Topic 3: Inference and Prediction

We'll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

Examples

• $\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$; $H_0: \boldsymbol{\beta} = \mathbf{0}$ vs. $H_A: \boldsymbol{\beta} \neq \mathbf{0}$

•
$$\log(Q) = \beta_1 + \beta_2 \log(K) + \beta_3 \log(L) + \varepsilon$$
$$H_0: \beta_2 + \beta_3 = 1 \quad vs. \quad H_A: \beta_2 + \beta_3 \neq 1$$

•
$$\log(q) = \beta_1 + \beta_2 \log(p) + \beta_3 \log(y) + \varepsilon$$
$$H_0: \beta_2 + \beta_3 = 0 \quad vs. \quad H_A: \beta_2 + \beta_3 \neq 0$$

If we can obtain one model from another by imposing restrictions on the parameters of the first model, we say that the 2 models are "*Nested*".

We'll be concerned with (several) possible restrictions on β , in the usual model:

$$\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$$
 ; $\boldsymbol{\varepsilon} \sim N[0, \sigma^2 I_n]$

(X is non-random ; rank(X) = k)

To begin with, let's focus on *linear restrictions*:

$$r_{11}\beta_1 + r_{12}\beta_2 + \dots + r_{1k}\beta_k = q_1$$
$$r_{21}\beta_1 + r_{22}\beta_2 + \dots + r_{2k}\beta_k = q_2$$

•

(J restrictions)

$$r_{J1}\beta_1 + r_{J2}\beta_2 + \dots + r_{Jk}\beta_k = q_J$$

Some (many?) of the r_{ij} 's may be <u>zero</u>.

• Combine these *J* restrictions:

 $R\boldsymbol{\beta} = \boldsymbol{q}$; R and q are known, & non-random $(J \times k)(k \times 1)$ $(J \times 1)$

• We'll assume that rank(R) = J (< *k*).

- No conflicting or redundant restrictions.
- What if J = k?

Examples

3.

1.
$$\beta_2 = \beta_3 = \dots = \beta_k = 0$$

 $R = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$; $q = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$
2. $\beta_2 + \beta_3 = 1$

$$R = \begin{bmatrix} 0 & 1 & 1 & 0 & \cdots & 0 \end{bmatrix}$$
; $q = 1$

$$\beta_3 = \beta_4 \quad ; \quad \text{and} \quad \beta_1 = 2\beta_2$$
$$R = \begin{bmatrix} 0 & 0 & 1 & -1 & 0 & \cdots & 0 \\ 1 & -2 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \quad ; \quad q = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- Suppose that we just estimate the model by LS, and get $\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y}$.
- It is very unlikely that Rb = q !
- Denote m = Rb q.
- Clearly, m is a $(J \times 1)$ random vector.
- Let's consider the sampling distribution of *m*:

m = Rb - q; it is a *linear* function of b.

If the errors in the model are Normal, then b is Normally distributed, & hence m is Normally distributed.

 $E[\boldsymbol{m}] = RE[\boldsymbol{b}] - \boldsymbol{q} = R\boldsymbol{\beta} - \boldsymbol{q} \qquad (\text{What assumptions used?})$

So, $E[\boldsymbol{m}] = \boldsymbol{0}$; iff $R\boldsymbol{\beta} = \boldsymbol{q}$

Also, $V[\boldsymbol{m}] = V[R\boldsymbol{b} - \boldsymbol{q}] = V[R\boldsymbol{b}] = RV[\boldsymbol{b}]R'$

$$= R\sigma^{2}(X'X)^{-1}R' = \sigma^{2}R(X'X)^{-1}R'$$

(What assumptions used?)

So,
$$\boldsymbol{m} \sim N[\boldsymbol{0}, \sigma^2 R(X'X)^{-1}R']$$
.

Let's see how we can use this information to *test* if $R\beta = q$. (Intuition?)

Definition: The *Wald Test Statistic* for testing $H_0: R\beta = q$ vs. $H_A: R\beta \neq q$ is: $W = m'[V(m)]^{-1}m$.

So, *if* H_0 *is true*:

$$W = (Rb - q)' [\sigma^2 R(X'X)^{-1}R']^{-1} (Rb - q)$$
$$= (Rb - q)' [R(X'X)^{-1}R']^{-1} (Rb - q) / \sigma^2.$$

Because $\boldsymbol{m} \sim N[\boldsymbol{0}, \sigma^2 R(X'X)^{-1}R']$, then *if* H_0 *is true*:

$$W \sim \chi^2_{(J)}$$
; provided that σ^2 is known.

Notice that:

- This result is valid only *asymptotically* if σ^2 is unobservable, and we replace it with *any consistent estimator*.
- We would reject H₀ if W > critical value. (*i.e.*, when m = Rb q is sufficiently "large".)
- The Wald test is a *very general* testing procedure other testing problems.
- Wald test statistic always constructed using an estimator that *ignores* the restrictions being tested.
- As we'll see, *for this particular* testing problem, we can modify the Wald test slightly, and obtain a test that is **exact in finite samples**, and has excellent power properties.

What is the F-statistic?

To derive this test statistic, we need a *preliminary result*.

Definition:

Let $x_1 \sim \chi^2_{(v_1)}$ and $x_2 \sim \chi^2_{(v_2)}$ and independent

Then

$$F = \frac{\left[\frac{x_1}{v_1}\right]}{\left[\frac{x_2}{v_2}\right]} \sim F_{(v_1, v_2)} \qquad ; \qquad \text{Snedecor's F-Distribution}$$

Note:

•
$$(t_{(v)})^2 = F_{(1,v)}$$
; Why does this make sense?
• $v_1 F_{(v_1,v_2)} \xrightarrow{d} \chi^2_{(v_1)}$; Explanation?

Let's proceed to our main result, which involves the statistic, $F = \left(\frac{W}{J}\right) \left(\frac{\sigma^2}{s^2}\right)$.

Theorem:

$$F = \left(\frac{W}{J}\right) \left(\frac{\sigma^2}{s^2}\right) \sim F_{(J, (n-k))}, \text{ if the Null Hypothesis } H_0: R\boldsymbol{\beta} = \boldsymbol{q} \text{ is true.}$$

Proof:

$$F = \frac{(R\boldsymbol{b} - \boldsymbol{q})'[R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})}{\sigma^2} \left(\frac{1}{J}\right) \left(\frac{\sigma^2}{s^2}\right)$$
$$= \frac{(R\boldsymbol{b} - \boldsymbol{q})'[\sigma^2 R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})/J}{\left[\frac{(n-k)s^2}{\sigma^2}\right]/(n-k)} = \left(\frac{N}{D}\right)$$

where $D = \left[\frac{(n-k)s^2}{\sigma^2}\right] / (n-k) = \chi^2_{(n-k)} / (n-k)$.

Consider the numerator:

$$N = (Rb - q)' [\sigma^2 R(X'X)^{-1}R']^{-1} (Rb - q) / J.$$

Suppose that H_0 is TRUE, so that = q, and then

$$(R\boldsymbol{b}-\boldsymbol{q})=(R\boldsymbol{b}-R\boldsymbol{\beta})=\boldsymbol{R}(\boldsymbol{b}-\boldsymbol{\beta})$$
.

Now, recall that

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}.$$

So,

 $R(\boldsymbol{b}-\boldsymbol{\beta})=R(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon},$

and $N = [R(X'X)^{-1}X'\varepsilon]'[\sigma^2 R(X'X)^{-1}R']^{-1}[R(X'X)^{-1}X'\varepsilon]/J$ $= \left(\frac{1}{J}\right) (\boldsymbol{\varepsilon}/_{\sigma})'[\boldsymbol{Q}](\boldsymbol{\varepsilon}/_{\sigma}) \; ,$

where

$$Q = X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X',$$

and

$$(\mathcal{E}/_{\sigma}) \sim N[\mathbf{0}, I_n]$$
.

Now, $(\mathcal{E}/_{\sigma})'[Q](\mathcal{E}/_{\sigma}) \sim \chi^{2}_{(r)}$ if and only if *Q* is idempotent, where

$$r = rank(Q)$$
.

Easy to check that Q is idempotent.

So,
$$rank(Q) = tr.(Q)$$

$$= tr.\{X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'\}$$

$$= tr.\{(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'X\}$$

$$= tr.\{R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}\}$$

$$= \{[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}R'\}$$

$$= tr.(I_J) = J.$$

So, $N = \left(\frac{1}{J}\right) (\varepsilon_{\sigma})'[Q](\varepsilon_{\sigma}) = \chi^2_{(J)}/J$.

In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their • degrees of freedom.

}

• Are *N* and *D independent*?

- The Chi-Square statistic in *N* is: $(\mathcal{E}_{\sigma})'[Q](\mathcal{E}_{\sigma})$.
- The Chi-Square statistic in *D* is: $\left[\frac{(n-k)s^2}{\sigma^2}\right]$ (see bottom of slide 13)

Re-write this:

$$\begin{bmatrix} \frac{(n-k)s^2}{\sigma^2} \end{bmatrix} = \frac{(n-k)}{\sigma^2} \left(\frac{\boldsymbol{e}'\boldsymbol{e}}{(n-k)} \right) = \left(\frac{\boldsymbol{e}'\boldsymbol{e}}{\sigma^2} \right)$$
$$= \left(\frac{M\boldsymbol{\varepsilon}}{\sigma} \right)' \left(\frac{M\boldsymbol{\varepsilon}}{\sigma} \right) = \left(\frac{\boldsymbol{\varepsilon}}{\sigma} \right)' M(\boldsymbol{\varepsilon}/\sigma) = (\boldsymbol{\varepsilon}/\sigma)' M(\boldsymbol{\varepsilon}/\sigma)$$

So, we have

 $({}^{\boldsymbol{\varepsilon}}/_{\sigma})'[Q]({}^{\boldsymbol{\varepsilon}}/_{\sigma})$ and $({}^{\boldsymbol{\varepsilon}}/_{\sigma})'M({}^{\boldsymbol{\varepsilon}}/_{\sigma})$.

These two statistics are *independent* if and only if MQ = 0.

$$\begin{split} MQ &= \left[I - X(X'X)^{-1}X'\right] X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'\\ &= Q - X(X'X)^{-1}X'X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'\\ &= Q - X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'\\ &= Q - Q = 0 \;. \end{split}$$

So, if H_0 is TRUE, our statistic, *F* is the ratio of 2 *independent* Chi-Square variates, each divided by their degrees of feeedom.

This implies that, if H_0 is TRUE,

$$F = \frac{(Rb-q)'[R(X'X)^{-1}R']^{-1}(Rb-q)/J}{s^2} \sim F_{(J,(n-k))}$$

What assumptions have been used ? What if H_0 is FALSE ?

Implementing the test –

• Calculate *F*.

• Reject $H_0: R\boldsymbol{\beta} = \boldsymbol{q}$ in favour of $H_A: R\boldsymbol{\beta} \neq \boldsymbol{q}$ if $> c_{\alpha}$.

Why do we use *this particular test* for linear restrictions?

This *F*-test is **Uniformly Most Powerful**.

Another point to note -

$$\left(t_{(v)}\right)^2 = F_{(1,v)}$$

Consider $t_{(n-k)} = (b_i - \beta_i)/(s.e.(b_i))$

Then, $(t_{(n-k)})^2 \sim F_{(1,(n-k))}$; t-test is **UMP** against **1-sided alternatives**

Example

Let's return to the Card (1993) data, used as an example of I.V. Recall the results of the IV estimation:

Regression Estimates

resiv = lm(wage ~ urban + gender + ethnicity + unemp + educfit
summary(resiv)

Coefficients:

	Estimate S	Std. Error	t value	Pr(> t)					
(Intercept)	-2.053604	1.675314	-1.226	0.2203					
urbanyes	-0.013588	0.046403	-0.293	0.7697					
genderfemale	-0.086700	0.036909	-2.349	0.0189 *					
ethnicityafam	-0.566524	0.051686	-10.961	< 2e-16 **	*				
ethnicityhispanic	-0.529088	0.048429	-10.925	< 2e-16 **	*				
unemp	0.145806	0.006969	20.922	< 2e-16 **	*				
educfit	0.774340	0.120372	6.433	1.38e-10 **	*				
Signif. codes: 0	`***' 0.00	1 `**' 0.01		05 `.' 0.1 `	' 1				
		4	(<i>n</i> -	k) = (4739 - 7) =	4732				
Residual standard error: 1.263 on 4732 degrees of freedom									
Multiple R-squared	d: 0.1175,	Adjuste	ed R-squa	ared: 0.116	3				
F-statistic: 105 on 6 and 4732 DF, p-value: < 2.2e-16									

Let's test the hypothesis that urban and gender are jointly insignificant.

 $H_0: \beta_2 = \beta_3 = 0$ vs. $H_A: At \ least \ one \ of \ these \ coeffs. \neq 0. \ (J = 2)$

Let's see R-code for calculating the F-stat from the formula:

$$F = \frac{(R\boldsymbol{b} - \boldsymbol{q})'[R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})/J}{s^2} = (R\boldsymbol{b} - \boldsymbol{q})'[Rs^2(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})/J$$

R = matrix(c(0,0,1,0,0,1,0,0,0,0,0,0,0,0,0),2,7)
> R
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 1 0 0 0 0
[2,] 0 0 1 0 0 0 0

Why are the p-values from the Wald and F-test so similar?

Restricted Least Squares Estimation:

If we test the validity of certain linear restrictions on the elements of β , and we can't reject them, how might we incorporate the restrictions (*information*) into the estimator?

Definition: The "Restricted Least Squares" (RLS) estimator of β , in the model, $y = X\beta + \varepsilon$, is the vector, b_* , which minimizes the sum of the squared residuals, subject to the constraint(s) $Rb_* = q$.

- Let's obtain the expression for this new estimator, and derive its sampling distribution.
- Set up the Lagrangian: $\mathcal{L} = (\mathbf{y} X\mathbf{b}_*)'(\mathbf{y} X\mathbf{b}_*) + 2\lambda'(R\mathbf{b}_* \mathbf{q})$

• Set
$$(\partial \mathcal{L}/\partial \boldsymbol{b}_*) = \mathbf{0}$$
; $(\partial \mathcal{L}/\partial \boldsymbol{\lambda}) = \mathbf{0}$, and solve

$$\mathcal{L} = \mathbf{y}'\mathbf{y} + \mathbf{b}_*'X'X\mathbf{b}_* - 2\mathbf{y}'X\mathbf{b}_* + 2\mathbf{\lambda}'(R\mathbf{b}_* - \mathbf{q})$$
$$(\partial \mathcal{L}/\partial \mathbf{b}_*) = 2X'X\mathbf{b}_* - 2X'\mathbf{y} + 2R'\mathbf{\lambda} = \mathbf{0}$$
[1]

$$(\partial \mathcal{L}/\partial \lambda) = 2(R\boldsymbol{b}_* - \boldsymbol{q}) = \boldsymbol{0}$$
[2]

From [1]:

$$R'\boldsymbol{\lambda} = X'(\boldsymbol{y} - X\boldsymbol{b}_*)$$

So,
$$R(X'X)^{-1}R'\boldsymbol{\lambda} = R(X'X)^{-1}X'(\boldsymbol{y} - X\boldsymbol{b}_*)$$

or,
$$\lambda = [R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'(y - Xb_*)$$
 [3]

Inserting [3] into [1], and dividing by "2":

$$(X'X)\boldsymbol{b}_{*} = X'\boldsymbol{y} - R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'(\boldsymbol{y} - X\boldsymbol{b}_{*})$$

So,
$$(X'X)\boldsymbol{b}_* = X'\boldsymbol{y} - R'[R(X'X)^{-1}R']^{-1}R(\boldsymbol{b} - \boldsymbol{b}_*)$$

or,

$$\boldsymbol{b}_* = (X'X)^{-1}X'\boldsymbol{y} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - R\boldsymbol{b}_*)$$

or, using [2]:

$$\boldsymbol{b}_* = \boldsymbol{b} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\boldsymbol{b} - \boldsymbol{q})$$

- RLS = LS + "Adjustment Factor".
- What if $\mathbf{R}\boldsymbol{b} = \boldsymbol{q}$?
- Interpretation of this?
- What are the properties of this RLS estimator of β ?

Theorem: The RLS estimator of β is *Unbiased* if $R\beta = q$ is TRUE.

Otherwise, the RLS estimator is *Biased*.

Proof:

$$E(\boldsymbol{b}_{*}) = E(\boldsymbol{b}) - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(\boldsymbol{R}E(\boldsymbol{b}) - \boldsymbol{q})$$
$$= \boldsymbol{\beta} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(\boldsymbol{R}\boldsymbol{\beta} - \boldsymbol{q}).$$

So, if $R\boldsymbol{\beta} = \boldsymbol{q}$, then $E(\boldsymbol{b}_*) = \boldsymbol{\beta}$.

Theorem: The covariance matrix of the RLS estimator of β is

$$V(\boldsymbol{b}_*) = \sigma^2 (X'X)^{-1} \{ I - R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1} \}$$

Proof:

$$b_* = b - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(Rb - q)$$
$$= \{I - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R\}b + \alpha$$

where

$$\boldsymbol{\alpha} = (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}\boldsymbol{q}$$
 (non-random)

So, $V(\boldsymbol{b}_*) = AV(\boldsymbol{b})A'$,

where $A = \{I - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R\}.$

That is, $V(\boldsymbol{b}_*) = AV(\boldsymbol{b})A' = \sigma^2 A(X'X)^{-1}A'$ (assumptions?) Now let's look at the matrix, $A(X'X)^{-1}A'$.

$$\begin{split} A(X'X)A' &= \{I - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R\} (X'X)^{-1} \\ &\quad \times \{I - R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}\} \\ &= (X'X)^{-1} + (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1} \\ &- 2(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1} \\ &= (X'X)^{-1}\{I - R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}\} \,. \end{split}$$

So,

$$V(\boldsymbol{b}_*) = \sigma^2 (X'X)^{-1} \{ I - R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1} \}.$$

(What assumptions have we used to get this result?)

We can use this result immediately to establish the following.....

Theorem: The matrix, $V(\boldsymbol{b}) - V(\boldsymbol{b}_*)$, is *at least* positive semi-definite.

Proof:

$$V(\boldsymbol{b}_{*}) = \sigma^{2} (X'X)^{-1} \{ I - R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1} \}$$

= $\sigma^{2} (X'X)^{-1} - \sigma^{2} (X'X)^{-1} R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1}$
= $V(\boldsymbol{b}) - \sigma^{2} (X'X)^{-1} R' [R(X'X)^{-1}R']^{-1} R(X'X)^{-1}$

So, $V(\boldsymbol{b}) - V(\boldsymbol{b}_*) = \sigma^2 \Delta$, say

where $\Delta = (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}$.

This matrix is **square**, **symmetric**, and of **full rank**. So, Δ is at least **p.s.d.**.

- This tells us that the variability of the RLS estimator is no more than that of the LS estimator, *whether or not the restrictions are true*.
- Generally, the RLS estimator will be "more precise" than the LS estimator.
- When will the RLS and LS estimators have the same variability?
- In addition, we know that the RLS estimator is unbiased *if the restrictions are true*.
- So, *if the restrictions are true*, the RLS estimator, b_* , is more efficient than the LS estimator, b, of the coefficient vector, β .

Also note the following:

- *If the restrictions are false*, and we consider MSE(*b*) and MSE(*b*_{*}), then the relative efficiency can go either way.
- If the restrictions are false, not only is **b**_{*} biased, it's also *inconsistent*.

So, it's a good thing that that we know how to construct the UMP test for the validity of the restrictions on the elements of β !

In practice:

- Estimate the unrestricted model, using LS.
- Test $H_0: R\boldsymbol{\beta} = \boldsymbol{q}$ vs. $H_A: R\boldsymbol{\beta} \neq \boldsymbol{q}$.
- If the null hypothesis can't be rejected, re-estimate the model with RLS.
- Otherwise, retain the LS estimates.

Example: Cobb-Douglas Production Function¹

```
>
cobbdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/co
bb.csv")
> attach(cobbdata)
> res = lm(log(y) \sim log(k) + log(l))
> summary(res)
Call:
lm(formula = log(y) ~ log(k) + log(l))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8444
                       0.2336 7.896 7.33e-08 ***
log(k)
            0.2454
                       0.1069 2.297 0.0315 *
           0.8052 0.1263 6.373 2.06e-06 ***
loq(1)
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 0.2357 on 22 degrees of freedom
Multiple R-squared: 0.9731, Adjusted R-squared: 0.9706
F-statistic: 397.5 on 2 and 22 DF, p-value: < 2.2e-16
                              What's this?
```

Let's get the SSE from this regression, for later use:

Test the hypothesis of constant returns to scale:

 $H_0: \beta_2 + \beta_3 = 1$ vs. $H_A: \beta_2 + \beta_3 \neq 1$

```
> R = matrix(c(0,1,1),1,3)
> R
      [,1] [,2] [,3]
[1,] 0 1 1
```

¹ The data are from table F7.2, Greene, 2012

Are the residuals normally distributed? > hist(res\$residuals)

Might want to use Wald test instead!

data: res\$residuals

X-squared = 5.5339, df = 2, p-value = 0.06285

F-test "supported" the validity of the restriction on the coefficients, so now *impose this restriction* of CRTS. Use RLS:

```
\log(Q/L) = \beta_1 + \beta_2 \log(K/L) + \varepsilon
```

> rlsres = lm(log(y/l) ~ log(k/l))
> summary(rlsres)
Call:
lm(formula = log(y/l) ~ log(k/l))

Coefficients:

	Estimate Sto	d. Error t	c value	Pr(> t)					
(Intercept)	2.0950	0.1189	17.615	7.55e-15	* * *				
log(k/l)	0.2893	0.1020	2.835	0.00939	* *				
Signif. code	es: 0 ***/	0.001 `*;	• 0.01	`*' 0.05	`.' 0.1	`′ 1			
Residual standard error: 0.2385 on 23 degrees of freedom									
Multiple R-squared: 0.2589, Adjusted R-squared: 0.2267									
F-statistic: 8.036 on 1 and 23 DF, p-value: 0.009387									

> sum(rlsres\$residuals^2)

[1] 1.307857 SSE = 1.307857

Form the LS and RLS results for this particular application, note that

e'e = (y - Xb)'(y - Xb) = 1.22226 $e_*'e_* = (y - Xb_*)'(y - Xb_*) = 1.307857$ So, $e_*'e_* > e'e$.

- In fact this inequality will *always hold*.
- What's the intuition behind this?

Note that:

$$e_* = (y - Xb_*) = y - Xb + X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(Rb - q)$$
$$= e + X(X'X)R'[R(X'X)^{-1}R']^{-1}(Rb - q)$$

Now, recall that X'e = 0.

So,

$$\boldsymbol{e}_*'\boldsymbol{e}_* = \boldsymbol{e}'\boldsymbol{e} + (R\boldsymbol{b} - \boldsymbol{q})'A(R\boldsymbol{b} - \boldsymbol{q}),$$

where:

$$A = [R(X'X)^{-1}R']^{-1}R(X'X)^{-1}(X'X)(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}$$

= [R(X'X)^{-1}R']^{-1} ; this matrix has **full rank**, and is **p.d.s.**

So, $\boldsymbol{e}_*'\boldsymbol{e}_* > \boldsymbol{e}'\boldsymbol{e}$, because $(R\boldsymbol{b} - \boldsymbol{q})'A(R\boldsymbol{b} - \boldsymbol{q}) > 0$.

This last result also gives us an alternative (convenient) way of writing the formula for the F-statistic:

$$(e_*'e_* - e'e) = (Rb - q)'A(Rb - q)$$

= $(Rb - q)'[R(X'X)^{-1}R']^{-1}(Rb - q)$.

Recall that:

$$F = \frac{(Rb-q)'[R(X'X)^{-1}R']^{-1}(Rb-q)/J}{s^2}$$

So, clearly,

$$F = \frac{(e_*'e_* - e'e)/J}{s^2} = \frac{(e_*'e_* - e'e)/J}{e'e/(n-k)}$$

17

For the last example:

J = 1 ; (n - k) = (25 - 3) = 22($e_*'e_*$) = 1.307857 ; (e'e) = 1.22226 So, $F = \frac{(1.307857 - 1.22226)/1}{1.22226/22} = 1.54070$

In Retrospect

- Now we can see why R² when we add any regressor to our model (and R² when we delete any regressor).
- Deleting a regressor is equivalent to imposing a zero restriction on one of the coefficients.
- The residual sum of squares \uparrow and so $R^2 \psi$.

Exercise: use the R^2 from the unrestricted and restricted model to calculate *F*.

Estimating the Error Variance

We have considered the RLS estimator of β . What about the corresponding estimator of the variance of the error term, σ^2 ?

Theorem:

Let b_* be the RLS estimator of β in the model,

$$\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$$
 ; $\boldsymbol{\varepsilon} \sim [0, \sigma^2 I_n]$

and let the corresponding residual vector be $\boldsymbol{e}_* = (\boldsymbol{y} - X\boldsymbol{b}_*)$. Then the following estimator of σ^2 is *unbiased*, if the restrictions, $R\boldsymbol{\beta} = \boldsymbol{q}$, are satisfied: $s_*^2 = (\boldsymbol{e}_*'\boldsymbol{e}_*)/(n-k+J)$.

See if you can prove this result!