  𝐸[𝒎] = 𝟎 ;     iff     𝑅𝜷 = 𝒒       

Also,       𝑉[𝒎] = 𝑉[𝑅𝒃 − 𝒒] = 𝑉[𝑅𝒃] = 𝑅𝑉[𝒃]𝑅′ 

                        = 𝑅𝜎2(𝑋′𝑋)−1𝑅′ = 𝜎2𝑅(𝑋′𝑋)−1𝑅′    

                                                                             (What assumptions used?) 
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So,              𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  . 

Let’s see how we can use this information to test if   𝑅𝜷 = 𝒒 .          (Intuition?)        

Definition:      The Wald Test Statistic for testing 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒                    is:                    

𝑊 = 𝒎′[𝑉(𝒎)]−1𝒎 . 

So, if 𝐻0 is true: 

                  𝑊 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

                       = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝜎2 . 

Because        𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  , then if 𝐻0 is true: 

                   𝑊 ~ 𝜒(𝐽)
2      ;                  provided that 𝜎2 is known. 

Notice that: 

 This result is valid only asymptotically if 𝜎2 is unobservable, and we replace it with any 

consistent estimator. 

 We would reject 𝐻0 if 𝑊 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒. (i.e., when 𝒎 = 𝑅𝒃 − 𝒒 is sufficiently 

“large”.)     

 The Wald test is a very general testing procedure – other testing problems. 

 Wald test statistic always constructed using an estimator that ignores the restrictions 

being tested. 

 As we’ll see, for this particular testing problem, we can modify the Wald test slightly, 

and obtain a test that is exact in finite samples, and has excellent power properties.         
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What is the F-statistic? 

To derive this test statistic, we need a preliminary result. 

Definition:      

Let  𝑥1~ 𝜒(𝑣1)
2      and    𝑥2~ 𝜒(𝑣2)

2                    and independent 

Then 

         𝐹 =
[

𝑥1
𝑣1

]

[
𝑥2
𝑣2

]
 ~ 𝐹(𝑣1,𝑣2)                       ;          Snedecor’s F-Distribution 

Note: 

 (𝑡(𝑣))
2

= 𝐹(1,𝑣)                                      ;       Why does this make sense? 

 𝑣1𝐹(𝑣1,𝑣2)  
𝑑
→ 𝜒(𝑣1)

2                                 ;       Explanation? 

Let’s proceed to our main result, which involves the statistic,  𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2 ) . 

Theorem:  

 𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2 ) ~ 𝐹(𝐽 ,   (𝑛−𝑘)) , if the Null Hypothesis 𝐻0: 𝑅𝜷 = 𝒒 is true. 

Proof:  

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)

𝜎2
(

1

𝐽
) (

𝜎2

𝑠2
) 

=
(𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽

[
(𝑛 − 𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘)
= (

𝑁

𝐷
) 

where     𝐷 = [
(𝑛−𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘) = 𝜒(𝑛−𝑘)
2 /(𝑛 − 𝑘)   . 

Consider the numerator: 

            𝑁 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽. 

Suppose that 𝐻0 is TRUE, so that = 𝒒 , and then 
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           (𝑅𝒃 − 𝒒) = (𝑅𝒃 −  𝑅𝜷) = 𝑹(𝒃 − 𝜷)  . 

Now, recall that 

       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,                 𝑅(𝒃 − 𝜷) = 𝑅(𝑋′𝑋)−1𝑋′𝜺 , 

and    𝑁 = [𝑅(𝑋′𝑋)−1𝑋′𝜺]′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1[𝑅(𝑋′𝑋)−1𝑋′𝜺]/𝐽  

                  = (1
𝐽⁄ ) (𝜺

𝜎⁄ )′[𝑄](𝜺
𝜎⁄ ) , 

where           𝑄 = 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ , 

and            (𝜺
𝜎⁄ ) ~ 𝑁[𝟎 , 𝐼𝑛] . 

Now,    (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ ) ~ 𝜒(𝑟)
2  if and only if Q is idempotent, where 

              𝑟 = 𝑟𝑎𝑛𝑘(𝑄) . 

Easy to check that Q is idempotent. 

So,  𝑟𝑎𝑛𝑘(𝑄) = 𝑡𝑟. (𝑄) 

                      = 𝑡𝑟. {𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ } 

                      = 𝑡𝑟. {(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′𝑋} 

                     = 𝑡𝑟. {𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

                     = {[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′} 

                     = 𝑡𝑟. (𝐼𝐽) = 𝐽 . 

So,   𝑁 = (1
𝐽⁄ ) (𝜺

𝜎⁄ )′[𝑄](𝜺
𝜎⁄ ) = 𝜒(𝐽)

2 /𝐽 . 

 In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their 

degrees of freedom. 

 Are N and D independent? 



6 
 

 The Chi-Square statistic in N is:   (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ ) . 

 The Chi-Square statistic in D is:   [
(𝑛−𝑘)𝑠2

𝜎2 ]             (see bottom of slide 13) 

Re-write this: 

            [
(𝑛−𝑘)𝑠2

𝜎2
] =

(𝑛−𝑘)

𝜎2
(𝒆′𝒆

(𝑛 − 𝑘)⁄ ) = (𝒆′𝒆
𝜎2⁄ ) 

                             = (𝑀𝜺
𝜎⁄ )′(𝑀𝜺

𝜎⁄ ) = (𝜺
𝜎⁄ )′𝑀(𝜺

𝜎⁄ ) . 

So, we have  

        (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ )      and      (𝜺
𝜎⁄ )′𝑀(𝜺

𝜎⁄ ) . 

These two statistics are independent if and only if 𝑀𝑄 = 0 . 

𝑀𝑄 = [𝐼 − 𝑋(𝑋′𝑋)−1𝑋′] 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′  

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑄 = 0 . 

So, if 𝐻0 is TRUE, our statistic, F is the ratio of 2 independent Chi-Square variates, each divided 

by their degrees of feeedom. 

This implies that, if 𝐻0 is TRUE, 

             𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
  ~ 𝐹(𝐽,(𝑛−𝑘)) 

 

What assumptions have been used ?      What if 𝐻0 is FALSE ? 

Implementing the test – 

 Calculate F . 
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 Reject 𝐻0: 𝑅𝜷 = 𝒒   in favour of  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   if > 𝑐𝛼 . 

 

Why do we use this particular test for linear restrictions? 

This F-test is Uniformly Most Powerful. 

Another point to note – 

                 (𝑡(𝑣))
2

= 𝐹(1,𝑣)  

Consider       𝑡(𝑛−𝑘) = (𝑏𝑖 − 𝛽𝑖)/(𝑠. 𝑒. (𝑏𝑖))     

Then,     (𝑡(𝑛−𝑘))
2

~𝐹(1,(𝑛−𝑘))  ;  t-test is UMP against 1-sided alternatives 

Example  

Let’s return to the Card (1993) data, used as an example of I.V. 

Recall the results of the IV estimation: 

  

resiv = lm(wage ~ urban + gender + ethnicity + unemp + educfit) 

summary(resiv) 

Regression Estimates

-0.5

0.0

0.5

1.0

urban female black hispanic unemp educfit
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Coefficients: 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       -2.053604   1.675314  -1.226   0.2203     

urbanyes          -0.013588   0.046403  -0.293   0.7697     

genderfemale      -0.086700   0.036909  -2.349   0.0189 *   

ethnicityafam     -0.566524   0.051686 -10.961  < 2e-16 *** 

ethnicityhispanic -0.529088   0.048429 -10.925  < 2e-16 *** 

unemp              0.145806   0.006969  20.922  < 2e-16 *** 

educfit            0.774340   0.120372   6.433 1.38e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.263 on 4732 degrees of freedom 

Multiple R-squared:  0.1175,    Adjusted R-squared:  0.1163  

F-statistic:   105 on 6 and 4732 DF,  p-value: < 2.2e-16 

Let’s test the hypothesis that urban and gender are jointly insignificant. 

𝐻0:  𝛽2 = 𝛽3 = 0    vs.   𝐻𝐴: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑐𝑜𝑒𝑓𝑓𝑠. ≠ 0. (J = 2) 

 

Let’s see R-code for calculating the F-stat from the formula: 

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽

𝑠2
= (𝑅𝒃 − 𝒒)′[𝑅𝑠2(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽 

 

R = matrix(c(0,0,1,0,0,1,0,0,0,0,0,0,0,0),2,7) 

> R 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,]    0    1    0    0    0    0    0 

[2,]    0    0    1    0    0    0    0 

  

(n - k) = (4739 – 7) = 4732 



9 
 

b = matrix(resiv$coef,7,1) 

> b 

            [,1] 

[1,] -2.05360353 

[2,] -0.01358775 

[3,] -0.08670020 

[4,] -0.56652448 

[5,] -0.52908814 

[6,]  0.14580613 

[7,]  0.77433967 

 

q = matrix(c(0,0),2,1) 

> q 

     [,1] 

[1,]    0 

[2,]    0 

 

m = R%*%b – q 

> m 

            [,1]  

[1,] -0.01358775 

[2,] -0.08670020 

 

F = t(m) %*% solve(R %*% vcov(resiv) %*% t(R)) %*% m 

 

 

 

> F 

         [,1] 

[1,] 5.583774 

 

Is this F-stat “large”? 

> 1 - pf(F,2,4732) 

            [,1] 

[1,] 0.003783159 

Should we be using the F-test? 

Wald = 2*F 

> 1 - pchisq(Wald,2) 

            [,1] 

[1,] 0.003758353 

𝑠2(𝑋′𝑋)−1 invert 

transpose 
multiply 
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Why are the p-values from the Wald and F-test so similar? 

 

Restricted Least Squares Estimation: 

If we test the validity of certain linear restrictions on the elements of β, and we can’t reject them, 

how might we incorporate the restrictions (information) into the estimator? 

Definition: The “Restricted Least Squares” (RLS) estimator of β, in the model, 𝒚 = 𝑋𝜷 + 𝜺, is 

the vector, 𝒃∗ , which minimizes the sum of the squared residuals, subject to the constraint(s) 

𝑅𝒃∗ = 𝒒 . 

 Let’s obtain the expression for this new estimator, and derive its sampling distribution. 

 Set up the Lagrangian:       ℒ = (𝒚 − 𝑋𝒃∗)′(𝒚 − 𝑋𝒃∗) + 2𝝀′(𝑅𝒃∗ − 𝒒) 

 

 Set (𝜕ℒ/𝜕𝒃∗) = 0     ;    (𝜕ℒ/𝜕𝝀) = 0   ,  and solve ………. 

ℒ = 𝒚′𝒚 + 𝒃∗′𝑋′𝑋𝒃∗ − 2𝒚′𝑋𝒃∗ + 2𝝀′(𝑅𝒃∗ − 𝒒) 

(𝜕ℒ/𝜕𝒃∗) = 2𝑋′𝑋𝒃∗ − 2𝑋′𝒚 + 2𝑅′𝝀 = 𝟎                               [1] 

(𝜕ℒ/𝜕𝝀) = 2(𝑅𝒃∗ − 𝒒) = 𝟎                                                     [2] 

From [1]: 

            𝑅′𝝀 = 𝑋′(𝒚 − 𝑋𝒃∗) 

So,      𝑅(𝑋′𝑋)−1𝑅′𝝀 = 𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

or,       𝝀 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗)             [3] 

Inserting [3] into [1], and dividing by “2”: 

(𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

So,   (𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝒃 − 𝒃∗) 

or, 

  𝒃∗ = (𝑋′𝑋)−1𝑋′𝒚 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝑅𝒃∗) 

b 
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or, using [2]: 

      

 RLS = LS + “Adjustment Factor”. 

 What if Rb = q ? 

 Interpretation of this? 

 What are the properties of this RLS estimator of β ? 

Theorem:  The RLS estimator of β is Unbiased if 𝑅𝜷 = 𝒒  is TRUE. 

                   Otherwise, the RLS estimator is Biased. 

Proof:  

𝐸(𝒃∗) = 𝐸(𝒃) − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑹𝐸(𝒃) − 𝒒) 

                   = 𝜷 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝜷 − 𝒒) . 

So, if  𝑅𝜷 = 𝒒, then 𝐸(𝒃∗) = 𝜷. 

 

Theorem:  The covariance matrix of the RLS estimator of β is 

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

 

Proof: 

        𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

             = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅}𝒃 + 𝜶 

where 

         𝜶 = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝒒                         (non-random) 

So,     𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′  , 

𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 
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where    𝐴 = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} . 

That is,        𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′ = 𝜎2𝐴(𝑋′𝑋)−1𝐴′           (assumptions?) 

Now let’s look at the matrix, 𝐴(𝑋′𝑋)−1𝐴′    .        

 

𝐴(𝑋′𝑋)𝐴′= {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} (𝑋′𝑋)−1     

× {𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

= (𝑋′𝑋)−1 + (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

−2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

= (𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

So,   

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

(What assumptions have we used to get this result?) 

We can use this result immediately to establish the following…… 

Theorem:  The matrix,  𝑉(𝒃) − 𝑉(𝒃∗) , is at least positive semi-definite. 

Proof:  

    𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

              = 𝜎2(𝑋′𝑋)−1 − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

              = 𝑉(𝒃) − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

So,    𝑉(𝒃) − 𝑉(𝒃∗) = 𝜎2∆  ,  say 

where     ∆ = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1. 

This matrix is square, symmetric, and of full rank. So, ∆ is at least p.s.d.. 
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 This tells us that the variability of the RLS estimator is no more than that of the LS 

estimator, whether or not the restrictions are true. 

 Generally, the RLS estimator will be “more precise” than the LS estimator. 

 When will the RLS and LS estimators have the same variability? 

 In addition, we know that the RLS estimator is unbiased if the restrictions are true. 

 So, if the restrictions are true, the RLS estimator, 𝒃∗, is more efficient than the LS 

estimator, b, of the coefficient vector, β . 

Also note the following: 

 If the restrictions are false, and we consider MSE(b) and MSE(𝒃∗), then the relative 

efficiency can go either way. 

 If the restrictions are false, not only is 𝒃∗ biased, it’s also inconsistent. 

So, it’s a good thing that that we know how to construct the UMP test for the validity of the 

restrictions on the elements of β ! 

In practice: 

 Estimate the unrestricted model, using LS. 

 Test 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒 . 

 If the null hypothesis can’t be rejected, re-estimate the model with RLS. 

 Otherwise, retain the LS estimates. 
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Example: Cobb-Douglas Production Function
1
 

> 

cobbdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/co

bb.csv") 

> attach(cobbdata) 

> res = lm(log(y) ~ log(k) + log(l)) 

> summary(res) 

 

Call: 

lm(formula = log(y) ~ log(k) + log(l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   1.8444     0.2336   7.896 7.33e-08 *** 

log(k)        0.2454     0.1069   2.297   0.0315 *   

log(l)        0.8052     0.1263   6.373 2.06e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2357 on 22 degrees of freedom 

Multiple R-squared: 0.9731,     Adjusted R-squared: 0.9706  

F-statistic: 397. 5 on 2 and 22 DF,  p-value: < 2.2e-16 

 

 

 

Let’s get the SSE from this regression, for later use: 

> sum(res$residuals^2) 

[1] 1.22226 

 

Test the hypothesis of constant returns to scale: 

 

𝑯𝟎: 𝜷𝟐 + 𝜷𝟑 = 𝟏       vs.     𝑯𝑨: 𝜷𝟐 + 𝜷𝟑 ≠ 𝟏     

> R = matrix(c(0,1,1),1,3) 

> R 

     [,1] [,2] [,3] 

[1,]    0    1    1 

 

                                                           
1
 The data are from table F7.2, Greene, 2012 

What’s this? 

SSE = 1.22226 
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> b = matrix(res$coef,3,1) 

> b 

          [,1] 

[1,] 1.8444157 

[2,] 0.2454281 

[3,] 0.8051830 

 

> q = 1 

 

> m = R%*%b - q 

> m 

           [,1] 

[1,] 0.05061103 

 

> F = t(m) %*% solve(R %*% vcov(res) %*% t(R)) %*% m 

> F 

         [,1] 

[1,] 1.540692 

 

> 1 - pf(F,1,22) 

          [,1] 

[1,] 0.2275873 

 

Are the residuals normally distributed? 

> hist(res$residuals) 

 

Histogram of res$residuals

res$residuals
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Cannot reject at 10% sig. level 
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> library(tseries) 

> jarque.bera.test(res$residuals) 

        Jarque Bera Test 

 

data:  res$residuals  

X-squared = 5.5339, df = 2, p-value = 0.06285 

F-test “supported” the validity of the restriction on the coefficients, so now impose this 

restriction of CRTS. Use RLS: 

log(𝑄/𝐿) = 𝛽1 + 𝛽2 log(𝐾/𝐿) + 𝜀 

> rlsres = lm(log(y/l) ~ log(k/l)) 

> summary(rlsres) 

Call: 

lm(formula = log(y/l) ~ log(k/l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.0950     0.1189  17.615 7.55e-15 *** 

log(k/l)      0.2893     0.1020   2.835  0.00939 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.2385 on 23 degrees of freedom 

Multiple R-squared: 0.2589,     Adjusted R-squared: 0.2267  

F-statistic: 8.036 on 1 and 23 DF,  p-value: 0.009387 

 

> sum(rlsres$residuals^2) 

[1] 1.307857 

 

Form the LS and RLS results for this particular application, note that 

𝒆′𝒆 = (𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃) = 1.22226 

𝒆∗
′𝒆∗ = (𝒚 − 𝑋𝒃∗)′(𝒚 − 𝑋𝒃∗) = 1.307857 

SSE = 1.307857 

Might want to use Wald test instead! 



17 
 

So,   𝒆∗
′𝒆∗ > 𝒆′𝒆  . 

 In fact this inequality will always hold . 

 What’s the intuition behind this? 

Note that: 

𝒆∗ = (𝒚 − 𝑋𝒃∗) = 𝒚 − 𝑋𝒃 + 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

     = 𝒆 + 𝑋(𝑋′𝑋)𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

Now, recall that  𝑋′𝒆 = 𝟎 . 

So,  

𝒆∗
′𝒆∗ = 𝒆′𝒆 + (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) , 

where: 

𝐴 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1 

    = [𝑅(𝑋′𝑋)−1𝑅′]−1     ;    this matrix has full rank, and is p.d.s.   

So,  𝒆∗
′𝒆∗ > 𝒆′𝒆 , because (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) > 0 . 

This last result also gives us an alternative (convenient) way of writing the formula for the F-

statistic: 

(𝒆∗
′𝒆∗ − 𝒆′𝒆) = (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒)      

                        = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) . 

Recall that: 

  𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
 

So, clearly, 

𝐹 =
(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝑠2
=

(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝒆′𝒆/(𝑛 − 𝑘)
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For the last example: 

J = 1 ;  (n – k) = (25 – 3) = 22 

(𝒆∗′𝒆∗) = 1.307857    ;  (𝒆′𝒆) = 1.22226 

So,      𝐹 =
(1.307857−1.22226)/1

1.22226/22
= 1.54070        

In Retrospect 

 Now we can see why R
2
    when we add any regressor to our model (and R

2
    when we 

delete any regressor). 

 Deleting a regressor is equivalent to imposing a zero restriction on one of the 

coefficients.  

 The residual sum of squares    and so R
2
    . 

Exercise: use the R
2
 from the unrestricted and restricted model to calculate F. 

 

Estimating the Error Variance 

We have considered the RLS estimator of β . What about the corresponding estimator of the 

variance of the error term, 𝜎2 ? 

Theorem: 

Let b* be the RLS estimator of β in the model,  

𝒚 = 𝑋𝜷 + 𝜺        ;   𝜺 ~ [0 , 𝜎2𝐼𝑛] 

and let the corresponding residual vector be 𝒆∗ = (𝒚 − 𝑋𝒃∗). Then the following estimator of 𝜎2 

is unbiased, if the restrictions, 𝑅𝜷 = 𝒒, are satisfied: 𝑠∗
2 = (𝒆∗′𝒆∗)/(𝑛 − 𝑘 + 𝐽) . 

See if you can prove this result! 

 


