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Topic 5: Non-Linear Regression 

 The models we’ve worked with so far have been linear in the parameters. 

 They’ve been of the form:        𝒚 = 𝑋𝜷 + 𝜺 

 Many models based on economic theory are actually non-linear in the parameters. 

CES Production function: 

𝑌𝑖 = 𝛾[𝛿𝐾𝑖
−𝜌

+ (1 − 𝛿)𝐿𝑖
−𝜌
]
−𝑣/𝜌

exp⁡(𝜀𝑖) 

or,         𝑙𝑛(𝑌𝑖) = 𝑙𝑛(𝛾) − (
𝑣

𝜌
) 𝑙𝑛[𝛿𝐾𝑖

−𝜌
+ (1 − 𝛿)𝐿𝑖

−𝜌
] +𝜀𝑖 

Linear Expenditure System:                                                    (Stone, 1954)  

 

Max. 𝑈(𝒒) = ∑ 𝛽𝑖𝑙𝑛(𝑞𝑖 − 𝛾𝑖)𝑖               (Stone-Geary /Klein-Rubin) 

s.t.   ∑ 𝑝𝑖𝑞𝑖 = 𝑀𝑖  

 Yields the following system of demand equations: 

         𝑝𝑖𝑞𝑖 = 𝛾𝑖𝑝𝑖 + 𝛽𝑖(𝑀 − ∑ 𝛾𝑗𝑝𝑗𝑗 )     ;    i = 1, 2, …., n 

 

 The 𝛽𝑖’s are the Marginal Budget Shares. 

 So, we require that 0 < 𝛽𝑖 < 1 ;   i = 1, 2, …., n. 

 Engel aggregation implies that 

1.  ∑ 𝛾𝑖 = 0𝑖  . 

2.  ∑ 𝛽𝑖 = 1𝑖  . 

 In general, suppose we have a single non-linear equation: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘; 𝜃1, 𝜃2, … , 𝜃𝑝) + 𝜀𝑖 

 We can still consider  a “Least Squares” approach. 

 The Non-Linear Least Squares estimator is the vector, 𝜽̂ , that minimizes the quantity:   

𝑆(𝑋, 𝜽) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑋, 𝜽̂)]
𝟐

𝒊  . 

 Clearly the usual LS estimator is just a special case of this. 

 To obtain the estimator, we differentiate S with respect to each element of  𝜽̂; set up the 

“p” first-order conditions and solve. 
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 Difficulty – usually, the first-order conditions are themselves non-linear in the unknowns 

(the parameters). 

 This means there is (generally) no exact, closed-form, solution. 

 Can’t write down an explicit formula for the estimators of parameters. 

Example  

𝑦𝑖 = 𝜃1 + 𝜃2𝑥𝑖2 + 𝜃3𝑥𝑖3 + (𝜃2𝜃3)𝑥𝑖4 + 𝜀𝑖 

𝑆 = ∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]
2

𝑖

 

𝜕𝑆

𝜕𝜃1
= −2∑[𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − (𝜃2𝜃3)𝑥𝑖4]

𝑖

 

𝜕𝑆

𝜕𝜃2
= −2∑[(𝜃3𝑥𝑖4 + 𝑥𝑖2)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

𝜕𝑆

𝜕𝜃3
= −2∑[(𝜃2𝑥𝑖4 + 𝑥𝑖3)(𝑦𝑖 − 𝜃1 − 𝜃2𝑥𝑖2 − 𝜃3𝑥𝑖3 − 𝜃2𝜃3𝑥𝑖4)]

𝑖

 

Setting these 3 equations to zero, we can’t solve analytically for the estimators of the three 

parameters. 

 In situations such as this, we need to use a numerical algorithm to obtain a solution to the 

first-order conditions. 

 Lots of methods for doing this – one possibility is Newton’s algorithm (the Newton-

Raphson algorithm). 

Methods of Descent  

                     𝜽⁡̃ = 𝜽0 + 𝑠⁡𝒅(𝜽0) 

𝜽0      =  initial (vector) value. 

s         =  step-length      (positive scalar) 

𝒅(. )  =  direction vector 
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 Usually, 𝒅(. ) Depends on the gradient vector at 𝜽0. 

 It may also depend on the change in the gradient (the Hessian matrix) at 𝜽0. 

 Some specific algorithms in the “family” make the step-length a function of the Hessian. 

 One very useful, specific member of the family of “Descent Methods” is the Newton-

Raphson algorithm: 

Suppose we want to minimize some function, 𝑓(𝜽).      

Approximate the function using a Taylor’s series expansion about 𝜽̃ , the vector value that 

minimizes 𝑓(𝜽): 

𝑓(𝜽) ≅ 𝑓(𝜽̃) + (𝜽 − 𝜽̃)
′
(
𝜕𝑓

𝜕𝜽
)
𝜽̃
+

1

2!
(𝜽 − 𝜽̃)

′
[
𝜕2𝑓

𝜕𝜽𝜕𝜽′
]
𝜽̃

(𝜽 − 𝜽̃) 

Or: 

𝑓(𝜽) ≅ 𝑓(𝜽̃) + (𝜽 − 𝜽̃)
′
𝑔(𝜽̃) +

1

2!
(𝜽 − 𝜽̃)

′
𝐻(𝜽̃)(𝜽 − 𝜽̃) 

So, 

𝜕𝑓(𝜽)

𝜕𝜽
≅ 0 + (𝜽 − 𝜽̃)

′
𝑔(𝜽̃) +

1

2!
2𝐻(𝜽̃)(𝜽 − 𝜽̃) 

However, 𝑔(𝜽̃) = 0 ;  as 𝜽̃ locates a minimum. 

So, 

 (𝜽 − 𝜽̃) ≅ 𝐻−1(𝜽̃) (
𝜕𝑓(𝜽)

𝜕𝜽
)  ; 

or,                     𝜽̃ ≅ 𝜽 − 𝐻−1(𝜽̃)𝑔(𝜽)  

This suggests a numerical algorithm: 
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Set 𝜽 = 𝜽0 to begin, and then iterate – 

𝜽1 = 𝜽0 − 𝐻−1(𝜽1)𝑔(𝜽0) 

𝜽2 = 𝜽1 − 𝐻−1(𝜽2)𝑔(𝜽1) 

                    ⋮        ⋮                     ⋮ 

𝜽𝑛+1 = 𝜽𝑛 −𝐻−1(𝜽𝑛+1)𝑔(𝜽𝑛) 

or, approximately: 

𝜽𝑛+1 = 𝜽𝑛 −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) 

 

Stop if                      |
(𝜃𝑛+1

(𝑖)
−𝜃𝑛

(𝑖)
)

𝜃𝑛
(𝑖) | < ⁡ 𝜀(𝑖)   ;    i = 1, 2, …, p 

Note: 

1.   s = 1. 

2.   𝒅(𝜽𝑛) = −𝐻−1(𝜽𝑛)𝑔(𝜽𝑛) . 

3.   Algorithm fails if H ever becomes singular at any iteration. 

4.  Achieve a minimum of f (.) if H is positive definite. 

5.   Algorithm may locate only a local minimum. 

6.   Algorithm may oscillate. 

The algorithm can be given a nice geometric interpretation – scalar θ. 

To find an extremum of  f (.), solve  
𝜕𝑓(𝜃)

𝜕𝜃
= 𝑔(𝜃) = 0 . 
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6 
 

 

If 𝑓(𝜽) is quadratic in 𝜽, then the algorithm converges in one iteration: 
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In general, different choices of  𝜃0 may lead to different solutions, or no solution at all. 
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Example           (Where we actually know the answer) 

               𝑓(𝜃) = 3𝜃4 − 4𝜃3 + 1                       locate minimum 

 

Analytically: 

𝑔(𝜃) = 12𝜃3 − 12𝜃2 = 12𝜃2(𝜃 − 1) 

𝐻(𝜃) = 36𝜃2 − 24𝜃 = 12𝜃(3𝜃 − 2) 

Turning points at = 0, 0, 1 . 

𝐻(0) = 0                           saddlepoint 

𝐻(1) = 12            minimum     

         

Algorithm 

𝜃𝑛+1 = 𝜃𝑛 −𝐻−1(𝜃𝑛)𝑔(𝜃𝑛) 

 

𝜃0 = 2                                     (say) 

𝜃1 = 2 − (
48

96
) = 1.5             

𝜃2 = 1.5 − (
13.5

45
) = 1.2                 

𝜃3 = 1.2 − (
3.456

23.040
) = 1.05             

⋮  

etc.      

 

Try:     𝜃0 = −2;⁡⁡⁡⁡𝜃0 = 0.5                


