Topic 3: Inference and Prediction

We'll be concerned here with testing more general hypotheses than those seen to date. Also concerned with constructing interval predictions from our regression model.

Examples

$$
\begin{array}{ll}
\bullet & \boldsymbol{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon} \quad ; \quad H_{0}: \boldsymbol{\beta}=\mathbf{0} \quad \text { vs. } \quad H_{A}: \boldsymbol{\beta} \neq \mathbf{0} \\
\text { - } \quad & \log (Q)=\beta_{1}+\beta_{2} \log (K)+\beta_{3} \log (L)+\varepsilon \\
H_{0}: \beta_{2}+\beta_{3}=1 \quad \text { vs. } \quad H_{A}: \beta_{2}+\beta_{3} \neq 1 \\
& \log (q)=\beta_{1}+\beta_{2} \log (p)+\beta_{3} \log (y)+\varepsilon \\
H_{0}: \beta_{2}+\beta_{3}=0 \quad \text { vs. } \quad H_{A}: \beta_{2}+\beta_{3} \neq 0
\end{array}
$$

If we can obtain one model from another by imposing restrictions on the parameters of the first model, we say that the 2 models are "Nested ".

We'll be concerned with (several) possible restrictions on $\boldsymbol{\beta}$, in the usual model:

$$
\begin{aligned}
\boldsymbol{y}= & X \boldsymbol{\beta}+\boldsymbol{\varepsilon} ; \quad \boldsymbol{\varepsilon} \sim N\left[0, \sigma^{2} I_{n}\right] \\
& (X \text { is non-random } ; \operatorname{rank}(X)=k)
\end{aligned}
$$

To begin with, let's focus on linear restrictions:

$$
\begin{gathered}
r_{11} \beta_{1}+r_{12} \beta_{2}+\cdots+r_{1 k} \beta_{k}=q_{1} \\
r_{21} \beta_{1}+r_{22} \beta_{2}+\cdots+r_{2 k} \beta_{k}=q_{2} \\
\cdot \\
\cdot \\
r_{J 1} \beta_{1}+r_{J 2} \beta_{2}+\cdots+r_{J k} \beta_{k}=q_{J}
\end{gathered}
$$

Some (many?) of the $r_{i j}{ }^{\prime} s$ may be zero.

- Combine these J restrictions:

$$
\begin{aligned}
& R \boldsymbol{\beta}=\boldsymbol{q} \quad ; \quad R \text { and } q \text { are known, \& non-random } \\
& (J \times k)(k \times 1) \quad(J \times 1)
\end{aligned}
$$

- We'll assume that $\operatorname{rank}(R)=J(<k)$.
- No conflicting or redundant restrictions.
- What if $J=k$?

Examples

1. $\beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$

$$
R=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad ; \quad \boldsymbol{q}=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

2. $\beta_{2}+\beta_{3}=1$

$$
R=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & \cdots & 0
\end{array}\right] \quad ; \quad q=1
$$

3. $\beta_{3}=\beta_{4} ;$ and $\beta_{1}=2 \beta_{2}$

$$
R=\left[\begin{array}{rrrrrrr}
0 & 0 & 1 & -1 & 0 & \cdots & 0 \\
1 & -2 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] ; q=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

- Suppose that we just estimate the model by LS, and get $\boldsymbol{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}$.
- It is very unlikely that $R \boldsymbol{b}=\boldsymbol{q}$!
- Denote $m=R b-q$.
- Clearly, \boldsymbol{m} is a $(J \times 1)$ random vector.
- Let's consider the sampling distribution of \boldsymbol{m} :

$$
\boldsymbol{m}=R \boldsymbol{b}-\boldsymbol{q} \quad ; \quad \text { it is a linear function of } \boldsymbol{b} .
$$

If the errors in the model are Normal, then \boldsymbol{b} is Normally distributed, \& hence \boldsymbol{m} is Normally distributed.
$E[\boldsymbol{m}]=R E[\boldsymbol{b}]-\boldsymbol{q}=R \boldsymbol{\beta}-\boldsymbol{q} \quad$ (What assumptions used?)

So, $E[\boldsymbol{m}]=\mathbf{0} ; \quad$ iff $\quad R \boldsymbol{\beta}=\boldsymbol{q}$

Also, $\quad V[\boldsymbol{m}]=V[R \boldsymbol{b}-\boldsymbol{q}]=V[R \boldsymbol{b}]=R V[\boldsymbol{b}] R^{\prime}$

$$
=R \sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}=\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}
$$

(What assumptions used?)

So, $\quad m \sim N\left[0, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]$.
Let's see how we can use this information to test if $R \boldsymbol{\beta}=\boldsymbol{q} . \quad$ (Intuition?)
Definition: \quad The Wald Test Statistic for testing $H_{0}: R \boldsymbol{\beta}=\boldsymbol{q}$ vs. $H_{A}: R \boldsymbol{\beta} \neq \boldsymbol{q} \quad$ is: $W=\boldsymbol{m}^{\prime}[V(\boldsymbol{m})]^{-1} \boldsymbol{m}$.

So, if H_{0} is true:

$$
\begin{aligned}
W & =(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) \\
& =(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / \sigma^{2}
\end{aligned}
$$

Because $\quad \boldsymbol{m} \sim N\left[\mathbf{0}, \sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]$, then if H_{0} is true:

$$
W \sim \chi_{(J)}^{2} \quad ; \quad \text { provided that } \sigma^{2} \text { is known }
$$

Notice that:

- This result is valid only asymptotically if σ^{2} is unobservable, and we replace it with any consistent estimator.
- We would reject H_{0} if $W>$ critical value. (i.e., when $\boldsymbol{m}=R \boldsymbol{b}-\boldsymbol{q}$ is sufficiently "large".)
- The Wald test is a very general testing procedure - other testing problems.
- Wald test statistic always constructed using an estimator that ignores the restrictions being tested.
- As we'll see, for this particular testing problem, we can modify the Wald test slightly, and obtain a test that is exact in finite samples, and has excellent power properties.

What is the F-statistic?

To derive this test statistic, we need a preliminary result.

Definition:

Let $x_{1} \sim \chi_{\left(v_{1}\right)}^{2} \quad$ and $\quad x_{2} \sim \chi_{\left(v_{2}\right)}^{2} \quad$ and independent
Then

$$
F=\frac{\left[\frac{x_{1}}{v_{1}}\right]}{\left[\frac{x_{2}}{v_{2}}\right]} \sim F_{\left(v_{1}, v_{2}\right)} \quad ; \quad \text { Snedecor's F-Distribution }
$$

Note:

- $\left(t_{(v)}\right)^{2}=F_{(1, v)}$
; Why does this make sense?
- $v_{1} F_{\left(v_{1}, v_{2}\right)} \xrightarrow{d} \chi_{\left(v_{1}\right)}^{2}$
; Explanation?

Let's proceed to our main result, which involves the statistic, $F=\left(\frac{W}{J}\right)\left(\frac{\sigma^{2}}{s^{2}}\right)$.
Theorem:
$F=\left(\frac{W}{J}\right)\left(\frac{\sigma^{2}}{s^{2}}\right) \sim F_{(J,(n-k))}$, if the Null Hypothesis $H_{0}: R \boldsymbol{\beta}=\boldsymbol{q}$ is true.
Proof:

$$
\begin{aligned}
& F=\frac{(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q})}{\sigma^{2}}\left(\frac{1}{J}\right)\left(\frac{\sigma^{2}}{s^{2}}\right) \\
& =\frac{(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J}{\left[\frac{(n-k) s^{2}}{\sigma^{2}}\right] /(n-k)}=\left(\frac{N}{D}\right)
\end{aligned}
$$

where

$$
D=\left[\frac{(n-k) s^{2}}{\sigma^{2}}\right] /(n-k)=\chi_{(n-k)}^{2} /(n-k)
$$

Consider the numerator:

$$
N=(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J
$$

Suppose that H_{0} is TRUE, so that $=\boldsymbol{q}$, and then

$$
(R \boldsymbol{b}-q)=(R \boldsymbol{b}-R \boldsymbol{\beta})=\boldsymbol{R}(\boldsymbol{b}-\boldsymbol{\beta}) .
$$

Now, recall that

$$
\boldsymbol{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{\beta}+\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{\varepsilon} .
$$

So,

$$
R(\boldsymbol{b}-\boldsymbol{\beta})=R\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{\varepsilon}
$$

and $\quad N=\left[R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]^{\prime}\left[\sigma^{2} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}\left[R\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right] / J$

$$
=(1 / J)(\varepsilon / \sigma)^{\prime}[Q](\varepsilon / \sigma),
$$

where $\quad Q=X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime}$,
and $\quad(\boldsymbol{\varepsilon} / \sigma) \sim N\left[\mathbf{0}, I_{n}\right]$.

Now, $\quad(\varepsilon / \sigma)^{\prime}[Q](\varepsilon / \sigma) \sim \chi_{(r)}^{2}$ if and only if Q is idempotent, where

$$
r=\operatorname{rank}(Q) .
$$

Easy to check that Q is idempotent.

So, $\operatorname{rank}(Q)=\operatorname{tr} .(Q)$

$$
\begin{aligned}
& =\operatorname{tr} \cdot\left\{X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime}\right\} \\
& =\operatorname{tr} \cdot\left\{\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} X\right\} \\
& =\operatorname{tr} \cdot\left\{R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\} \\
& =\left\{\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} R^{\prime}\right\} \\
& =\operatorname{tr} \cdot\left(I_{J}\right)=J
\end{aligned}
$$

So, $N=(1 / J)(\varepsilon / \sigma)^{\prime}[Q](\varepsilon / \sigma)=\chi_{(J)}^{2} / J$.

- In the construction of F we have a ratio of 2 Chi-Square statistics, each divided by their degrees of freedom.
- Are N and D independent ?
- The Chi-Square statistic in N is: $(\varepsilon / \sigma)^{\prime}[Q](\boldsymbol{\varepsilon} / \sigma)$.
- The Chi-Square statistic in D is: $\left[\frac{(n-k) s^{2}}{\sigma^{2}}\right] \quad$ (see bottom of slide 13)

Re-write this:

$$
\begin{aligned}
{\left[\frac{(n-k) s^{2}}{\sigma^{2}}\right] } & =\frac{(n-k)}{\sigma^{2}}\left(\boldsymbol{e}^{\prime} \boldsymbol{e} /(n-k)\right)=\left(\boldsymbol{e}^{\prime} \boldsymbol{e} / \sigma^{2}\right) \\
& =(M \varepsilon / \sigma)^{\prime}(M \varepsilon / \sigma)=(\varepsilon / \sigma)^{\prime} M(\boldsymbol{\varepsilon} / \sigma)
\end{aligned}
$$

So, we have

$$
(\varepsilon / \sigma)^{\prime}[Q](\varepsilon / \sigma) \quad \text { and } \quad(\varepsilon / \sigma)^{\prime} M(\varepsilon / \sigma)
$$

These two statistics are independent if and only if $M Q=0$.

$$
\begin{aligned}
M Q & =\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right] X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =Q-X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =Q-X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =Q-Q=0 .
\end{aligned}
$$

So, if H_{0} is TRUE, our statistic, F is the ratio of 2 independent Chi-Square variates, each divided by their degrees of feeedom.

This implies that, if H_{0} is TRUE,

$$
F=\frac{(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J}{s^{2}} \sim F_{(J,(n-k))}
$$

What assumptions have been used ? What if H_{0} is FALSE?

Implementing the test -

- Calculate F.
- Reject $H_{0}: R \boldsymbol{\beta}=\boldsymbol{q}$ in favour of $H_{A}: R \boldsymbol{\beta} \neq \boldsymbol{q}$ if $>c_{\alpha}$.

Why do we use this particular test for linear restrictions?

This F-test is Uniformly Most Powerful.

Another point to note -

$$
\left(t_{(v)}\right)^{2}=F_{(1, v)}
$$

Consider $\quad t_{(n-k)}=\left(b_{i}-\beta_{i}\right) /\left(\right.$ s.e. $\left.\left(b_{i}\right)\right)$
Then, $\quad\left(t_{(n-k)}\right)^{2} \sim F_{(1,(n-k))} ;$ t-test is UMP against $\mathbf{1}$-sided alternatives

Example

Let's return to the Card (1993) data, used as an example of I.V.
Recall the results of the IV estimation:

Regression Estimates

Coefficients:

| | Estimate | Std. Error t value Pr $(>\|t\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -2.053604 | 1.675314 | -1.226 | 0.2203 |
| urbanyes | -0.013588 | 0.046403 | -0.293 | 0.7697 |
| genderfemale | -0.086700 | 0.036909 | -2.349 | $0.0189 *$ |
| ethnicityafam | -0.566524 | 0.051686 | -10.961 | $<2 e-16 * * *$ |
| ethnicityhispanic | -0.529088 | 0.048429 | -10.925 | $<2 e-16 * * *$ |
| unemp | 0.145806 | 0.006969 | 20.922 | $<2 e-16 * * *$ |
| educfit | 0.774340 | 0.120372 | 6.433 | $1.38 e-10 * * *$ |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$$
(n-k)=(4739-7)=4732
$$

Residual standard error: 1.263 on 4732 degrees of freedom Multiple R-squared: 0.1175, Adjusted R-squared: 0.1163

F-statistic: 105 on 6 and 4732 DF, p-value: < 2.2e-16
Let's test the hypothesis that urban and gender are jointly insignificant.
$H_{0}: \beta_{2}=\beta_{3}=0 \quad$ vs. $\quad H_{A}:$ At least one of these coeffs. $\neq 0 .(J=2)$

Let's see R-code for calculating the F-stat from the formula:

$$
F=\frac{(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J}{s^{2}}=(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R s^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J
$$

$\mathrm{R}=\operatorname{matrix}(\mathrm{c}(0,0,1,0,0,1,0,0,0,0,0,0,0,0), 2,7)$
$>\mathrm{R}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$
$[1]$,	0	1	0	0	0	0	0
$[2]$,	0	0	1	0	0	0	0

```
b = matrix(resiv$coef,7,1)
> b
[,1]
[1,] -2.05360353
[2,] -0.01358775
[3,] -0.08670020
[4,] -0.56652448
[5,] -0.52908814
[6,] 0.14580613
[7,] 0.77433967
q = matrix(c(0,0),2,1)
> q
        [,1]
[1,] 0
[2,] 0
m = R%*%b - q
>m
[,1] [, % invert 
\mathrm{ transpose multiply}
> F
[,1]
[1,] 5.583774
```

Is this F-stat "large"?

```
> 1 - pf(F,2,4732)
    [,1]
[1,] 0.003783159
```

Should we be using the F-test?

```
Wald = 2*F
> 1 - pchisq(Wald,2)
    [,1]
[1,] 0.003758353
```

Why are the p-values from the Wald and F-test so similar?

Restricted Least Squares Estimation:

If we test the validity of certain linear restrictions on the elements of $\boldsymbol{\beta}$, and we can't reject them, how might we incorporate the restrictions (information) into the estimator?

Definition: The "Restricted Least Squares" (RLS) estimator of $\boldsymbol{\beta}$, in the model, $\boldsymbol{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, is the vector, \boldsymbol{b}_{*}, which minimizes the sum of the squared residuals, subject to the constraint(s) $R \boldsymbol{b}_{*}=\boldsymbol{q}$.

- Let's obtain the expression for this new estimator, and derive its sampling distribution.
- Set up the Lagrangian: $\quad \mathcal{L}=\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)+2 \boldsymbol{\lambda}^{\prime}\left(R \boldsymbol{b}_{*}-\boldsymbol{q}\right)$
- Set $\left(\partial \mathcal{L} / \partial \boldsymbol{b}_{*}\right)=\mathbf{0} \quad ; \quad(\partial \mathcal{L} / \partial \lambda)=\mathbf{0}$, and solve \qquad
$\mathcal{L}=\boldsymbol{y}^{\prime} \boldsymbol{y}+\boldsymbol{b}_{*}{ }^{\prime} X^{\prime} X \boldsymbol{b}_{*}-2 \boldsymbol{y}^{\prime} X \boldsymbol{b}_{*}+2 \lambda^{\prime}\left(R \boldsymbol{b}_{*}-\boldsymbol{q}\right)$
$\left(\partial \mathcal{L} / \partial \boldsymbol{b}_{*}\right)=2 X^{\prime} X \boldsymbol{b}_{*}-2 X^{\prime} \boldsymbol{y}+2 R^{\prime} \lambda=\mathbf{0}$
$(\partial \mathcal{L} / \partial \boldsymbol{\lambda})=2\left(R \boldsymbol{b}_{*}-\boldsymbol{q}\right)=\mathbf{0}$
From [1]:

$$
R^{\prime} \lambda=X^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)
$$

So, $\quad R\left(X^{\prime} X\right)^{-1} R^{\prime} \boldsymbol{\lambda}=R\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)$
or, $\quad \boldsymbol{\lambda}=\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)$

Inserting [3] into [1], and dividing by " 2 ":

$$
\left(X^{\prime} X\right) \boldsymbol{b}_{*}=X^{\prime} \boldsymbol{y}-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} X^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)
$$

So, $\left(X^{\prime} X\right) \boldsymbol{b}_{*}=X^{\prime} \boldsymbol{y}-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(\boldsymbol{b}-\boldsymbol{b}_{*}\right)$
or,

$$
\boldsymbol{b}_{*}=\left(X^{\prime} X\right)^{-1} X^{\prime} \boldsymbol{y}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}\left(R \boldsymbol{b}-R \boldsymbol{b}_{*}\right)
$$

or, using [2]:

$$
\boldsymbol{b}_{*}=\boldsymbol{b}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q})
$$

- $\mathrm{RLS}=\mathrm{LS}+$ "Adjustment Factor".
- What if $\mathrm{R} \boldsymbol{b}=\boldsymbol{q}$?
- Interpretation of this?
- What are the properties of this RLS estimator of $\boldsymbol{\beta}$?

Theorem: The RLS estimator of $\boldsymbol{\beta}$ is Unbiased if $R \boldsymbol{\beta}=\boldsymbol{q}$ is TRUE.

Otherwise, the RLS estimator is Biased.

Proof:

$$
\begin{aligned}
& \quad E\left(\boldsymbol{b}_{*}\right)=E(\boldsymbol{b})-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(\boldsymbol{R} E(\boldsymbol{b})-\boldsymbol{q}) \\
& =\boldsymbol{\beta}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{\beta}-\boldsymbol{q}) .
\end{aligned}
$$

So, if $R \boldsymbol{\beta}=\boldsymbol{q}$, then $E\left(\boldsymbol{b}_{*}\right)=\boldsymbol{\beta}$.

Theorem: The covariance matrix of the RLS estimator of $\boldsymbol{\beta}$ is

$$
V\left(\boldsymbol{b}_{*}\right)=\sigma^{2}\left(X^{\prime} X\right)^{-1}\left\{I-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\}
$$

Proof:

$$
\begin{aligned}
\boldsymbol{b}_{*} & =\boldsymbol{b}-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) \\
& =\left\{I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\right\} \boldsymbol{b}+\boldsymbol{\alpha}
\end{aligned}
$$

where

$$
\boldsymbol{\alpha}=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} \boldsymbol{q}
$$

So, $\quad V\left(\boldsymbol{b}_{*}\right)=A V(\boldsymbol{b}) A^{\prime}$,
where $\quad A=\left\{I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\right\}$.
That is, $\quad V\left(\boldsymbol{b}_{*}\right)=A V(\boldsymbol{b}) A^{\prime}=\sigma^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime} \quad$ (assumptions?)
Now let's look at the matrix, $A\left(X^{\prime} X\right)^{-1} A^{\prime}$.

$$
\begin{aligned}
& \quad A\left(X^{\prime} X\right) A^{\prime}=\left\{I-\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\right\}\left(X^{\prime} X\right)^{-1} \\
& \quad \times\left\{I-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\} \\
& =\left(X^{\prime} X\right)^{-1}+\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} \\
& -2\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1}\left\{I-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\}
\end{aligned}
$$

So,
$V\left(\boldsymbol{b}_{*}\right)=\sigma^{2}\left(X^{\prime} X\right)^{-1}\left\{I-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\}$.
(What assumptions have we used to get this result?)
We can use this result immediately to establish the following......

Theorem: The matrix, $V(\boldsymbol{b})-V\left(\boldsymbol{b}_{*}\right)$, is at least positive semi-definite.

Proof:

$$
\begin{aligned}
V\left(\boldsymbol{b}_{*}\right) & =\sigma^{2}\left(X^{\prime} X\right)^{-1}\left\{I-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\right\} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} \\
& =V(\boldsymbol{b})-\sigma^{2}\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

So, $V(\boldsymbol{b})-V\left(\boldsymbol{b}_{*}\right)=\sigma^{2} \Delta$, say
where $\quad \Delta=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}$.

This matrix is square, symmetric, and of full rank. So, Δ is at least p.s.d..

- This tells us that the variability of the RLS estimator is no more than that of the LS estimator, whether or not the restrictions are true.
- Generally, the RLS estimator will be "more precise" than the LS estimator.
- When will the RLS and LS estimators have the same variability?
- In addition, we know that the RLS estimator is unbiased if the restrictions are true.
- So, if the restrictions are true, the RLS estimator, \boldsymbol{b}_{*}, is more efficient than the LS estimator, \boldsymbol{b}, of the coefficient vector, $\boldsymbol{\beta}$.

Also note the following:

- If the restrictions are false, and we consider $\operatorname{MSE}(\boldsymbol{b})$ and $\operatorname{MSE}\left(\boldsymbol{b}_{*}\right)$, then the relative efficiency can go either way.
- If the restrictions are false, not only is \boldsymbol{b}_{*} biased, it's also inconsistent.

So, it's a good thing that that we know how to construct the UMP test for the validity of the restrictions on the elements of $\boldsymbol{\beta}$!

In practice:

- Estimate the unrestricted model, using LS.
- Test $H_{0}: R \boldsymbol{\beta}=\boldsymbol{q}$ vs. $H_{A}: R \boldsymbol{\beta} \neq \boldsymbol{q}$.
- If the null hypothesis can't be rejected, re-estimate the model with RLS.
- Otherwise, retain the LS estimates.

Example: Cobb-Douglas Production Function ${ }^{1}$

```
>
cobbdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/co
b.b.csv")
> attach(cobbdata)
> res = lm(log(y) ~ log(k) + log(l))
> summary(res)
Call:
lm(formula = log(y) ~ log(k) + log(l))
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.8444 0.2336 7.896 7.33e-08 ***
log(k) 0.2454 0.1069 2.297 0.0315 *
log(1) 0.8052 0.1263 6.373 2.06e-06 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 0.2357 on 22 degrees of freedom
Multiple R-squared: 0.9731, Adjusted R-squared: 0.9706
F-statistic: 397.5 on 2 and 22 DF, p-value: < 2.2e-16
What's this?
```

Let's get the SSE from this regression, for later use:

```
> sum(res$residuals^2)
```

[1] 1.22226

Test the hypothesis of constant returns to scale:

$$
H_{0}: \beta_{2}+\beta_{3}=1 \quad \text { vs. } \quad H_{A}: \beta_{2}+\beta_{3} \neq 1
$$

```
> R = matrix(c(0,1,1),1,3)
> R
l [,1] [,2] [,3]
```

[^0]```
> b = matrix(res$coef,3,1)
> b
 [,1]
[1,] 1.8444157
[2,] 0.2454281
[3,] 0.8051830
> q = 1
>m = R%*%b - q
>m
 [,1]
[1,] 0.05061103
> F = t(m) %*% solve(R %*% vcov(res) %*% t(R)) %*% m
> F
 [,1]
[1,] 1.540692
> 1 - pf(F,1,22)
 [,1]
[1,] 0.2275873
```

Are the residuals normally distributed?
> hist(res\$residuals)

Histogram of res\$residuals


```
> library(tseries)
> jarque.bera.test(res$residuals)
 Jarque Bera Test
data: res$residuals
X-squared = 5.5339, df = 2, p-value = 0.06285
F-test "supported" the validity of the restriction on the coefficients, so now impose this restriction of CRTS. Use RLS:
\[
\log (Q / L)=\beta_{1}+\beta_{2} \log (K / L)+\varepsilon
\]
```

```
> rlsres = lm(log(y/l) ~ log(k/l))
```

> rlsres = lm(log(y/l) ~ log(k/l))
> summary(rlsres)
> summary(rlsres)
Call:
Call:
lm(formula = log(y/l) ~ log(k/l))
lm(formula = log(y/l) ~ log(k/l))
Coefficients:

|  | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 2.0950 | 0.1189 | 17.615 | $7.55 e-15 * * *$ |
| $\log (\mathrm{k} / \mathrm{l})$ | 0.2893 | 0.1020 | 2.835 | $0.00939 * *$ |

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2385 on 23 degrees of freedom
Multiple R-squared: 0.2589, Adjusted R-squared: 0.2267
F-statistic: 8.036 on 1 and 23 DF, p-value: 0.009387
> sum(rlsres\$residuals^2)
[1] 1.307857
SSE = 1.307857

```

Form the LS and RLS results for this particular application, note that
\[
\begin{aligned}
& \boldsymbol{e}^{\prime} \boldsymbol{e}=(\boldsymbol{y}-X \boldsymbol{b})^{\prime}(\boldsymbol{y}-X \boldsymbol{b})=1.22226 \\
& \boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}=\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)^{\prime}\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)=1.307857
\end{aligned}
\]

So, \(\quad \boldsymbol{e}_{*}{ }^{\prime} \boldsymbol{e}_{*}>\boldsymbol{e}^{\prime} \boldsymbol{e}\).
- In fact this inequality will always hold.
- What's the intuition behind this?

Note that:
\[
\begin{aligned}
\boldsymbol{e}_{*} & =\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)=\boldsymbol{y}-X \boldsymbol{b}+X\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) \\
& =\boldsymbol{e}+X\left(X^{\prime} X\right) R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q})
\end{aligned}
\]

Now, recall that \(X^{\prime} \boldsymbol{e}=0\).

So,
\[
\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}=\boldsymbol{e}^{\prime} \boldsymbol{e}+(R \boldsymbol{b}-\boldsymbol{q})^{\prime} A(R \boldsymbol{b}-\boldsymbol{q}),
\]
where:
\[
\begin{aligned}
A & =\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} \\
& =\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} \quad ; \quad \text { this matrix has full rank, and is p.d.s. }
\end{aligned}
\]

So, \(\boldsymbol{e}_{*}{ }^{\prime} \boldsymbol{e}_{*}>\boldsymbol{e}^{\prime} \boldsymbol{e}\), because \((R \boldsymbol{b}-\boldsymbol{q})^{\prime} A(R \boldsymbol{b}-\boldsymbol{q})>0\).

This last result also gives us an alternative (convenient) way of writing the formula for the Fstatistic:
\[
\begin{aligned}
\left(\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}-\boldsymbol{e}^{\prime} \boldsymbol{e}\right) & =(R \boldsymbol{b}-\boldsymbol{q})^{\prime} A(R \boldsymbol{b}-\boldsymbol{q}) \\
& =(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) .
\end{aligned}
\]

Recall that:
\[
F=\frac{(R \boldsymbol{b}-\boldsymbol{q})^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \boldsymbol{b}-\boldsymbol{q}) / J}{s^{2}}
\]

So, clearly,
\[
F=\frac{\left(\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}-\boldsymbol{e}^{\prime} \boldsymbol{e}\right) / J}{s^{2}}=\frac{\left(\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}-\boldsymbol{e}^{\prime} \boldsymbol{e}\right) / J}{\boldsymbol{e}^{\prime} \boldsymbol{e} /(n-k)}
\]

For the last example:
\(J=1 ;(n-k)=(25-3)=22\)
\(\left(\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}\right)=1.307857 \quad ; \quad\left(\boldsymbol{e}^{\prime} \boldsymbol{e}\right)=1.22226\)

So, \(\quad F=\frac{(1.307857-1.22226) / 1}{1.22226 / 22}=1.54070\)

\section*{In Retrospect}
- Now we can see why \(R^{2} \uparrow\) when we add any regressor to our model (and \(R^{2} \downarrow\) when we delete any regressor).
- Deleting a regressor is equivalent to imposing a zero restriction on one of the coefficients.
- The residual sum of squares \(\uparrow\) and so \(R^{2} \downarrow\).

Exercise: use the \(\mathrm{R}^{2}\) from the unrestricted and restricted model to calculate \(F\).

\section*{Estimating the Error Variance}

We have considered the RLS estimator of \(\boldsymbol{\beta}\). What about the corresponding estimator of the variance of the error term, \(\sigma^{2}\) ?

Theorem:

Let \(\boldsymbol{b} *\) be the RLS estimator of \(\boldsymbol{\beta}\) in the model,
\[
\boldsymbol{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon} \quad ; \boldsymbol{\varepsilon} \sim\left[0, \sigma^{2} I_{n}\right]
\]
and let the corresponding residual vector be \(\boldsymbol{e}_{*}=\left(\boldsymbol{y}-X \boldsymbol{b}_{*}\right)\). Then the following estimator of \(\sigma^{2}\) is unbiased, if the restrictions, \(R \boldsymbol{\beta}=\boldsymbol{q}\), are satisfied: \(s_{*}^{2}=\left(\boldsymbol{e}_{*}^{\prime} \boldsymbol{e}_{*}\right) /(n-k+J)\).

See if you can prove this result!```

[^0]: ${ }^{1}$ The data are from table F7.2, Greene, 2012

