Topic 3: Inference and Prediction

We’ll be concerned here with testing more general hypotheses than those seen to date. Also

concerned with constructing interval predictions from our regression model.
Examples

o y=XB+e ; Hy: =0 vs. Hyi:B+0
. log(Q) = B1 + B2log(K) + Bslog(L) + ¢
Hy: B, +B3=1 s Hy: B+ 63+ 1

. log(q) = B1 + B2log(p) + Bslog(y) + ¢
Hy: B, + B3 =0 vs. Hy: B2+ B3 #0

If we can obtain one model from another by imposing restrictions on the parameters of the first
model, we say that the 2 models are “Nested .

We’ll be concerned with (several) possible restrictions on £, in the usual model:
y=XB+& ; &~N[0,0%],]
(X'is non-random ; rank(X) = k)
To begin with, let’s focus on linear restrictions:
1B +112B2 + o+ 1B = q1

72181 + 1222 + -+ + o B = q2

(J restrictions)

T11B1 + 172P2 + -+ 1B = q;
Some (many?) of the r;;'s may be zero.

e Combine these J restrictions:
RB =q ;  Rand g are known, & non-random
Ixk)(kx1) (Jx1)

e We’ll assume that rank(R) =] (< k).



¢ No conflicting or redundant restrictions.
e WhatifJ=k?

Examples

1. Bo=PB3=:=P=0

0100 « 0 0
R=|: : : :+ 1 ' E Nk

000 0 0 1 0
2. ﬁz‘l‘ﬁg:l

R=[0 1 1 0 - 0] ;o q=1

3. Bs=P. ; and By =2p,

e Suppose that we just estimate the model by LS, and get b = (X'X)"1Xy.
e ltisveryunlikely that Rb =q !

e Denote m=Rb—gq.

e Clearly, misa (J x 1) random vector.

e Let’s consider the sampling distribution of m:
m=Rb—q ; itis a linear function of b.

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally
distributed.

E[m] =RE[b]—q=RB —q (What assumptions used?)
So, Elm]|=0; iff RB=gq
Also, V[m]=V[Rb— q] = V[Rb] = RV[b]R'

= Ro2(X'X)"'R' = 62R(X'X)" R’

(What assumptions used?)



So, m~ N[0,02R(X'X)"'R"] .
Let’s see how we can use this information to test if R =gq . (Intuition?)

Definition:  The Wald Test Statistic for testing Hy: R = q VvS. Hy: RB # q is:
W=m'[Vim)]"'m.

So, if Hy is true:
W = (Rb—q)'[c*R(X'X)"'R']"'(Rb — q)
= (Rb— q)'[RIX'X)'R']"*(Rb — q)/0* .
Because m~ N[0,0?R(X'X)"1R'] ,thenif H, is true:
W~xt provided that o2 is known.
Notice that:

e This result is valid only asymptotically if o2 is unobservable, and we replace it with any
consistent estimator.

e We would reject Hy if W > critical value. (i.e., when m = Rb — q is sufficiently
“large”.)

e The Wald test is a very general testing procedure — other testing problems.

e Wald test statistic always constructed using an estimator that ignores the restrictions
being tested.

o Aswe’ll see, for this particular testing problem, we can modify the Wald test slightly,

and obtain a test that is exact in finite samples, and has excellent power properties.



What is the F-statistic?

To derive this test statistic, we need a preliminary result.

Definition:
Let x,~ &, and x,~x¢,, and independent
Then
X1
F= %cj] ~ Fy, v,) ; Snedecor’s F-Distribution
v2
Note:
. (t(v))z = Fa1) X Why does this make sense?
d
e ViFy v, — X(Zvl) ; Explanation?

. C . .. w 2
Let’s proceed to our main result, which involves the statistic, F = (—) (U—) .

]/ \s?
Theorem:
F = (?) (:—22) ~Fy, m-ky » if the Null Hypothesis Hy: RB = q is true.
Proof:
o (Rb — @)'[R(X'X)"'R']"Y(Rb — q) (1 (o>
B o? (7) s2
_ Rb=q)[’RXO R Rb =) /] _ Ny
= ——— = (=
=2 /- 1 P
where D = [“Z95] /(0 — k) = xF_y/(n = k) .

Consider the numerator:
N = (Rb—q)'[¢*R(X'X)"'R']"*(Rb—q) /].

Suppose that H, is TRUE, so that = q , and then



(Rb—q)=(Rb— RB)=R(b-p) .
Now, recall that
b=XX)"X'y=XX)"X'(XB+¢e) =B+ XX) X,
So, R(b—B) =R(X'X)'X'e,

and N = [R(X'X)"1X'e]'[62R(X'X) R R(X'X)"1X"e] /]

= (1) C/o)'1Q1¢C/ o)
where Q=XX'X)'R'[RX'X)"'RT'RX'X) X',
and (%/¢) ~ N[0, 1,,] .

Now,  (%/5)'[Q1(%/5) ~ il if and only if Q is idempotent, where
r =rank(Q) .
Easy to check that Q is idempotent.
So, rank(Q) = tr.(Q)
= tr {X(X'X)"'R[R(X'X)" R R(X'X)"1X"}
=tr {(X'X)"R'[R(X'X) R 'R(X'X)~1X'X}
= tr {R'[R(X'X)"IR'"IR(X'X)" 1}
= {[R(X'X)"R'"*R(X'X)"1R"}
=tr.(I)) =] .
so, N = (1)) /o) 1Q1CE/o) = 2811 -

e In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their
degrees of freedom.

e Are N and D independent?



e The Chi-Square statistic in N is: (¢/5)'[Q1(%/4) .
(n—k)sz]

o2

e The Chi-Square statistic in D is: [ (see bottom of slide 13)

Re-write this:

2 = 2019 = (%

= (Me/5;)(ME/5) = (£/5)M(¥/g) .

So, we have
(¢/6)'1Q1(*/5) and  (/0)'M(¥/5) .

These two statistics are independent if and only if MQ =0 .

MQ =[I—X(X'X) X1 X(X'X)"'R'[R(X'X)"R']"R(X'X)"1X'
=Q —X(X'X)"X'X(X'X)R'[R(X'X) R IR(X'X)1X’'
=Q — X(X'X)R'[R(X'X) R IR(X'X)"1X'
=Q-Q=0.

So, if Hy is TRUE, our statistic, F is the ratio of 2 independent Chi-Square variates, each divided

by their degrees of feeedom.
This implies that, if H, is TRUE,

_ (Rb—q)'[R(X"X)"'R'1"Y(Rb—q)/]
F= - ~Fym-n)

What assumptions have beenused ?  What if Hy is FALSE ?
Implementing the test —

e Calculate F.



e Reject Hy:Rp =q infavourof Hy:RB #q if>c,.

Why do we use this particular test for linear restrictions?
This F-test is Uniformly Most Powerful.

Another point to note —
(tw)” = Faw)
Consider  tp_xy = (b — B)/(s.e.(by))
Then, (tmero) ~Fumoiy ; ttestis UMP against 1-sided alternatives

Example

Let’s return to the Card (1993) data, used as an example of L.V.

Recall the results of the IV estimation:

Regression Estimates

1.0 T

0.0 o'----- } --------------- [T

05 - {
urban female black hispanic unemp educfit

resiv = lm(wage ~ urban + gender + ethnicity + unemp + educfit)

summary (resiv)



Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -2.053604 1.675314 -1.226 0.2203
urbanyes -0.013588 0.046403 -0.293 0.7697
genderfemale -0.086700 0.036909 -2.349 0.0189 ~*
ethnicityafam -0.566524 0.051686 -10.961 < 2e-16 **x*
ethnicityhispanic -0.529088 0.048429 -10.925 < 2e-16 **x*
unemp 0.145806 0.006969 20.922 < 2e-1l6 ***
educfit 0.774340 0.120372 6.433 1.38e-10 ***

Signif. codes: 0 ‘***’ (0.001 ‘**" 0.01 ‘*’ 0.05 . 0.1 " 1

(n-K) = (4739 — 7) = 4732

Residual standard error: 1.263 on 4732 degrees of freedom
Multiple R-squared: 0.1175, Adjusted R-squared: 0.1163
F-statistic: 105 on 6 and 4732 DF, p-value: < 2.2e-16

Let’s test the hypothesis that urban and gender are jointly insignificant.

Hy: B2 =3 =0 Vs. Hy: At least one of these coeffs.+ 0. (J = 2)

Let’s see R-code for calculating the F-stat from the formula:

_ (Rb—q)'[RX'X) 'R (Rb - q)/]
SZ

F = (Rb— q)'[Rs*(X'X)7'R']"'(Rb — q)/]

R = matrix(c¢(0,0,1,0,0,1,0,0,0,0,0,0,0,0),2,7)
>



matrix (resivScoef, 7

[,1]
.05360353
.01358775
.08670020
.56652448
.52908814
0.14580613
0.77433967

/1)

[,1]

invert

[1,] -0.01358775
[2,] -0.08670020
F = t(m) %$*% solve(R %*
\ transpose
> F
(,1]
[1,] 5.583774

Is this F-stat “large”?

> 1 - pf(F,2,4732)
[,1]

[1,] 0.003783159

Should we be using the F-test?

Wald = 2*F
> 1 - pchisg(Wald, 2)
[,1]

[1,] 0.003758353

% vcov (resiv)

s2(x'x) 1t

¢} ¢}
$*%

o°

t(R))

LN

multiply

o°



Why are the p-values from the Wald and F-test so similar?
Restricted Least Squares Estimation:

If we test the validity of certain linear restrictions on the elements of #, and we can’t reject them,

how might we incorporate the restrictions (information) into the estimator?

Definition: The “Restricted Least Squares” (RLS) estimator of , in the model, y = XB + ¢, is
the vector, b, , which minimizes the sum of the squared residuals, subject to the constraint(s)
Rb, =q.

e Let’s obtain the expression for this new estimator, and derive its sampling distribution.
e Setupthe Lagrangian: L= (y—Xb,) (y — Xb,) + 2A'(Rb, — q)
e Set(dL/ob,)=0 ; (0L/0A)=0 , andsolve..........

L=Y'y+b,/X'Xb, — 2y'Xb, + 24'(Rb, — q)

(0L/0b,) = 2X'Xb, —2X'y+2R'2=0 [1]
(0£/04) = 2(Rb. —q) =0 [2]
From [1]:

R'2=X'(y —Xb,)
So, R(X'X)"'R'A=RX'X)"X'(y—Xb,)
or, A=[RX'X)'R'RX'X)"1X'(y — Xb.) [3]
Inserting [3] into [1], and dividing by ‘2"
(X'X)b, = X'y — R'[R(X'X) 'R R(X'X)~X'(y — Xb,)

So, (X'X)b,=X'y—R'[RX'X)"'R']"'R(b - b.)
or,

b, =X'X)"X'y — (X'X)"'R'[R(X'X)"*R']"*(Rb — Rb.)
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or, using [2]:

b.=b— (X'X)"'R'[RX'X)"'R'I"'(Rb - q)

e RLS=LS + “Adjustment Factor”.
e WhatifRb=q?
e Interpretation of this?

e What are the properties of this RLS estimator of g ?
Theorem: The RLS estimator of £ is Unbiased if R = q is TRUE.
Otherwise, the RLS estimator is Biased.
Proof:

E(b.) = E(b) — X'X)T'R'[RX'X)"'R'|"*(RE(b) — q)
=B - X'X)T'RRX'X)T'R'I"'(RB—q) .

So, if RB = q, then E(b,) = B.

Theorem: The covariance matrix of the RLS estimator of £ is

V(b,) =a?(X'X)"Y{I - R'[R(X'X) IR IR(X'X)"1}

Proof:
b.=b— (X'X)'R'[RX'X)"'R']"*(Rb — q)
={I-X'X)'R[R(X'X)"R]"R}b + a
where
a=XX)"R[RIX'X)"IR'1q (non-random)

So, V(b)) =AV(D)A'

11



where A={I— (X'X)"'R'[R(X'X)"R'|"1R}.
That is, V(b,) = AV(D)A' = c2A(X'X)7 1A’ (assumptions?)

Now let’s look at the matrix, A(X'X) 1A’

AX'X)A'={I — (X'X)'R'[R(X'X)"'R'] 'R} (X'X)™?
x {I — R'[R(X'X)"*R']"*R(X'X)" 1}
= (X'X)7 + (X' X) TR [RXX)TRTIR(X) T R'[R(X'X) 'R R(X'X)
—2(X'X)'R'[R(X'X)"*R']'R(X'X)"?
= (X'X)"YI - R'[R(X'X)"'R']*R(X'X)"} .

So,
V(b,) = a?(X'X)"Y{I — R'[R(X'X)"*R']"'R(X'X)~'}.

(What assumptions have we used to get this result?)
We can use this result immediately to establish the following......
Theorem: The matrix, V(b) —V(b,) , is at least positive semi-definite.
Proof:
V(b)) =a*X'X)"MI - R[R(X'X)'R']T'R(X'X) ™1}

=c?(X'X)" ' —c?(X'X)IR'[RX'X)"IRIR(X'X)?

=V(b) —c?(X'X)"'R'[R(X'X) R IR(X'X) !
So, V(b)—V(b,) =c%A , say
where A= X'X)"'R'[RX'X)"'R'1*R(X'X)~ .

This matrix is square, symmetric, and of full rank. So, A is at least p.s.d..
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e This tells us that the variability of the RLS estimator is no more than that of the LS
estimator, whether or not the restrictions are true.

e Generally, the RLS estimator will be “more precise” than the LS estimator.

e When will the RLS and LS estimators have the same variability?

e In addition, we know that the RLS estimator is unbiased if the restrictions are true.

e So, if the restrictions are true, the RLS estimator, b, is more efficient than the LS

estimator, b, of the coefficient vector, g .
Also note the following:

e If the restrictions are false, and we consider MSE(b) and MSE(b,.), then the relative
efficiency can go either way.

e If the restrictions are false, not only is b, biased, it’s also inconsistent.

So, it’s a good thing that that we know how to construct the UMP test for the validity of the

restrictions on the elements of g !
In practice:

e Estimate the unrestricted model, using LS.
o TestHy:RB =q Vvs. Hi:RB # q .
e If the null hypothesis can’t be rejected, re-estimate the model with RLS.

e Otherwise, retain the LS estimates.
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Example: Cobb-Douglas Production Function®

>

cobbdata=read.csv ("http://home.cc.umanitoba.ca/~godwinrt/7010/co
bb.csv")

> attach (cobbdata)

> res = 1Im(log(y) ~ log(k) + log(l))

> summary (res)

Call:
Im(formula = log(y) ~ log(k) + log(l))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.8444 0.2336 7.890 7.33e-08 ***
log (k) 0.2454 0.1069 2.297 0.0315 ~*
log (1) 0.8052 0.1263 6.373 2.06e-06 ***

Signif. codes: 0 Y***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 Y " 1
Residual standard error: 0.2357 on 22 degrees of freedom

Multiple R-squared: 0.9731, Adjusted R-squared: 0.9706
F-statistic: 397.5 on 2 and 22 DF, p-value: < 2.2e-16

\ What's this?

Let’s get the SSE from this regression, for later use:

> sum(resS$Sresiduals”™?2)
(1] 1.22226 < SSE = 1.22226

Test the hypothesis of constant returns to scale:

Holﬂz‘l‘ﬂg:l VS. HA:ﬁ2+ﬁ3¢1

> R = matrix(c(0,1,1),1,3)

! The data are from table F7.2, Greene, 2012

14



> b = matrix(resS$Scoef,3,1)
> b

[,1]
[1,] 1.8444157
[2,] 0.2454281
[3,] 0.8051830

[,1]
[1,] 0.05061103

[,1]
[1,] 1.540692

> 1 - pf(F,1,22)
[’l]lér——————‘——‘——
[1,] 0.2275873

Avre the residuals normally distributed?
> hist (resSresiduals)

Cannot reject at 10% sig. level

Histogram of res$residuals

10

Frequency

res$residuals
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> library (tseries)

> jarque.bera.test (resSresiduals) Might want to use Wald test instead!
Jarque Bera Test

data: resS$residuals “(/

X-squared = 5.5339, df = 2, p-value = 0.06285
F-test “supported” the validity of the restriction on the coefficients, so now impose this

restriction of CRTS. Use RLS:

log(Q/L) = By + B, log(K/L) + ¢

> rlsres = 1Im(log(y/1l) ~ log(k/1l))
> summary (rlsres)

Call:

Im(formula = log(y/1l) ~ log(k/1l))

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.0950 0.1189 17.615 7.55e-15 **x*
log(k/1) 0.2893 0.1020 2.835 0.00939 **
Signif. codes: 0 ‘***’ (0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 " 1
Residual standard error: 0.2385 on 23 degrees of freedom
Multiple R-squared: 0.2589, Adjusted R-squared: 0.2267
F-statistic: 8.036 on 1 and 23 DF, p-value: 0.009387

> sum(rlsres$Sresiduals”?2)

[1] 1.307857 e

SSE =1.307857

Form the LS and RLS results for this particular application, note that
ee=(y—Xb)'(y—Xb) =1.22226

e.'e,=(y—Xb,)'(y—Xb,) = 1307857
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So, ee.>¢ee .

e In fact this inequality will always hold .

e What’s the intuition behind this?
Note that:
e.=(y—Xb)=y—Xb+XX'X)"R[RX'X)"'R']"*(Rb — q)
=e+XX'X)R'[RX'X)"'R']"*(Rb — q)
Now, recall that X'e = 0.
So,
e e,=¢e'e+ (Rb—q)'A(Rb—q),
where:
A=[RX'X)RTRX'X)IX'X)X'X) R [R(X'X)R']?
=[R(X'X)"IR']™Y ; this matrix has full rank, and is p.d.s.
So, e.'e, > e'e, because (Rb—q)'A(Rb—q) > 0.

This last result also gives us an alternative (convenient) way of writing the formula for the F-

statistic:
(e.'e. —e'e) = (Rb— q)'A(Rb — q)

= (Rb— @)'[RX'X)"'R']*(Rb— q) .
Recall that:

_ Rb—@)'[RX'X)'R']" (Rb=q)/]

s2

F

So, clearly,

_ (e*le* - e,e)/] _ (e*,e* - e,e)/]

F s2 ~ ee/(n—k)
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For the last example:
J=1; n-k)=(25-3)=22
(e.'e.) = 1.307857 ; (e'e) = 1.22226

_ (1.307857-1.22226)/1 _ 1.54070 E
1.22226/22

So, F

In Retrospect

e Now we can see why R4 when we add any regressor to our model (and Rz‘l' when we
delete any regressor).

e Deleting a regressor is equivalent to imposing a zero restriction on one of the
coefficients.

e The residual sum of squares'f‘ and so R2V.

Exercise: use the R? from the unrestricted and restricted model to calculate F.

Estimating the Error Variance

We have considered the RLS estimator of g . What about the corresponding estimator of the

variance of the error term, g2 ?
Theorem:
Let b~ be the RLS estimator of £ in the model,
y=XB+e¢ . £~[0,0%1,]

and let the corresponding residual vector be e, = (y — Xb,). Then the following estimator of 2

is unbiased, if the restrictions, R = g, are satisfied: s? = (e,'e,)/(n—k +]).

See if you can prove this result!
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