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Topic 5: Non-Linear Regression 

 The models we’ve worked with so far have been linear in the parameters. 

 They’ve been of the form:        𝒚 = 𝑋𝜷 + 𝜺 

 Many models based on economic theory are actually non-linear in the parameters. 

CES Production function: 

𝑌𝑖 = 𝛾[𝛿𝐾𝑖
−𝜌

+ (1 − 𝛿)𝐿𝑖
−𝜌
]
−𝑣/𝜌

exp(𝜀𝑖) 

or,         𝑙𝑛(𝑌𝑖) = 𝑙𝑛(𝛾) − (
𝑣

𝜌
) 𝑙𝑛[𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] +𝜀𝑖 

Linear Expenditure System:                                                    (Stone, 1954)  

 

Max. 𝑈(𝒒) = ∑ 𝛽𝑖𝑙𝑛(𝑞𝑖 − 𝛾𝑖)𝑖               (Stone-Geary /Klein-Rubin) 

s.t.   ∑ 𝑝𝑖𝑞𝑖 = 𝑀𝑖  

 Yields the following system of demand equations: 

         𝑝𝑖𝑞𝑖 = 𝛾𝑖𝑝𝑖 + 𝛽𝑖(𝑀 − ∑ 𝛾𝑗𝑝𝑗𝑗 )     ;    i = 1, 2, …., n 

 

 The 𝛽𝑖’s are the Marginal Budget Shares. 

 So, we require that 0 < 𝛽𝑖 < 1 ;   i = 1, 2, …., n. 

 Engel aggregation implies that 

1.  ∑ 𝛾𝑖 = 0𝑖  . 

2.  ∑ 𝛽𝑖 = 1𝑖  . 

 In general, suppose we have a single non-linear equation: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘; 𝜃1, 𝜃2, … , 𝜃𝑝) + 𝜀𝑖 

 We can still consider  a “Least Squares” approach. 

 The Non-Linear Least Squares estimator is the vector, �̂� , that minimizes the quantity:   

𝑆(𝑋, 𝜽) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑋, �̂�)]
𝟐

𝒊  . 

 Clearly the usual LS estimator is just a special case of this. 

 To obtain the estimator, we differentiate S with respect to each element of  �̂�; set up the 

“p” first-order conditions and solve. 
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 Difficulty – usually, the first-order conditions are themselves non-linear in the unknowns 

(the parameters). 

 This means there is (generally) no exact, closed-form, solution. 

 Can’t write down an explicit formula for the estimators of parameters. 

Example  

𝑦𝑖 = 𝜃1 + 𝜃2𝑥𝑖2 + 𝜃3𝑥𝑖3 + (𝜃2𝜃3)𝑥𝑖4 + 𝜀𝑖 

𝑆 = ∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]
2

𝑖

 

𝜕𝑆

𝜕𝜃1
= −2∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]

𝑖

 

𝜕𝑆

𝜕𝜃2
= −2∑[(𝜃3𝑥𝑖4 + 𝑥𝑖2)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

𝜕𝑆

𝜕𝜃3
= −2∑[(𝜃2𝑥𝑖4 + 𝑥𝑖3)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

Setting these 3 equations to zero, we can’t solve analytically for the estimators of the three 

parameters. 

 In situations such as this, we need to use a numerical algorithm to obtain a solution to the 

first-order conditions. 

 Lots of methods for doing this – one possibility is Newton’s algorithm (the Newton-

Raphson algorithm). 

Methods of Descent  

                     𝜽̃ = 𝜽0 + 𝑠𝒅(𝜽0) 

𝜽0      =  initial (vector) value. 

s         =  step-length      (positive scalar) 

𝒅(. )  =  direction vector 
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 Usually, 𝒅(. ) Depends on the gradient vector at 𝜽0. 

 It may also depend on the change in the gradient (the Hessian matrix) at 𝜽0. 

 Some specific algorithms in the “family” make the step-length a function of the Hessian. 

 One very useful, specific member of the family of “Descent Methods” is the Newton-

Raphson algorithm: 

Suppose we want to minimize some function, 𝑓(𝜽).      

Approximate the function using a Taylor’s series expansion about �̃� , the vector value that 

minimizes 𝑓(𝜽): 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
(
𝜕𝑓

𝜕𝜽
)
�̃�
+

1

2!
(𝜽 − �̃�)

′
[
𝜕2𝑓

𝜕𝜽𝜕𝜽′
]
�̃�

(𝜽 − �̃�) 

Or: 

𝑓(𝜽) ≅ 𝑓(�̃�) + (𝜽 − �̃�)
′
𝑔(�̃�) +

1

2!
(𝜽 − �̃�)

′
𝐻(�̃�)(𝜽 − �̃�) 

So, 

𝜕𝑓(𝜽)

𝜕𝜽
≅ 0 + (𝜽 − �̃�)

′
𝑔(�̃�) +

1

2!
2𝐻(�̃�)(𝜽 − �̃�) 

However, 𝑔(�̃�) = 0 ;  as �̃� locates a minimum. 

So, 

 (𝜽 − �̃�) ≅ 𝐻−1(�̃�) (
𝜕𝑓(𝜽)

𝜕𝜽
)  ; 

or,                     �̃� ≅ 𝜽 − 𝐻−1(�̃�)𝑔(𝜽)  

This suggests a numerical algorithm: 
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Set 𝜽 = 𝜽0 to begin, and then iterate – 

𝜽1 = 𝜽0 − 𝐻−1(𝜽1)𝑔(𝜽0) 

𝜽2 = 𝜽1 − 𝐻−1(𝜽2)𝑔(𝜽1) 

                    ⋮        ⋮                     ⋮ 

𝜽𝑛+1 = 𝜽𝑛 −𝐻−1(𝜽𝑛+1)𝑔(𝜽𝑛) 

or, approximately: 

𝜽𝑛+1 = 𝜽𝑛 −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) 

 

Stop if                      |
(𝜃𝑛+1

(𝑖)
−𝜃𝑛

(𝑖)
)

𝜃𝑛
(𝑖) | <  𝜀(𝑖)   ;    i = 1, 2, …, p 

Note: 

1.   s = 1. 

2.   𝒅(𝜽𝑛) = −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) . 

3.   Algorithm fails if H ever becomes singular at any iteration. 

4.  Achieve a minimum of f (.) if H is positive definite. 

5.   Algorithm may locate only a local minimum. 

6.   Algorithm may oscillate. 

The algorithm can be given a nice geometric interpretation – scalar θ. 

To find an extremum of  f (.), solve  
𝜕𝑓(𝜃)

𝜕𝜃
= 𝑔(𝜃) = 0 . 
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If 𝑓(𝜽) is quadratic in 𝜽, then the algorithm converges in one iteration: 
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In general, different choices of  𝜃0 may lead to different solutions, or no solution at all. 
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Example           (Where we actually know the answer) 

               𝑓(𝜃) = 3𝜃4 − 4𝜃3 + 1                       locate minimum 

 

Analytically: 

𝑔(𝜃) = 12𝜃3 − 12𝜃2 = 12𝜃2(𝜃 − 1) 

𝐻(𝜃) = 36𝜃2 − 24𝜃 = 12𝜃(3𝜃 − 2) 

Turning points at = 0, 0, 1 . 

𝐻(0) = 0                           saddlepoint 

𝐻(1) = 12            minimum     

         

Algorithm 

𝜃𝑛+1 = 𝜃𝑛 −𝐻−1(𝜃𝑛)𝑔(𝜃𝑛) 

 

𝜃0 = 2                                     (say) 

𝜃1 = 2 − (
48

96
) = 1.5             

𝜃2 = 1.5 − (
13.5

45
) = 1.2                 

𝜃3 = 1.2 − (
3.456

23.040
) = 1.05             

⋮  

etc.      

 

Try:     𝜃0 = −2;𝜃0 = 0.5                


