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Topic 3: Inference and Prediction 

We’ll be concerned here with testing more general hypotheses than those seen to date. Also 

concerned with constructing interval predictions from our regression model. 

Examples 

        𝒚 = 𝑋𝜷 + 𝜺      ;       𝐻0: 𝜷 = 𝟎    vs.        𝐻𝐴: 𝜷 ≠ 𝟎       

        log(𝑄) = 𝛽1 + 𝛽2log (𝐾) + 𝛽3log (𝐿) + 𝜀 

       𝐻0: 𝛽2 + 𝛽3 = 1    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 1     

        log(𝑞) = 𝛽1 + 𝛽2log (𝑝) + 𝛽3log (𝑦) + 𝜀 

      𝐻0: 𝛽2 + 𝛽3 = 0    vs.        𝐻𝐴: 𝛽2 + 𝛽3 ≠ 0     

If we can obtain one model from another by imposing restrictions on the parameters of the first 

model, we say that the 2 models are “Nested ”. 

We’ll be concerned with (several) possible restrictions on β, in the usual model: 

                          𝒚 = 𝑋𝜷 + 𝜺      ;      𝜺 ~ 𝑁[0 , 𝜎2𝐼𝑛]  

                                 (X is non-random  ;  𝑟𝑎𝑛𝑘(𝑋) = 𝑘) 

To begin with, let’s focus on linear restrictions: 

                  𝑟11𝛽1 + 𝑟12𝛽2 + ⋯ + 𝑟1𝑘𝛽𝑘 = 𝑞1 

                  𝑟21𝛽1 + 𝑟22𝛽2 + ⋯ + 𝑟2𝑘𝛽𝑘 = 𝑞2 

                                           .                                      (J restrictions) 

                                           . 

                  𝑟𝐽1𝛽1 + 𝑟𝐽2𝛽2 + ⋯ + 𝑟𝐽𝑘𝛽𝑘 = 𝑞𝐽 

Some (many?) of the 𝑟𝑖𝑗′𝑠 may be zero. 

 Combine these J restrictions: 

                           𝑅𝜷 = 𝒒                 ;    R and q are known, & non-random 

                      (𝐽 × 𝑘)(𝑘 × 1)    (𝐽 × 1)   

 We’ll assume that 𝑟𝑎𝑛𝑘(𝑅) = 𝐽  (< 𝑘). 
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 No conflicting or redundant restrictions. 

 What if J = k ? 

Examples 

1.          𝛽2 = 𝛽3 = ⋯ = 𝛽𝑘 = 0 

             𝑅 = [
0 1
⋮ ⋮
0 0

    
0 0
⋮ ⋮
0 0

    
⋯ 0
⋮ ⋮
0 1

]        ;       𝒒 = [
0
⋮
0

] 

2.         𝛽2 + 𝛽3 = 1 

      𝑅 = [0 1 1    0 ⋯ 0]        ;        𝑞 = 1 

 

3.       𝛽3 = 𝛽4   ;     and     𝛽1 = 2𝛽2    

     𝑅 = [
0    0 1
1 −2 0

    
−1 0 ⋯
   0 0 ⋯

   
0
0

]   ;   𝑞 = [
0
⋮
0

] 

 Suppose that we just estimate the model by LS, and get 𝒃 = (𝑋′𝑋)−1𝑋′𝒚. 

 It is very unlikely that 𝑅𝒃 = 𝒒    !   

 Denote          𝒎 = 𝑅𝒃 − 𝒒 . 

 Clearly, m is a (𝐽 × 1)  random vector. 

 Let’s consider the sampling distribution of m: 

        𝒎 = 𝑅𝒃 − 𝒒              ;        it is a linear function of b. 

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally 

distributed. 

𝐸[𝒎] = 𝑅𝐸[𝒃] − 𝒒 = 𝑅𝜷 − 𝒒                           (What assumptions used?)        

So,  𝐸[𝒎] = 𝟎 ;     iff     𝑅𝜷 = 𝒒       

Also,       𝑉[𝒎] = 𝑉[𝑅𝒃 − 𝒒] = 𝑉[𝑅𝒃] = 𝑅𝑉[𝒃]𝑅′ 

                        = 𝑅𝜎2(𝑋′𝑋)−1𝑅′ = 𝜎2𝑅(𝑋′𝑋)−1𝑅′    

                                                                             (What assumptions used?) 
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So,              𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  . 

Let’s see how we can use this information to test if   𝑅𝜷 = 𝒒 .          (Intuition?)        

Definition:      The Wald Test Statistic for testing 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒                    is:                    

𝑊 = 𝒎′[𝑉(𝒎)]−1𝒎 . 

So, if 𝐻0 is true: 

                  𝑊 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

                       = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝜎2 . 

Because        𝒎 ~ 𝑁[𝟎 , 𝜎2𝑅(𝑋′𝑋)−1𝑅′]  , then if 𝐻0 is true: 

                   𝑊 ~ 𝜒(𝐽)
2      ;                  provided that 𝜎2 is known. 

Notice that: 

 This result is valid only asymptotically if 𝜎2 is unobservable, and we replace it with any 

consistent estimator. 

 We would reject 𝐻0 if 𝑊 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒. (i.e., when 𝒎 = 𝑅𝒃 − 𝒒 is sufficiently 

“large”.)     

 The Wald test is a very general testing procedure – other testing problems. 

 Wald test statistic always constructed using an estimator that ignores the restrictions 

being tested. 

 As we’ll see, for this particular testing problem, we can modify the Wald test slightly, 

and obtain a test that is exact in finite samples, and has excellent power properties.         
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What is the F-statistic? 

To derive this test statistic, we need a preliminary result. 

Definition:      

Let  𝑥1~ 𝜒(𝑣1)
2      and    𝑥2~ 𝜒(𝑣2)

2                    and independent 

Then 

         𝐹 =
[

𝑥1
𝑣1

]

[
𝑥2
𝑣2

]
 ~ 𝐹(𝑣1,𝑣2)                       ;          Snedecor’s F-Distribution 

Note: 

 (𝑡(𝑣))
2

= 𝐹(1,𝑣)                                      ;       Why does this make sense? 

 𝑣1𝐹(𝑣1,𝑣2)  
𝑑
→ 𝜒(𝑣1)

2                                 ;       Explanation? 

Let’s proceed to our main result, which involves the statistic,  𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2 ) . 

Theorem:  

 𝐹 = (
𝑊

𝐽
) (

𝜎2

𝑠2 ) ~ 𝐹(𝐽 ,   (𝑛−𝑘)) , if the Null Hypothesis 𝐻0: 𝑅𝜷 = 𝒒 is true. 

Proof:  

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)

𝜎2
(

1

𝐽
) (

𝜎2

𝑠2
) 

=
(𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽

[
(𝑛 − 𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘)
= (

𝑁

𝐷
) 

where     𝐷 = [
(𝑛−𝑘)𝑠2

𝜎2 ] /(𝑛 − 𝑘) = 𝜒(𝑛−𝑘)
2 /(𝑛 − 𝑘)   . 

Consider the numerator: 

            𝑁 = (𝑅𝒃 − 𝒒)′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) /𝐽. 

Suppose that 𝐻0 is TRUE, so that = 𝒒 , and then 
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           (𝑅𝒃 − 𝒒) = (𝑅𝒃 −  𝑅𝜷) = 𝑹(𝒃 − 𝜷)  . 

Now, recall that 

       𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,                 𝑅(𝒃 − 𝜷) = 𝑅(𝑋′𝑋)−1𝑋′𝜺 , 

and    𝑁 = [𝑅(𝑋′𝑋)−1𝑋′𝜺]′[𝜎2𝑅(𝑋′𝑋)−1𝑅′]−1[𝑅(𝑋′𝑋)−1𝑋′𝜺]/𝐽  

                  = (1
𝐽⁄ ) (𝜺

𝜎⁄ )′[𝑄](𝜺
𝜎⁄ ) , 

where           𝑄 = 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ , 

and            (𝜺
𝜎⁄ ) ~ 𝑁[𝟎 , 𝐼𝑛] . 

Now,    (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ ) ~ 𝜒(𝑟)
2  if and only if Q is idempotent, where 

              𝑟 = 𝑟𝑎𝑛𝑘(𝑄) . 

Easy to check that Q is idempotent. 

So,  𝑟𝑎𝑛𝑘(𝑄) = 𝑡𝑟. (𝑄) 

                      = 𝑡𝑟. {𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ } 

                      = 𝑡𝑟. {(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′𝑋} 

                     = 𝑡𝑟. {𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

                     = {[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′} 

                     = 𝑡𝑟. (𝐼𝐽) = 𝐽 . 

So,   𝑁 = (1
𝐽⁄ ) (𝜺

𝜎⁄ )′[𝑄](𝜺
𝜎⁄ ) = 𝜒(𝐽)

2 /𝐽 . 

 In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their 

degrees of freedom. 

 Are N and D independent? 
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 The Chi-Square statistic in N is:   (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ ) . 

 The Chi-Square statistic in D is:   [
(𝑛−𝑘)𝑠2

𝜎2 ]             (see bottom of slide 13) 

Re-write this: 

            [
(𝑛−𝑘)𝑠2

𝜎2
] =

(𝑛−𝑘)

𝜎2
(𝒆′𝒆

(𝑛 − 𝑘)⁄ ) = (𝒆′𝒆
𝜎2⁄ ) 

                             = (𝑀𝜺
𝜎⁄ )′(𝑀𝜺

𝜎⁄ ) = (𝜺
𝜎⁄ )′𝑀(𝜺

𝜎⁄ ) . 

So, we have  

        (𝜺
𝜎⁄ )′[𝑄](𝜺

𝜎⁄ )      and      (𝜺
𝜎⁄ )′𝑀(𝜺

𝜎⁄ ) . 

These two statistics are independent if and only if 𝑀𝑄 = 0 . 

𝑀𝑄 = [𝐼 − 𝑋(𝑋′𝑋)−1𝑋′] 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′  

       = 𝑄 − 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′ 

       = 𝑄 − 𝑄 = 0 . 

So, if 𝐻0 is TRUE, our statistic, F is the ratio of 2 independent Chi-Square variates, each divided 

by their degrees of feeedom. 

This implies that, if 𝐻0 is TRUE, 

             𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
  ~ 𝐹(𝐽,(𝑛−𝑘)) 

 

What assumptions have been used ?      What if 𝐻0 is FALSE ? 

Implementing the test – 

 Calculate F . 
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 Reject 𝐻0: 𝑅𝜷 = 𝒒   in favour of  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   if > 𝑐𝛼 . 

 

Why do we use this particular test for linear restrictions? 

This F-test is Uniformly Most Powerful. 

Another point to note – 

                 (𝑡(𝑣))
2

= 𝐹(1,𝑣)  

Consider       𝑡(𝑛−𝑘) = (𝑏𝑖 − 𝛽𝑖)/(𝑠. 𝑒. (𝑏𝑖))     

Then,     (𝑡(𝑛−𝑘))
2

~𝐹(1,(𝑛−𝑘))  ;  t-test is UMP against 1-sided alternatives 

Example  

Let’s return to the Card (1993) data, used as an example of I.V. 

Recall the results of the IV estimation: 

  

resiv = lm(wage ~ urban + gender + ethnicity + unemp + educfit) 

summary(resiv) 

Regression Estimates

-0.5

0.0

0.5

1.0

urban female black hispanic unemp educfit
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Coefficients: 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       -2.053604   1.675314  -1.226   0.2203     

urbanyes          -0.013588   0.046403  -0.293   0.7697     

genderfemale      -0.086700   0.036909  -2.349   0.0189 *   

ethnicityafam     -0.566524   0.051686 -10.961  < 2e-16 *** 

ethnicityhispanic -0.529088   0.048429 -10.925  < 2e-16 *** 

unemp              0.145806   0.006969  20.922  < 2e-16 *** 

educfit            0.774340   0.120372   6.433 1.38e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.263 on 4732 degrees of freedom 

Multiple R-squared:  0.1175,    Adjusted R-squared:  0.1163  

F-statistic:   105 on 6 and 4732 DF,  p-value: < 2.2e-16 

Let’s test the hypothesis that urban and gender are jointly insignificant. 

𝐻0:  𝛽2 = 𝛽3 = 0    vs.   𝐻𝐴: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 𝑐𝑜𝑒𝑓𝑓𝑠. ≠ 0. (J = 2) 

 

Let’s see R-code for calculating the F-stat from the formula: 

𝐹 =
(𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽

𝑠2
= (𝑅𝒃 − 𝒒)′[𝑅𝑠2(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/𝐽 

 

R = matrix(c(0,0,1,0,0,1,0,0,0,0,0,0,0,0),2,7) 

> R 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] 

[1,]    0    1    0    0    0    0    0 

[2,]    0    0    1    0    0    0    0 

  

(n - k) = (4739 – 7) = 4732 
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b = matrix(resiv$coef,7,1) 

> b 

            [,1] 

[1,] -2.05360353 

[2,] -0.01358775 

[3,] -0.08670020 

[4,] -0.56652448 

[5,] -0.52908814 

[6,]  0.14580613 

[7,]  0.77433967 

 

q = matrix(c(0,0),2,1) 

> q 

     [,1] 

[1,]    0 

[2,]    0 

 

m = R%*%b – q 

> m 

            [,1]  

[1,] -0.01358775 

[2,] -0.08670020 

 

F = t(m) %*% solve(R %*% vcov(resiv) %*% t(R)) %*% m 

 

 

 

> F 

         [,1] 

[1,] 5.583774 

 

Is this F-stat “large”? 

> 1 - pf(F,2,4732) 

            [,1] 

[1,] 0.003783159 

Should we be using the F-test? 

Wald = 2*F 

> 1 - pchisq(Wald,2) 

            [,1] 

[1,] 0.003758353 

𝑠2(𝑋′𝑋)−1 invert 

transpose 
multiply 
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Why are the p-values from the Wald and F-test so similar? 

 

Restricted Least Squares Estimation: 

If we test the validity of certain linear restrictions on the elements of β, and we can’t reject them, 

how might we incorporate the restrictions (information) into the estimator? 

Definition: The “Restricted Least Squares” (RLS) estimator of β, in the model, 𝒚 = 𝑋𝜷 + 𝜺, is 

the vector, 𝒃∗ , which minimizes the sum of the squared residuals, subject to the constraint(s) 

𝑅𝒃∗ = 𝒒 . 

 Let’s obtain the expression for this new estimator, and derive its sampling distribution. 

 Set up the Lagrangian:       ℒ = (𝒚 − 𝑋𝒃∗)′(𝒚 − 𝑋𝒃∗) + 2𝝀′(𝑅𝒃∗ − 𝒒) 

 

 Set (𝜕ℒ/𝜕𝒃∗) = 0     ;    (𝜕ℒ/𝜕𝝀) = 0   ,  and solve ………. 

ℒ = 𝒚′𝒚 + 𝒃∗′𝑋′𝑋𝒃∗ − 2𝒚′𝑋𝒃∗ + 2𝝀′(𝑅𝒃∗ − 𝒒) 

(𝜕ℒ/𝜕𝒃∗) = 2𝑋′𝑋𝒃∗ − 2𝑋′𝒚 + 2𝑅′𝝀 = 𝟎                               [1] 

(𝜕ℒ/𝜕𝝀) = 2(𝑅𝒃∗ − 𝒒) = 𝟎                                                     [2] 

From [1]: 

            𝑅′𝝀 = 𝑋′(𝒚 − 𝑋𝒃∗) 

So,      𝑅(𝑋′𝑋)−1𝑅′𝝀 = 𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

or,       𝝀 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗)             [3] 

Inserting [3] into [1], and dividing by “2”: 

(𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑋′(𝒚 − 𝑋𝒃∗) 

So,   (𝑋′𝑋)𝒃∗ = 𝑋′𝒚 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝒃 − 𝒃∗) 

or, 

  𝒃∗ = (𝑋′𝑋)−1𝑋′𝒚 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝑅𝒃∗) 

b 
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or, using [2]: 

      

 RLS = LS + “Adjustment Factor”. 

 What if Rb = q ? 

 Interpretation of this? 

 What are the properties of this RLS estimator of β ? 

Theorem:  The RLS estimator of β is Unbiased if 𝑅𝜷 = 𝒒  is TRUE. 

                   Otherwise, the RLS estimator is Biased. 

Proof:  

𝐸(𝒃∗) = 𝐸(𝒃) − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑹𝐸(𝒃) − 𝒒) 

                   = 𝜷 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝜷 − 𝒒) . 

So, if  𝑅𝜷 = 𝒒, then 𝐸(𝒃∗) = 𝜷. 

 

Theorem:  The covariance matrix of the RLS estimator of β is 

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

 

Proof: 

        𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

             = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅}𝒃 + 𝜶 

where 

         𝜶 = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝒒                         (non-random) 

So,     𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′  , 

𝒃∗ = 𝒃 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 
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where    𝐴 = {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} . 

That is,        𝑉(𝒃∗) = 𝐴𝑉(𝒃)𝐴′ = 𝜎2𝐴(𝑋′𝑋)−1𝐴′           (assumptions?) 

Now let’s look at the matrix, 𝐴(𝑋′𝑋)−1𝐴′    .        

 

𝐴(𝑋′𝑋)𝐴′= {𝐼 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅} (𝑋′𝑋)−1     

× {𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

= (𝑋′𝑋)−1 + (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

−2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

= (𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

So,   

𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} . 

(What assumptions have we used to get this result?) 

We can use this result immediately to establish the following…… 

Theorem:  The matrix,  𝑉(𝒃) − 𝑉(𝒃∗) , is at least positive semi-definite. 

Proof:  

    𝑉(𝒃∗) = 𝜎2(𝑋′𝑋)−1{𝐼 − 𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1} 

              = 𝜎2(𝑋′𝑋)−1 − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

              = 𝑉(𝒃) − 𝜎2(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1 

So,    𝑉(𝒃) − 𝑉(𝒃∗) = 𝜎2∆  ,  say 

where     ∆ = (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1. 

This matrix is square, symmetric, and of full rank. So, ∆ is at least p.s.d.. 
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 This tells us that the variability of the RLS estimator is no more than that of the LS 

estimator, whether or not the restrictions are true. 

 Generally, the RLS estimator will be “more precise” than the LS estimator. 

 When will the RLS and LS estimators have the same variability? 

 In addition, we know that the RLS estimator is unbiased if the restrictions are true. 

 So, if the restrictions are true, the RLS estimator, 𝒃∗, is more efficient than the LS 

estimator, b, of the coefficient vector, β . 

Also note the following: 

 If the restrictions are false, and we consider MSE(b) and MSE(𝒃∗), then the relative 

efficiency can go either way. 

 If the restrictions are false, not only is 𝒃∗ biased, it’s also inconsistent. 

So, it’s a good thing that that we know how to construct the UMP test for the validity of the 

restrictions on the elements of β ! 

In practice: 

 Estimate the unrestricted model, using LS. 

 Test 𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒 . 

 If the null hypothesis can’t be rejected, re-estimate the model with RLS. 

 Otherwise, retain the LS estimates. 
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Example: Cobb-Douglas Production Function
1
 

> 

cobbdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/co

bb.csv") 

> attach(cobbdata) 

> res = lm(log(y) ~ log(k) + log(l)) 

> summary(res) 

 

Call: 

lm(formula = log(y) ~ log(k) + log(l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   1.8444     0.2336   7.896 7.33e-08 *** 

log(k)        0.2454     0.1069   2.297   0.0315 *   

log(l)        0.8052     0.1263   6.373 2.06e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.2357 on 22 degrees of freedom 

Multiple R-squared: 0.9731,     Adjusted R-squared: 0.9706  

F-statistic: 397. 5 on 2 and 22 DF,  p-value: < 2.2e-16 

 

 

 

Let’s get the SSE from this regression, for later use: 

> sum(res$residuals^2) 

[1] 1.22226 

 

Test the hypothesis of constant returns to scale: 

 

𝑯𝟎: 𝜷𝟐 + 𝜷𝟑 = 𝟏       vs.     𝑯𝑨: 𝜷𝟐 + 𝜷𝟑 ≠ 𝟏     

> R = matrix(c(0,1,1),1,3) 

> R 

     [,1] [,2] [,3] 

[1,]    0    1    1 

 

                                                           
1
 The data are from table F7.2, Greene, 2012 

What’s this? 

SSE = 1.22226 



15 
 

> b = matrix(res$coef,3,1) 

> b 

          [,1] 

[1,] 1.8444157 

[2,] 0.2454281 

[3,] 0.8051830 

 

> q = 1 

 

> m = R%*%b - q 

> m 

           [,1] 

[1,] 0.05061103 

 

> F = t(m) %*% solve(R %*% vcov(res) %*% t(R)) %*% m 

> F 

         [,1] 

[1,] 1.540692 

 

> 1 - pf(F,1,22) 

          [,1] 

[1,] 0.2275873 

 

Are the residuals normally distributed? 

> hist(res$residuals) 

 

Histogram of res$residuals

res$residuals
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Cannot reject at 10% sig. level 
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> library(tseries) 

> jarque.bera.test(res$residuals) 

        Jarque Bera Test 

 

data:  res$residuals  

X-squared = 5.5339, df = 2, p-value = 0.06285 

F-test “supported” the validity of the restriction on the coefficients, so now impose this 

restriction of CRTS. Use RLS: 

log(𝑄/𝐿) = 𝛽1 + 𝛽2 log(𝐾/𝐿) + 𝜀 

> rlsres = lm(log(y/l) ~ log(k/l)) 

> summary(rlsres) 

Call: 

lm(formula = log(y/l) ~ log(k/l)) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.0950     0.1189  17.615 7.55e-15 *** 

log(k/l)      0.2893     0.1020   2.835  0.00939 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Residual standard error: 0.2385 on 23 degrees of freedom 

Multiple R-squared: 0.2589,     Adjusted R-squared: 0.2267  

F-statistic: 8.036 on 1 and 23 DF,  p-value: 0.009387 

 

> sum(rlsres$residuals^2) 

[1] 1.307857 

 

Form the LS and RLS results for this particular application, note that 

𝒆′𝒆 = (𝒚 − 𝑋𝒃)′(𝒚 − 𝑋𝒃) = 1.22226 

𝒆∗
′𝒆∗ = (𝒚 − 𝑋𝒃∗)′(𝒚 − 𝑋𝒃∗) = 1.307857 

SSE = 1.307857 

Might want to use Wald test instead! 



17 
 

So,   𝒆∗
′𝒆∗ > 𝒆′𝒆  . 

 In fact this inequality will always hold . 

 What’s the intuition behind this? 

Note that: 

𝒆∗ = (𝒚 − 𝑋𝒃∗) = 𝒚 − 𝑋𝒃 + 𝑋(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

     = 𝒆 + 𝑋(𝑋′𝑋)𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) 

Now, recall that  𝑋′𝒆 = 𝟎 . 

So,  

𝒆∗
′𝒆∗ = 𝒆′𝒆 + (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) , 

where: 

𝐴 = [𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1(𝑋′𝑋)(𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1 

    = [𝑅(𝑋′𝑋)−1𝑅′]−1     ;    this matrix has full rank, and is p.d.s.   

So,  𝒆∗
′𝒆∗ > 𝒆′𝒆 , because (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒) > 0 . 

This last result also gives us an alternative (convenient) way of writing the formula for the F-

statistic: 

(𝒆∗
′𝒆∗ − 𝒆′𝒆) = (𝑅𝒃 − 𝒒)′𝐴(𝑅𝒃 − 𝒒)      

                        = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒) . 

Recall that: 

  𝐹 =
(𝑅𝒃−𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃−𝒒)/𝐽

𝑠2
 

So, clearly, 

𝐹 =
(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝑠2
=

(𝒆∗′𝒆∗ − 𝒆′𝒆)/𝐽

𝒆′𝒆/(𝑛 − 𝑘)
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For the last example: 

J = 1 ;  (n – k) = (25 – 3) = 22 

(𝒆∗′𝒆∗) = 1.307857    ;  (𝒆′𝒆) = 1.22226 

So,      𝐹 =
(1.307857−1.22226)/1

1.22226/22
= 1.54070        

In Retrospect 

 Now we can see why R
2
    when we add any regressor to our model (and R

2
    when we 

delete any regressor). 

 Deleting a regressor is equivalent to imposing a zero restriction on one of the 

coefficients.  

 The residual sum of squares    and so R
2
    . 

Exercise: use the R
2
 from the unrestricted and restricted model to calculate F. 

 

Estimating the Error Variance 

We have considered the RLS estimator of β . What about the corresponding estimator of the 

variance of the error term, 𝜎2 ? 

Theorem: 

Let b* be the RLS estimator of β in the model,  

𝒚 = 𝑋𝜷 + 𝜺        ;   𝜺 ~ [0 , 𝜎2𝐼𝑛] 

and let the corresponding residual vector be 𝒆∗ = (𝒚 − 𝑋𝒃∗). Then the following estimator of 𝜎2 

is unbiased, if the restrictions, 𝑅𝜷 = 𝒒, are satisfied: 𝑠∗
2 = (𝒆∗′𝒆∗)/(𝑛 − 𝑘 + 𝐽) . 

See if you can prove this result! 

 


