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Topic 4: Model Stability & Specification Analysis 

1. Our results to date presume that our regression model holds for the full sample that we 

are working with. 

2. Our results also presume that the model is correctly specified, in the following sense: 

a) The functional form is correct. 

b) All of the relevant regressors have been included. 

c) No redundant regressors have been included. 

d) The only “unexplained” variation in the dependent variable is purely random 

“noise”, as represented by a “well-behaved” error term. 

 In this section we’ll re-consider item 1, above, and items 2 (b) & (c). 

 The other items will be considered later. 

Specification Analysis                                                   (Henri Theil, 1957) 

We’ll consider various issues associated with the choice of regressors in our linear regression 

model. 

Omission of Relevant Regressors 

D.G.P.: 𝒚 = 𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝜺    ;        𝐸[𝜺] = 𝟎 

F.M.:   𝒚 = 𝑋1𝜷1 + 𝒖 

So,   𝒃1 = (𝑋1′𝑋1)−1𝑋1′𝒚 

                         = (𝑋1′𝑋1)−1𝑋1′(𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝜺) 

                       = 𝜷1 + (𝑋1′𝑋1)−1𝑋1′𝑋2𝜷2 + (𝑋1′𝑋1)−1𝑋1′𝜺 

 

Let’s consider the bias of this estimator – 

𝐸[𝑏1] = 𝜷1 + (𝑋1′𝑋1)−1𝑋1′𝑋2𝜷2 

  ≠ 𝜷1    ;   unless  𝑋1′𝑋2 = 0  ;  or  𝑋2𝜷2 = 𝟎 
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 So, in general, this estimator will be Biased. 

 This is just an example of imposing false restrictions on some elements of the β vector. 

 The estimator, 𝑏1, will also be inconsistent. 

 However, there will be a reduction in the variance of the estimator, through the imposition 

of the restrictions, even though they are false. 

Now consider the converse situation – 

Inclusion of Irrelevant Regressors 

D.G.P.:  𝒚 = 𝑋1𝜷1 + 𝜺       ;                𝐸[𝜺] = 𝟎 

F.M.:  𝒚 = 𝑋1𝜷1 + 𝑋2𝜷𝟐 + 𝒖 = 𝑋𝜷 + 𝒖 

where, 

  𝑋 = [𝑋1 , 𝑋2]    ;    𝜷 = (
𝜷1

𝜷𝟐
) 

So,                 𝒃 = (
𝒃𝟏

𝒃2
) = (𝑋′𝑋)−1𝑋′𝒚   

                            = (𝑋′𝑋)−1𝑋′(𝑋1𝜷1 + 𝜺)  . 

Now, we can write:   𝑋1 = (𝑋1 , 𝑋2) (
𝐼
0

) = 𝑋𝑆   ,   say. 

So,  𝒃 = (
𝒃𝟏

𝒃2
) = (𝑋′𝑋)−1𝑋′𝑋𝑆𝜷1 + (𝑋′𝑋)−1𝑋′𝜺   

    = 𝑆𝜷1 + (𝑋′𝑋)−1𝑋′𝜺  . 

Then,  𝐸[𝒃] = 𝐸 (
𝒃1

𝒃2
) = 𝑆𝜷1 = (

𝐼
0

) 𝜷1 = (
𝜷1

𝟎
)  . 

That is, 

               𝐸[𝒃1] = 𝜷1   ;   and   𝐸[𝒃2] = 𝟎  (= 𝜷2)   . 

So, in this case the LS estimator is Unbiased (and also Consistent). 
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 In the case where we include irrelevant regressors, we are effectively ignoring some valid 

restrictions on β. 

 Although the LS estimator is Unbiased, it is also Inefficient. 

 The “costs” of wrongly omitting regressors usually exceed those of wrongly including 

extraneous ones. 

 This suggests that a “General-to-Specific” model building strategy may be preferable to a 

“Specific-to-General” one.                         (David Hendry) 

 Over-fit the model, then simplify it on the basis of significance and specification testing. 

 Generally this involves a sequence of “nested” hypotheses – increasingly restrictive. Stop 

when restrictions are rejected. 

 Issues: (a) Degrees of freedom; (b) Loss of precision; (c) Dependence of test statistics, and 

distortions due to “pre-testing”. 

Testing for Structural Change 

 Suppose that a “shift” in the model occurs due to some exogenous “shock”. 

 Define a Dummy Variable: 

𝐷𝑡 = 0   ;   before the shock 

 𝐷𝑡 = 1   ;   after the shock 

 Need not involve “time”. Could be 2 regions, for example. 

 Could be more than one “shift”. 

 Do the values of the Dummy variable have to be 0 and 1? 

 Then, consider a model of the form: 

𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + ⋯ + 𝛽𝑘𝐷𝑡 + 𝜀𝑡 

 We could then think of testing 

        𝐻0: 𝛽𝑘 = 0    vs.   𝐻𝐴: 𝛽𝑘 ≠ 0     

 Rejection of H0 implies there is a particular type of structural change in the model. (A 

shift in the level.) 

 Or, more generally, consider a model of the form: 

         𝑦𝑡 = 𝛽1 + 𝛽2𝑥2𝑡 + ⋯ +𝛽𝑘−1(𝐷𝑡 × 𝑥2𝑡) + 𝛽𝑘𝐷𝑡 + 𝜀𝑡 

 We could then think of testing 
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        𝐻0: 𝛽𝑘−1 = 𝛽𝑘 = 0    vs.   𝐻𝐴: 𝑁𝑜𝑡 𝐻0     

 Rejection of H0 implies there is a different type of structural change in the model. (A 

shift in the level and one of the marginal effects.) 

 Using the dummy variable fully, in this way (with intercept and all slope coefficients) 

turns out to be equivalent to the following – 

 

The Chow Test                                                        (Gregory Chow, 1960) 

 Suppose there is a natural break-point in the sample after n1 observations, and we have: 

  𝒚1 = 𝑋1𝜷1 + 𝜺1      ;   𝜺1~𝑁[0 , 𝜎2𝐼𝑛1
]                (n1) 

𝒚2 = 𝑋2𝜷2 + 𝜺2    ;   𝜺2~𝑁[0 , 𝜎2𝐼𝑛2
]              (n2) 

 X1 and X2 relate to the same regressors, but different sub-samples. Similarly for y1 and y2. 

Let   𝑛 = (𝑛1 + 𝑛2). 

 We can write the full model as: 

(
𝒚1

𝒚2
) = [

𝑋1 0
0 𝑋2

] (
𝜷1

𝜷2
) + (

𝜺1

𝜺2
) 

                                    (𝑛 × 1)          (𝑛 × 2𝑘)    (2𝑘 × 1)   (𝑛 × 1) 

or, 

𝒚 = 𝑋𝜷 + 𝜺    ;   𝜺~𝑁[0 , 𝜎2𝐼𝑛] 

 If we estimate each part of the model separately, using LS, we get: 

 

𝒃𝟏 = (𝑋1′𝑋1)−1𝑋1′𝒚1      ;     𝒆1 = 𝒚1 − 𝑋1𝒃1 

𝒃𝟐 = (𝑋2′𝑋2)−1𝑋2′𝒚2      ;     𝒆2 = 𝒚2 − 𝑋2𝒃2 

 

 The total sum of squared residuals for all 𝑛 = (𝑛1 + 𝑛2) observations is then: 

𝒆′𝒆 = 𝒆1′𝒆1 + 𝒆2′𝒆2 
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Suppose that we want to test       𝐻0: 𝜷1 = 𝜷2    vs.   𝐻𝐴: 𝜷1 ≠ 𝜷2    

 That is we want to test the null hypothesis “There is no structural break”. 

 One way to interpret this problem is as follows: 

𝒚 = 𝑋𝜷 + 𝜺 

𝐻0: 𝑅𝜷 = 𝒒    vs.   𝐻𝐴: 𝑅𝜷 ≠ 𝒒 

where:  𝑅 = [𝐼𝑘 −𝐼𝑘]       ;      𝜷 = (
𝜷1

𝜷2
)       ;      𝒒 = 𝟎  . 

If there are k regressors, then q is (𝑘 × 1), and 𝐽 = 𝑘. 

 Then, we can apply the usual F-test for exact linear restrictions: 

𝐹 = (𝑅𝒃 − 𝒒)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝒃 − 𝒒)/(𝑘𝑠2) 

𝐹~𝐹𝑘,𝑛−2𝑘   if H0 is True 

 Alternatively, recall that we can write the test statistic as: 

𝐹 =
[(𝒆∗′𝒆∗) − (𝒆′𝒆)]/𝑘

(𝒆′𝒆)/(𝑛1 + 𝑛2 − 2𝑘)
 

 Here, e* is the residual vector associated with the RLS estimator , b*, of β. 

 An easy way to obtain b*, and hence e*, is to write: 

                             (
𝒚1

𝒚2
) = [

𝑋1 0
0 𝑋2

] (
𝜷1

𝜷2
)   +    (

𝜺1

𝜺2
) 

                       (𝑛 × 1)   (𝑛 × 2𝑘)(2𝑘 × 1)   (𝑛 × 1) 

and then restrict 𝜷1 = 𝜷2 = �̅�  (say), yielding the model: 

                       (
𝒚1

𝒚2
) = [

𝑋1

𝑋2
] �̅� + (

𝜺1

𝜺2
) 

 That is, we just “stack up the y and X data for both sub-samples – that is, estimate the one 

model for the full sample. 

 This will yield b*, and hence  e* . 

 Notice that we assumed that 𝜎1
2 = 𝜎2

2 . 

 Major complications without this restriction:  “Behrens-Fisher Problem”. 
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 If we have random regressors, we can still use the Wald Test. 

 𝑘𝐹
𝑑
→ 𝜒(𝑘)

2   ;   if H0 is True. 

Example   

Let’s see this illustrated. We’ll see two equivalent ways of testing for this type of structural 

change. 

Consider the following model for per-capita gasoline consumption1: 

ln 𝐺𝐴𝑆 = 𝛽1 + 𝛽2𝑌𝐸𝐴𝑅 + 𝛽3 ln 𝐼𝑛𝑐𝑜𝑚𝑒/𝑃𝑜𝑝 + 𝛽4 ln 𝐺𝐴𝑆𝑃 + 𝛽5 ln 𝑃𝑁𝐶 + 𝛽6 ln 𝑃𝑈𝐶 + 𝜀 

Where GASP is the price of gasoline, PNC is the price of new cars, and PUC the price of used 

cars. We will consider an exogenous shock for the year 1973. 

Per Capita Gasoline Consumption (U.S.A.) 

 

  

                                                           
1 Data from Greene (2012), Table F2.2 
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Estimate the pooled model (using all observations): 

 

𝑒∗
′𝑒∗ = 0.16302 

Re-estimate the model using data up to 1973 only (pre-shock data): 

 

𝑒1
′ 𝑒1 = 0.00184  

Regression Estimates
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Re-estimate the model using data after 1973 only (post-shock data): 

 

𝑒2
′ 𝑒2 = 0.00739 

Chow test: 

𝐹 =
[(𝒆∗′𝒆∗) − (𝒆1

′ 𝒆1 + 𝒆2
′ 𝒆2)]/𝑘

(𝒆1
′ 𝒆1 + 𝒆2

′ 𝒆2)/(𝑛1 + 𝑛2 − 2𝑘)
=

[0.16302 − 0.00184 − 0.00739]/6

(0.00184 + 0.00739)/(52 − 12)
= 111.267 

From an F-distribution with 6 and 40 degrees of freedom, the p-value associated with this test 

statistic is 0.000. 

An alternate way to calculate this test statistic is to estimate a model using dummy variables, and 

perform an F-test for the joint significance of all coefficients associated with a dummy variable. 

  

Regression Estimates
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 DUM = 0 (1953 – 1973)  ;  = 1 (1974 – 2004) 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)         -60.998170   5.308283 -11.491 3.03e-14 *** 

YEAR                  0.024922   0.002960   8.420 2.15e-10 *** 

log(INCOME/POP)       0.660168   0.116328   5.675 1.35e-06 *** 

log(GASP)            -0.036362   0.205657  -0.177 0.860553     

log(PNC)              0.638100   0.146745   4.348 9.18e-05 *** 

log(PUC)             -0.279605   0.069318  -4.034 0.000240 *** 

DUM                  31.954337   5.859984   5.453 2.77e-06 *** 

YEAR:DUM             -0.015663   0.003184  -4.920 1.53e-05 *** 

log(INCOME/POP):DUM  -0.352420   0.166666  -2.115 0.040750 *   

log(GASP):DUM        -0.087200   0.206332  -0.423 0.674837     

log(PNC):DUM         -0.656235   0.164627  -3.986 0.000277 *** 

log(PUC):DUM          0.263556   0.081286   3.242 0.002394 ** 

 

 

𝑒′𝑒 = 0.00922 

 

Note that 𝑒1
′ 𝑒1 + 𝑒2

′ 𝑒2 = 𝑒′𝑒! 

 

Insufficient Degrees of Freedom 

 What if either 𝑛1 < 𝑘 , or 𝑛2 < 𝑘 ? 

 In this case we can’t fit one of the sub-sample regressions, so F can’t be computed. 

 There is a second version of the Chow test, designed for this situation (“Chow Forecast 

Test”). 

Also, note: 

 Location of break-point(s) assumed known. 

 Situation becomes much more complicated if we have to estimate break-point locations(s).  
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Using the Wald Test 

 If any of the usual assumptions that underly the F-test for exact linear restrictions are 

violated, then the usual Chow test is not valid. 

 We can, however, still use the Wald test version of the Chow test. 

 It will be valid only asymptotically (large n). 

 It may have poor performance in small samples. 

 Examples where we would use the Wald version of the Chow test – 

1. Random regressors (e.g., lagged dependent variable). 

2. Non-Normal errors. 

 

Appendix – R Code 
 

#Data is from Greene, Table F2.2 

#You will have to install the “arm” package if you wish to use “coefplot”. 

library(arm) 

gasdata = read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/gas.csv") 

attach(gasdata) 

 

#View the break-point: 

plot(YEAR,GAS) 

lines(YEAR,GAS) 

text(1973,1.4,"1973") 

arrows(1973,1.35,1973,1.2,length = 0.1) 

 

#Estimate the pooled model: 

eq1 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC)      

+ log(PUC)) 

#View the estimated coefficients: 

coefplot(eq1,vertical=FALSE,var.las = 1,cex.var=1.2) 

#Get the sum of squared residuals from the pooled (restricted) model: 

sser = sum(eq1$residuals^2) 

 

#Use only the first 21 observations (up to 1973): 

preshock = gasdata[1:21,] 

attach(preshock) 

eq2 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC)) 

coefplot(eq2,vertical=FALSE,var.las = 1,cex.var=1.2) 

sseu1 = sum(eq2$residuals^2) 

 

#Use only the last 31 observations (after 1973): 

postshock = gasdata[22:52,] 



11 
 

attach(postshock) 

eq3 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC)) 

coefplot(eq3,vertical=FALSE,var.las = 1,cex.var=1.2) 

sseu2 = sum(eq3$residuals^2) 

 

#Calculate Chow test statistic: 

chow = ((sser - sseu1 - sseu2)/6)/((sseu1 + sseu2)/(52 - 12)) 

#p-value: 

1 - pf(chow,6,40) 

 

#Estimate the model with dummy variables: 

DUM = c(rep(0,21),rep(1,31)) 

attach(gasdata) 

eq4 = lm(log(GASEXP/GASP/POP) ~ YEAR + log(INCOME/POP) + log(GASP) + log(PNC) 

+ log(PUC) + DUM + DUM*YEAR + DUM*log(INCOME/POP) + DUM*log(GASP) + 

DUM*log(PNC) + DUM*log(PUC)) 

summary(eq4) 

ssedum = sum(eq4$residuals^2) 


