Topic 5: Non-Linear Regression

- The models we've worked with so far have been linear in the parameters.
- They've been of the form: $\quad \boldsymbol{y}=X \boldsymbol{\beta}+\boldsymbol{\varepsilon}$
- Many models based on economic theory are actually non-linear in the parameters.

CES Production function:

$$
\begin{array}{r}
Y_{i}=\gamma\left[\delta K_{i}^{-\rho}+(1-\delta) L_{i}^{-\rho}\right]^{-v / \rho} \exp \left(\varepsilon_{i}\right) \\
\text { or, } \quad \ln \left(Y_{i}\right)=\ln (\gamma)-\left(\frac{v}{\rho}\right) \ln \left[\delta K_{i}^{-\rho}+(1-\delta) L_{i}^{-\rho}\right]+\varepsilon_{i}
\end{array}
$$

Linear Expenditure System:
(Stone, 1954)

Max. $U(\boldsymbol{q})=\sum_{i} \beta_{i} \ln \left(q_{i}-\gamma_{i}\right) \quad$ (Stone-Geary/Klein-Rubin)
s.t. $\quad \sum_{i} p_{i} q_{i}=M$

- Yields the following system of demand equations:

$$
p_{i} q_{i}=\gamma_{i} p_{i}+\beta_{i}\left(M-\sum_{j} \gamma_{j} p_{j}\right) \quad ; \quad i=1,2, \ldots, n
$$

- The β_{i} 's are the Marginal Budget Shares.
- So, we require that $0<\beta_{i}<1 ; i=1,2, \ldots, n$.
- Engel aggregation implies that

1. $\sum_{i} \gamma_{i}=0$.
2. $\sum_{i} \beta_{i}=1$.

- In general, suppose we have a single non-linear equation:

$$
y_{i}=f\left(x_{i 1}, x_{i 2}, \ldots, x_{i k} ; \theta_{1}, \theta_{2}, \ldots, \theta_{p}\right)+\varepsilon_{i}
$$

- We can still consider a "Least Squares" approach.
- The Non-Linear Least Squares estimator is the vector, $\widehat{\boldsymbol{\theta}}$, that minimizes the quantity: $S(X, \boldsymbol{\theta})=\sum_{i}\left[y_{i}-f_{i}(X, \widehat{\boldsymbol{\theta}})\right]^{\mathbf{2}}$.
- Clearly the usual LS estimator is just a special case of this.
- To obtain the estimator, we differentiate S with respect to each element of $\widehat{\boldsymbol{\theta}}$; set up the " p " first-order conditions and solve.
- Difficulty - usually, the first-order conditions are themselves non-linear in the unknowns (the parameters).
- This means there is (generally) no exact, closed-form, solution.
- Can't write down an explicit formula for the estimators of parameters.

Example

$$
\begin{gathered}
y_{i}=\theta_{1}+\theta_{2} x_{i 2}+\theta_{3} x_{i 3}+\left(\theta_{2} \theta_{3}\right) x_{i 4}+\varepsilon_{i} \\
S=\sum_{i}\left[y_{i}-\theta_{1}-\theta_{2} x_{i 2}-\theta_{3} x_{i 3}-\left(\theta_{2} \theta_{3}\right) x_{i 4}\right]^{2} \\
\frac{\partial S}{\partial \theta_{1}}=-2 \sum_{i}\left[y_{i}-\theta_{1}-\theta_{2} x_{i 2}-\theta_{3} x_{i 3}-\left(\theta_{2} \theta_{3}\right) x_{i 4}\right] \\
\frac{\partial S}{\partial \theta_{2}}=-2 \sum_{i}\left[\left(\theta_{3} x_{i 4}+x_{i 2}\right)\left(y_{i}-\theta_{1}-\theta_{2} x_{i 2}-\theta_{3} x_{i 3}-\theta_{2} \theta_{3} x_{i 4}\right)\right] \\
\frac{\partial S}{\partial \theta_{3}}=-2 \sum_{i}\left[\left(\theta_{2} x_{i 4}+x_{i 3}\right)\left(y_{i}-\theta_{1}-\theta_{2} x_{i 2}-\theta_{3} x_{i 3}-\theta_{2} \theta_{3} x_{i 4}\right)\right]
\end{gathered}
$$

Setting these 3 equations to zero, we can't solve analytically for the estimators of the three parameters.

- In situations such as this, we need to use a numerical algorithm to obtain a solution to the first-order conditions.
- Lots of methods for doing this - one possibility is Newton's algorithm (the NewtonRaphson algorithm).

Methods of Descent

$$
\widetilde{\boldsymbol{\theta}}=\boldsymbol{\theta}_{0}+s \boldsymbol{d}\left(\boldsymbol{\theta}_{0}\right)
$$

$\boldsymbol{\theta}_{0}=$ initial (vector) value.
$s \quad=$ step-length (positive scalar)
$\boldsymbol{d}()=$. direction vector

- Usually, $\boldsymbol{d}($.$) Depends on the gradient vector at \boldsymbol{\theta}_{0}$.
- It may also depend on the change in the gradient (the Hessian matrix) at $\boldsymbol{\theta}_{0}$.
- Some specific algorithms in the "family" make the step-length a function of the Hessian.
- One very useful, specific member of the family of "Descent Methods" is the NewtonRaphson algorithm:

Suppose we want to minimize some function, $f(\boldsymbol{\theta})$.
Approximate the function using a Taylor's series expansion about $\widetilde{\boldsymbol{\theta}}$, the vector value that minimizes $f(\boldsymbol{\theta})$:

$$
f(\boldsymbol{\theta}) \cong f(\widetilde{\boldsymbol{\theta}})+(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})^{\prime}\left(\frac{\partial f}{\partial \boldsymbol{\theta}}\right)_{\widetilde{\boldsymbol{\theta}}}+\frac{1}{2!}(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})^{\prime}\left[\frac{\partial^{2} f}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right]_{\widetilde{\boldsymbol{\theta}}}(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})
$$

Or:

$$
f(\boldsymbol{\theta}) \cong f(\widetilde{\boldsymbol{\theta}})+(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})^{\prime} g(\widetilde{\boldsymbol{\theta}})+\frac{1}{2!}(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})^{\prime} H(\widetilde{\boldsymbol{\theta}})(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})
$$

So,
$\frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cong 0+(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})^{\prime} g(\widetilde{\boldsymbol{\theta}})+\frac{1}{2!} 2 H(\widetilde{\boldsymbol{\theta}})(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}})$
However, $g(\widetilde{\boldsymbol{\theta}})=0 ;$ as $\widetilde{\boldsymbol{\theta}}$ locates a minimum.
So,
$(\boldsymbol{\theta}-\widetilde{\boldsymbol{\theta}}) \cong H^{-1}(\widetilde{\boldsymbol{\theta}})\left(\frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right) ;$
or,

$$
\widetilde{\boldsymbol{\theta}} \cong \boldsymbol{\theta}-H^{-1}(\widetilde{\boldsymbol{\theta}}) g(\boldsymbol{\theta})
$$

This suggests a numerical algorithm:

Set $\boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ to begin, and then iterate -

$$
\begin{aligned}
& \boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{0}-H^{-1}\left(\boldsymbol{\theta}_{1}\right) g\left(\boldsymbol{\theta}_{0}\right) \\
& \boldsymbol{\theta}_{2}=\boldsymbol{\theta}_{1}-H^{-1}\left(\boldsymbol{\theta}_{2}\right) g\left(\boldsymbol{\theta}_{1}\right) \\
& \vdots
\end{aligned} \quad \vdots \quad \vdots \quad \begin{aligned}
& \\
& \boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n}-H^{-1}\left(\boldsymbol{\theta}_{n+1}\right) g\left(\boldsymbol{\theta}_{n}\right)
\end{aligned}
$$

or, approximately:

$$
\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n}-H^{-1}\left(\boldsymbol{\theta}_{n}\right) g\left(\boldsymbol{\theta}_{n}\right)
$$

Stop if

$$
\left|\frac{\left(\theta_{n+1}^{(i)}-\theta_{n}^{(i)}\right)}{\theta_{n}^{(i)}}\right|<\varepsilon^{(i)} \quad ; \quad i=1,2, \ldots, p
$$

Note:

1. $s=1$.
2. $\boldsymbol{d}\left(\boldsymbol{\theta}_{n}\right)=-H^{-1}\left(\boldsymbol{\theta}_{n}\right) g\left(\boldsymbol{\theta}_{n}\right)$.
3. Algorithm fails if H ever becomes singular at any iteration.
4. Achieve a minimum of $f($.$) if H$ is positive definite.
5. Algorithm may locate only a local minimum.
6. Algorithm may oscillate.

The algorithm can be given a nice geometric interpretation - scalar θ.
To find an extremum of $f($.$) , solve \frac{\partial f(\theta)}{\partial \theta}=g(\theta)=0$.

If $f(\boldsymbol{\theta})$ is quadratic in $\boldsymbol{\theta}$, then the algorithm converges in one iteration:

In general, different choices of θ_{0} may lead to different solutions, or no solution at all.

Example (Where we actually know the answer)

$$
f(\theta)=3 \theta^{4}-4 \theta^{3}+1 \quad \text { locate minimum }
$$

Analytically:

$$
\begin{aligned}
& g(\theta)=12 \theta^{3}-12 \theta^{2}=12 \theta^{2}(\theta-1) \\
& H(\theta)=36 \theta^{2}-24 \theta=12 \theta(3 \theta-2)
\end{aligned}
$$

Turning points $a t=0,0,1$.

$$
\begin{array}{ll}
H(0)=0 & \text { saddlepoint } \\
H(1)=12 & \text { minimum }
\end{array}
$$

Algorithm

$$
\begin{aligned}
& \qquad \theta_{n+1}=\theta_{n}-H^{-1}\left(\theta_{n}\right) g\left(\theta_{n}\right) \\
& \theta_{0}=2 \\
& \theta_{1}=2-\left(\frac{48}{96}\right)=1.5 \\
& \theta_{2}=1.5-\left(\frac{13.5}{45}\right)=1.2 \\
& \theta_{3}=1.2-\left(\frac{3.456}{23.040}\right)=1.05 \\
& \vdots \\
& \text { etc. }
\end{aligned}
$$

Try: $\quad \theta_{0}=-2 ; \quad \theta_{0}=0.5$

