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Topic 6: Non-Spherical Disturbances 

Our basic linear regression model is 

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

Now we’ll generalize the specification of the error term in the model: 

                   𝐸[𝜺] = 𝟎       ;     𝐸[𝜺𝜺′] = Σ = 𝜎2Ω    ;         (& Normal) 

This allows for the possibility of one or both of 

 Heteroskedasticity 

 Autocorrelation                                (Cross-section; Time-series; Panel data) 

 Spherical Disturbances – Homoskedasticity and Non-Autocorrelation 

 

In the above, consider 𝑥 = 𝜀𝑖 and 𝑦 = 𝜀𝑗. The joint probability density function, 𝑝(𝜀𝑖, 𝜀𝑗), is in 

the direction of the z axis. Below is a contour of the above perspective. If we consider the joint 

distribution of three error terms instead of two, the circles below would become spheres, hence 

the terminology “spherical disturbances.” 
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 How does the more general situation of non-spherical disturbances affect our (Ordinary) 

Least Squares  estimator? 

 In particular, let’s first look at the sampling distribution of b: 

𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,  

𝐸(𝒃) = 𝜷 + (𝑋′𝑋)−1𝑋′𝐸(𝜺) = 𝜷  . 

The more general form of the covariance matrix for the error term does not alter the fact that the 

OLS estimator is unbiased. 

 Next, consider the covariance matrix of our OLS estimator in this more general situation: 

𝑉(𝒃) = 𝑉[𝜷 + (𝑋′𝑋)−1𝑋′𝜺] = 𝑉[(𝑋′𝑋)−1𝑋′𝜺] 

                      = [(𝑋′𝑋)−1𝑋′𝑉(𝜺)𝑋(𝑋′𝑋)−1] 

                      = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

                      ≠ [𝜎2(𝑋′𝑋)−1]  . 

 So, under our full set of modified assumptions about the error term: 

                      𝒃 ~ 𝑁[𝜷 , 𝑉∗] 

where 

                     𝑉∗ = 𝜎2[(𝑋′𝑋)−1𝑋′Ω𝑋(𝑋′𝑋)−1] . 

 So, the usual computer output will be misleading, numerically, as it will be based on using 

the wrong formula, namely  𝑠2(𝑋′𝑋)−1. 

 The standard errors, t-statistics, etc. will all be incorrect. 

 As well as being unbiased, the OLS point estimator of β will still be weakly consistent. 

 The I.V. estimator of  β will still be weakly consistent. 
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 The NLLS estimator of the model’s parameters will still be weakly consistent. 

 However, the usual estimator for the covariance matrix of b, namely 𝑠2(𝑋′𝑋)−1, will be 

an inconsistent estimator of the true covariance matrix of b! 

 This has serious implications for inferences based on confidence intervals, tests of 

significance, etc. 

 So, we need to know how to deal with these issues. 

 This will lead us to some generalized estimators. 

 First, let’s deal with the most pressing issue – the inconsistency of the estimator for the 

covariance matrix of  b. 

White’s Heteroskedasticity-Consistent Covariance Matrix Estimator 

 If we knew 𝜎2Ω, then the “estimator” of the covariance matrix for b would just be: 

 𝑉∗ = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜎2Ω𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′Σ𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

 If Σ is unknown, then we need to find a consistent estimator of  (
1

𝑛
𝑋′Σ𝑋). 

 (Why not an estimator of just Σ ?) 

 Note that at this stage of the discussion, the form of the Σ matrix is quite arbitrary. 

 Let               𝑄∗ = (
1

𝑛
𝑋′Σ𝑋)                               (k × k) 

=
1

𝑛
∑ ∑ 𝜎𝑖𝑗𝒙𝑖𝒙𝑗

′

𝑛

𝑗=1

𝑛

𝑖=1

 

                                                         (k × 1)  (1 × k) 

 In the case of heteroskedastic errors, things simplify, because 𝜎𝑖𝑗 = 0, for 𝑖 ≠ 𝑗. 
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Then, we have  

𝑄∗ =
1

𝑛
∑ 𝜎𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

 White (1980) showed that if we define  

𝑆0 =
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

Then ,   𝑝𝑙𝑖𝑚(𝑆0) = 𝑄∗ . 

 This means that we can estimate the model by OLS; get the associated residual vector, e ; 

and then a consistent estimator of 𝑉∗, the covariance matrix of b, will be:  

          𝑉̂∗ =
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′𝑛

𝑖=1 ) (
1

𝑛
𝑋′𝑋)

−1

] 

or, 

         𝑉̂∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋′𝑋)−1] . 

 𝑉̂∗ is a consistent estimator of  𝑉∗, regardless of the (unknown) form of the 

heteroskedasticity. 

 This includes no heteroskedasticity (i.e., homoscedastic errors). 

 Newey & West produced a corresponding consistent estimator of 𝑉∗ for when the errors 

possibly exhibit autocorrelation (of some unknown form). 

 Note that the White and the Newey-West estimators modify just the estimated covariance 

matrix of b – not b itself. 

 As a result, the t-statistics, F-statistic, etc., will be modified, but only in a manner that is 

appropriate asymptotically. 

 So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance 

estimator or not, the usual test statistics will be unreliable in finite samples. 

 A good practical solution is to use White’s (or Newey-West’s) adjustment, and then use 

the Wald test, rather than the F-test for exact linear restrictions. 

 This Wald test will incorporate the consistent estimator of the covariance matrix of b, and 

so it will still be valid, asymptotically. 
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 Now let’s turn to the estimation of β, taking account of the fact that the error term has a 

non-scalar covariance matrix. 

 Using this information should enable us to improve the efficiency of the LS estimator of 

the coefficient vector. 

Generalized Least Squares                                          (Alexander Aitken, 1935) 

 In the present context, (Ordinary) LS ignores some important information, and we’d 

anticipate that this will result in a loss of efficiency when estimating β. 

 Let’s see how to obtain the fully efficient (linear unbiased) estimator. 

 Recall that 𝑉(𝜺) = 𝐸[𝜺𝜺′] = Σ = 𝜎2Ω . 

 Generally, Ω will be unknown. However, to begin with, let’s consider the case where it is 

actually known. 

 Clearly, Ω must be symmetric, as it is a covariance matrix. 

 Suppose that Ω is also positive-definite. 

 Then, Ω−1 is also positive-definite, and so there exists a non-singular matrix, P, such that 

Ω−1 = 𝑃′𝑃.  

 In fact, 𝑃′ = 𝐶Λ−1/2, where the columns of C are the characteristic vectors of Ω, and 

Λ1/2 = 𝑑𝑖𝑎𝑔. (√𝜆𝑖). Here, the {𝜆𝑖} are the characteristic roots of Ω. 

 Our model is: 

                 𝒚 = 𝑋𝜷 + 𝜺       ;     𝜺 ~ [0 , 𝜎2Ω] 

 Pre-multiply the equation by P: 

               𝑃𝒚 = 𝑃𝑋𝜷 + 𝑃𝜺        

or, 

              𝒚∗ = 𝑋∗𝜷 + 𝜺∗       ;     say 

 Now, Ω is non-random, so P is also non-random. 

 So,           𝐸[𝜺∗] = 𝐸[𝑃𝜺] = 𝑃 𝐸[𝜺] = 𝟎       . 

 

 And      𝑉[𝜺∗] = 𝑉[𝑃𝜺]    

                     = 𝑃𝑉(𝜺)𝑃′ 

                     = 𝑃(𝜎2Ω)𝑃′ = 𝜎2𝑃ΩP′ 
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 Note that    𝑃ΩP′ = 𝑃(Ω−1)−1𝑃′ 

                               = 𝑃(𝑃′𝑃)−1𝑃′ 

                               = 𝑃𝑃−1(𝑃′)−1𝑃′ = 𝐼 

 (Because P is both square and non-singular.) 

 So,   𝐸[𝜺∗] = 𝟎       and      𝑉[𝜀∗] = 𝜎2𝐼 . 

 The transformed model,  𝒚∗ = 𝑋∗𝜷 + 𝜺∗ , has an error-term that satisfies the usual 

assumptions.  In particular, it has a scalar covariance matrix.    

 

 So, if we apply (Ordinary) Least Squares to the model, 𝒚∗ = 𝑋∗𝜷 + 𝜺∗, we’ll get the BLU 

estimator of β, by the Gauss-Markhov Theorem. 

 

 We call this the Generalized Least Squares Estimator of  β. 

 

 The formula for this estimator is readily determined: 

 

                    𝜷̂ = [𝑋∗′𝑋∗]−1𝑋∗′𝒚∗ 

                        = [(𝑃𝑋)′(𝑃𝑋)]−1(𝑃𝑋)′(𝑃𝒚) 

                        = [𝑋′𝑃′𝑃𝑋]−1𝑋′𝑃′𝑃𝒚 

                              = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 

 Note that we can also write the GLS estimator  as: 

                      𝜷̂ = [𝑋′(𝜎2Ω)−1𝑋]−1𝑋′(𝜎2Ω)−1𝒚 

                         = [𝑋′Σ−1𝑋]−1𝑋′Σ−1𝒚  = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 Clearly, because 𝐸[𝜺∗] = 𝟎 as long as the regressors are non-random, the GLS estimator,  

𝜷̂ is unbiased.     

 Moreover, the covariance matrix of the GLS estimator is: 

𝑉(𝜷̂) = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑉(𝒚){[𝑋′Ω−1𝑋]−1𝑋′Ω−1}′ 
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                           = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝜎2ΩΩ−1𝑋[𝑋′Ω−1𝑋]−1 

                      = 𝜎2[𝑋′Ω−1𝑋]−1 . 

 If the errors are Normally distributed, then the full sampling distribution of the GLS 

estimator of β is: 

 

𝜷̂ ~ 𝑁[𝜷 , 𝜎2[𝑋′Ω−1𝑋]−1, ] 

 

 The GLS estimator is just the OLS estimator, applied to the transformed model, and the 

latter model satisfies all of the usual conditions. 

 So, the Gauss-Markhov Theorem applies to the GLS estimator. 

 The GLS estimator is BLU for this more general model (with a non-scalar error covariance 

matrix). 

 Note: OLS must be inefficient in the present context. 

 Have a more general form of the GMT – the OLS version is a special case. 

 Moreover, all of the results that we established with regard to testing for linear restrictions 

and incorporating them into our estimation, also apply if we make some obvious 

modifications. 

                 𝜷̂ = GLS estimator 

              𝜺̂ = 𝒚∗ − 𝑋∗𝜷̂ 

             𝜎̂2 = 𝜺̂′𝜺̂/(𝑛 − 𝑘)  

 Then, to test    𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   we would use the test statistic,    

             𝐹 = (𝑅𝜷̂ − 𝒒)′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅𝜷̂ − 𝒒) /𝐽𝜎̂2  

 If  𝐻0 is true, then is distributed as 𝐹𝐽,𝑛−𝑘. 

 We can also construct the Restricted GLS estimator, in the same way that we obtained 

the restricted OLS estimator of β. 
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 Check for yourself that this restricted estimator is 

 

       𝜷̂𝑟 = 𝜷̂ − (𝑋∗′𝑋∗)−1𝑅′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅𝜷̂ − 𝒒) 

             = 𝜷̂ − (𝑋′Ω−1𝑋)−1𝑅′[𝑅(𝑋′Ω−1𝑋)−1𝑅′]−1(𝑅𝜷̂ − 𝒒) 

             = 𝜷̂ − (𝑋′Σ−1𝑋)−1𝑅′[𝑅(𝑋′Σ−1𝑋)−1𝑅′]−1(𝑅𝜷̂ − 𝒒) 

 Then, if the residuals from this restricted GLS estimation are defined as 𝜺̂𝒓 = 𝒚 − 𝑋𝜷̂𝑟, we 

can also write the F-test statistic as: 

                 𝐹 = [𝜺̂𝒓′𝜺̂𝒓 − 𝜺̂′ 𝜺̂] /(𝐽𝜺̂′ 𝜺̂/(𝑛 − 𝑘)) 

 Recalling our formula for the GLS estimator, we see that it depends on the (usually 

unknown) covariance matrix of the error term: 

                 𝜷̂ = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  . 

“Feasible” GLS Estimator 

 In order to be able to implement the GLS estimator, in practice, we’re usually going to 

have to provide a suitable estimator of  Ω (or Σ). 

 Presumably we’ll want to obtain an estimator that is at least consistent, and place this into 

the formula for the GLS estimator, yielding: 

                 𝜷̃ = [𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚   

 Problem: The Ω matrix is (𝑛 × 𝑛), and it has 𝑛(𝑛 + 1)/2 distinct elements. However, we 

have only n observations on the data. This precludes obtaining a consistent estimator. 

 We need to constrain the elements of  Ω in some way. 

 In practice, this won’t be a big problem, because usually there will be lots of “structure” 

on the form of  Ω . 

 Typically, we’ll have Ω = Ω(𝜽), where the vector, 𝜽 has low dimension. 
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Example:                   Heteroskedasticity 

Suppose that          𝑣𝑎𝑟. (𝜀𝑖) ∝ (𝜃1 + 𝜃2𝑧𝑖) = 𝜎2(𝜃1 + 𝜃2𝑧𝑖) 

Then, 

Ω = (
𝜃1 + 𝜃2𝑧1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜃1 + 𝜃2𝑧𝑛

) 

There are just two parameters that have to be estimated, in order to obtain Ω̂ . 

Example:                   Autocorrelation 

Suppose that the errors follow a first-order autoregressive process: 

                 𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡   ;   𝑢𝑡  ~ 𝑁[0 , 𝜎𝑢
2]         (i.i.d.) 

Then (for reasons we’ll see later), 

 

                       Ω =
𝜎𝑢

2

1−𝜌2 [

1 𝜌 …
𝜌 1 𝜌
⋮ 𝜌 ⋱

     
𝜌𝑛−1

𝜌𝑛−2

⋮
𝜌𝑛−1 …     … 1

] = Ω(𝜌). 

 So, typically, we’ll just have to estimate a very small number of parameters in order to get 

an estimator of Ω . 

 As long as we use a consistent estimator for these parameters – the elements of 𝜃, this will 

give us a consistent estimator of  Ω and of  Ω−1, by Slutsky’s Theorem. 

 This in turn, will ensure that our Feasible GLS estimator of 𝛽 is also weakly consistent: 

𝑝𝑙𝑖𝑚(𝛽) = 𝑝𝑙𝑖𝑚 {[𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚{[𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚(𝛽̂) = 𝛽 . 

 Also, if  Ω̂ is consistent for Ω then 𝛽 will be asymptotically efficient. 
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 In general, we can say little about the finite-sample properties of our feasible GLS 

estimator. 

 Usually it will be biased, and the nature of the bias will depend on the form of Ω and our 

choice of  Ω̂. 

 In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know 

the form of  Ω .  

 Typically, this is achieved by postulating various forms, and testing to see if these are 

supported by the data. 

Appendix – R-Code for perspective plots and contours  

(see http://quantcorner.wordpress.com/2012/09/21/bivariate-normal-distribution-with-r/) 

# Édouard Tallent @ TaGoMa.Tech 

# September 2012 

# This code plots simulated bivariate normal distributions 

 

# Some variable definitions 

mu1 <- 0 # expected value of x 

mu2 <- 0 # expected value of y 

sig1 <- 0.5 # variance of x 

sig2 <- 1 # variance of y 

rho <- 0.5 # corr(x, y) 

 

# Some additional variables for x-axis and y-axis  

xm <- -3 

xp <- 3 

ym <- -3 

yp <- 3 

 

x <- seq(xm, xp, length= as.integer((xp + abs(xm)) * 10))  # vector 

series x 

y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10))  # vector 

series y 

 

# Core function 

bivariate <- function(x,y){ 

 term1 <- 1 / (2 * pi * sig1 * sig2 * sqrt(1 - rho^2)) 

 term2 <- (x - mu1)^2 / sig1^2 

 term3 <- -(2 * rho * (x - mu1)*(y - mu2))/(sig1 * sig2) 

 term4 <- (y - mu2)^2 / sig2^2 

 z <- term2 + term3 + term4 

 term5 <- term1 * exp((-z / (2 *(1 - rho^2)))) 

 return (term5) 

} 
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# Computes the density values 

z <- outer(x,y,bivariate) 

 

# Plot 

persp(x, y, z, main = "Bivariate Normal Distribution", 

sub = bquote(bold(mu[1])==.(mu1)~", "~sigma[1]==.(sig1)~", 

"~mu[2]==.(mu2)~ ", "~sigma[2]==.(sig2)~", "~rho==.(rho)), 

col="lightblue", theta = 55, phi = 30, r = 40, d = 0.1, expand 

= 0.5,ltheta = 90, lphi = 180, shade = 0.4, ticktype = 

"detailed", nticks=5) 

 

#In order to see the contours, use:  

#contour(x,y,z) 

 


