Topic 5: Non-Linear Regression

e The models we’ve worked with so far have been linear in the parameters.
e They’ve been of the form: y=Xp+¢&

e Many models based on economic theory are actually non-linear in the parameters.

CES Production function:

Y = y[6K7 + (1= &)L Pexp(e)

v

o,  In(Y) =In(y) - (—) In[6K? + (1 - 6)L;"] +e;

p
Linear Expenditure System: (Stone, 1954)
Max. U(q) = Y; Biln(q; — vi) (Stone-Geary /Klein-Rubin)
st. Xipiqi =M
e Yields the following system of demand equations:
piqi =vipi + Bi(M—=Z;v;p;) ; i=12,...n

e The B;’s are the Marginal Budget Shares.
e So,werequirethat0 < gB; <1; i=1,2,....,n.
e Engel aggregation implies that

1. Xivi=0.

2. YiBi=1.
e In general, suppose we have a single non-linear equation:

vi = f(Xi1, Xiz, oo Xigs 01,02, ., 0,) + &

e We can still consider a “Least Squares” approach.

e The Non-Linear Least Squares estimator is the vector, 8 , that minimizes the quantity:
B 2
SX,0) = Xlyi — i(X,0)]" .
e Clearly the usual LS estimator is just a special case of this.

e To obtain the estimator, we differentiate S with respect to each element of 8; set up the

“p” first-order conditions and solve.



e Difficulty — usually, the first-order conditions are themselves non-linear in the unknowns

(the parameters).
e This means there is (generally) no exact, closed-form, solution.

e Can’t write down an explicit formula for the estimators of parameters.
Example

Vi = 61+ 0,x;5 + 03x;3 + (0203)x4 + &
S= Z[Yi — 01 — 0%, — O3x;5 — (9293)xi4]2
i

0S
— = -2 E [yi — 61 — 02x;, — O3%;3 — (6203)x4]
00, :

l

S

90, —2 Z[(93xi4 +xi2) (Vi = 01 — 62Xz — O3xi3 — 6203Xi4)]
i

aS

6_93 = —2 Z[(szm +x33) (Vi — 01 — O2X;12 — 0333 — 0263x;4) ]
i

Setting these 3 equations to zero, we can’t solve analytically for the estimators of the three

parameters.

e In situations such as this, we need to use a numerical algorithm to obtain a solution to the

first-order conditions.
e Lots of methods for doing this — one possibility is Newton’s algorithm (the Newton-
Raphson algorithm).

Methods of Descent

5 = 00 +Sd(00)
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step-length  (positive scalar)

d(.) = direction vector



e Usually, d(.) Depends on the gradient vector at 8.

e It may also depend on the change in the gradient (the Hessian matrix) at 8.

e Some specific algorithms in the “family” make the step-length a function of the Hessian.
e One very useful, specific member of the family of “Descent Methods” is the Newton-

Raphson algorithm:
Suppose we want to minimize some function, f ().

Approximate the function using a Taylor’s series expansion about 8 , the vector value that

minimizes f(0):

~ ~~\ 7 a 1 ~~\ ! 62 ~
f(0) =£(6)+(6-0) (%)@;J’Z 6-0) [aeaj;'L(e_B)
0

Or:
~ ~~\/ ~ 1 ~~\ ~ ~
f(8)=f(8) +(6-8)g(8) +;(6-8)H(®)(0-F)
So,
of () _ VST B ~
50 =0+ (6-0)g(0) + ZZH(G)(B -0)

However, g(@) = 0 ; as 0 locates a minimum.

So,

(6-8)=H"®) (L) ;

or, 0=0-H'0)g(0)

This suggests a numerical algorithm:



Set @ = 6, to begin, and then iterate —
6, =6,—H'(6,)9(8,)

6, =0, —H(6,)9(0,)

0,1 =0, — H_1(0n+1)g(0n)

or, approximately:

0,1 =0, — H_l(an)g(an)

s=1.
d(en) = _H_l(en)g(en) .
Algorithm fails if H ever becomes singular at any iteration.

1
2
3
4. Achieve a minimum of f (.) if H is positive definite.
5. Algorithm may locate only a local minimum.

6

Algorithm may oscillate.

The algorithm can be given a nice geometric interpretation — scalar 6.

To find an extremum of f(.), solve a];_(em =g(@)=0.






9 g(6y)
0o — 64

= 6, =6y —H ' (60)9(6)
9n+1 — Gn - H_l(en)g(en)

= H()) <=~

If (@) is quadratic in @, then the algorithm converges in one iteration:

9

If the function is quadratic, then its

gradient is linear:

gmin




In general, different choices of 8, may lead to different solutions, or no solution at all.

g

Bmax Hmax
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The Hessian is singular

:

Q

The algorithm “cycles”
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Example (Where we actually know the answer)

f(6) =30*—403+1 locate minimum

Analytically:
g(0) = 1263 —126% = 126%(6 — 1)
H(0) = 3602 — 240 = 126(30 — 2)

Turning pointsat =0, 0, 1.

H(0)=0 saddlepoint
H(1) =12 minimum
Algorithm
Ons1 = O — H_l(en)g(en)
0o = 2 (say)
48
6,=2-(5)=15
9, =15— (%55) =12
_ (3456 _
0; = 1.2 (23.040) = 1.05
etc.



