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Topic 6: Non-Spherical Disturbances 

Our basic linear regression model is 

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

Now we’ll generalize the specification of the error term in the model: 

                   𝐸[𝜺] = 𝟎       ;     𝐸[𝜺𝜺′] = Σ = 𝜎2Ω    ;         (& Normal) 

This allows for the possibility of one or both of 

 Heteroskedasticity 

 Autocorrelation                                (Cross-section; Time-series; Panel data) 

 Spherical Disturbances – Homoskedasticity and Non-Autocorrelation 

 

In the above, consider 𝑥 = 𝜀𝑖 and 𝑦 = 𝜀𝑗. The joint probability density function, 𝑝(𝜀𝑖, 𝜀𝑗), is in 

the direction of the z axis. Below is a contour of the above perspective. If we consider the joint 

distribution of three error terms instead of two, the circles below would become spheres, hence 

the terminology “spherical disturbances.” 
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Non-Spherical Disturbances – Heteroskedasticity and Non-Autocorrelation 
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Non-Spherical Disturbances – Homoskedasticity and Autocorrelation
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 How does the more general situation of non-spherical disturbances affect our (Ordinary) 

Least Squares  estimator? 

 In particular, let’s first look at the sampling distribution of b: 

𝒃 = (𝑋′𝑋)−1𝑋′𝒚 = (𝑋′𝑋)−1𝑋′(𝑋𝜷 + 𝜺) 

                = 𝜷 + (𝑋′𝑋)−1𝑋′𝜺 . 

So,  

𝐸(𝒃) = 𝜷 + (𝑋′𝑋)−1𝑋′𝐸(𝜺) = 𝜷  . 

The more general form of the covariance matrix for the error term does not alter the fact that the 

OLS estimator is unbiased. 

 Next, consider the covariance matrix of our OLS estimator in this more general situation: 

𝑉(𝒃) = 𝑉[𝜷 + (𝑋′𝑋)−1𝑋′𝜺] = 𝑉[(𝑋′𝑋)−1𝑋′𝜺] 

                      = [(𝑋′𝑋)−1𝑋′𝑉(𝜺)𝑋(𝑋′𝑋)−1] 

                      = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

                      ≠ [𝜎2(𝑋′𝑋)−1]  . 

 So, under our full set of modified assumptions about the error term: 

                      𝒃 ~ 𝑁[𝜷 , 𝑉∗] 

where 

                     𝑉∗ = 𝜎2[(𝑋′𝑋)−1𝑋′Ω𝑋(𝑋′𝑋)−1] . 

 So, the usual computer output will be misleading, numerically, as it will be based on using 

the wrong formula, namely  𝑠2(𝑋′𝑋)−1. 

 The standard errors, t-statistics, etc. will all be incorrect. 

 As well as being unbiased, the OLS point estimator of β will still be weakly consistent. 

 The I.V. estimator of  β will still be weakly consistent. 
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 The NLLS estimator of the model’s parameters will still be weakly consistent. 

 However, the usual estimator for the covariance matrix of b, namely 𝑠2(𝑋′𝑋)−1, will be 

an inconsistent estimator of the true covariance matrix of b! 

 This has serious implications for inferences based on confidence intervals, tests of 

significance, etc. 

 So, we need to know how to deal with these issues. 

 This will lead us to some generalized estimators. 

 First, let’s deal with the most pressing issue – the inconsistency of the estimator for the 

covariance matrix of  b. 

White’s Heteroskedasticity-Consistent Covariance Matrix Estimator 

 If we knew 𝜎2Ω, then the “estimator” of the covariance matrix for b would just be: 

 𝑉∗ = [(𝑋′𝑋)−1𝑋′𝜎2Ω𝑋(𝑋′𝑋)−1] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′𝜎2Ω𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

=
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
𝑋′Σ𝑋) (

1

𝑛
𝑋′𝑋)

−1

] 

 If Σ is unknown, then we need to find a consistent estimator of  (
1

𝑛
𝑋′Σ𝑋). 

 (Why not an estimator of just Σ ?) 

 Note that at this stage of the discussion, the form of the Σ matrix is quite arbitrary. 

 Let               𝑄∗ = (
1

𝑛
𝑋′Σ𝑋)                               (k × k) 

=
1

𝑛
∑ ∑ 𝜎𝑖𝑗𝒙𝑖𝒙𝑗

′

𝑛

𝑗=1

𝑛

𝑖=1

 

                                                         (k × 1)  (1 × k) 

 In the case of heteroskedastic errors, things simplify, because 𝜎𝑖𝑗 = 0, for 𝑖 ≠ 𝑗. 
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Then, we have  

𝑄∗ =
1

𝑛
∑ 𝜎𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

 White (1980) showed that if we define  

𝑆0 =
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

Then ,   𝑝𝑙𝑖𝑚(𝑆0) = 𝑄∗ . 

 This means that we can estimate the model by OLS; get the associated residual vector, e ; 

and then a consistent estimator of 𝑉∗, the covariance matrix of b, will be:  

          �̂�∗ =
1

𝑛
[(

1

𝑛
𝑋′𝑋)

−1

(
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′𝑛

𝑖=1 ) (
1

𝑛
𝑋′𝑋)

−1

] 

or, 

         �̂�∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋′𝑋)−1] . 

 �̂�∗ is a consistent estimator of  𝑉∗, regardless of the (unknown) form of the 

heteroskedasticity. 

 This includes no heteroskedasticity (i.e., homoscedastic errors). 

 Newey & West produced a corresponding consistent estimator of 𝑉∗ for when the errors 

possibly exhibit autocorrelation (of some unknown form). 

 Note that the White and the Newey-West estimators modify just the estimated covariance 

matrix of b – not b itself. 

 As a result, the t-statistics, F-statistic, etc., will be modified, but only in a manner that is 

appropriate asymptotically. 

 So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance 

estimator or not, the usual test statistics will be unreliable in finite samples. 

 A good practical solution is to use White’s (or Newey-West’s) adjustment, and then use 

the Wald test, rather than the F-test for exact linear restrictions. 

 This Wald test will incorporate the consistent estimator of the covariance matrix of b, and 

so it will still be valid, asymptotically. 
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 Now let’s turn to the estimation of β, taking account of the fact that the error term has a 

non-scalar covariance matrix. 

 Using this information should enable us to improve the efficiency of the LS estimator of 

the coefficient vector. 

Generalized Least Squares                                          (Alexander Aitken, 1935) 

 In the present context, (Ordinary) LS ignores some important information, and we’d 

anticipate that this will result in a loss of efficiency when estimating β. 

 Let’s see how to obtain the fully efficient (linear unbiased) estimator. 

 Recall that 𝑉(𝜺) = 𝐸[𝜺𝜺′] = Σ = 𝜎2Ω . 

 Generally, Ω will be unknown. However, to begin with, let’s consider the case where it is 

actually known. 

 Clearly, Ω must be symmetric, as it is a covariance matrix. 

 Suppose that Ω is also positive-definite. 

 Then, Ω−1 is also positive-definite, and so there exists a non-singular matrix, P, such that 

Ω−1 = 𝑃′𝑃.  

 In fact, 𝑃′ = 𝐶Λ−1/2, where the columns of C are the characteristic vectors of Ω, and 

Λ1/2 = 𝑑𝑖𝑎𝑔. (√𝜆𝑖). Here, the {𝜆𝑖} are the characteristic roots of Ω. 

 Our model is: 

                 𝒚 = 𝑋𝜷 + 𝜺       ;     𝜺 ~ [0 , 𝜎2Ω] 

 Pre-multiply the equation by P: 

               𝑃𝒚 = 𝑃𝑋𝜷 + 𝑃𝜺        

or, 

              𝒚∗ = 𝑋∗𝜷 + 𝜺∗       ;     say 

 Now, Ω is non-random, so P is also non-random. 

 So,           𝐸[𝜺∗] = 𝐸[𝑃𝜺] = 𝑃 𝐸[𝜺] = 𝟎       . 

 

 And      𝑉[𝜺∗] = 𝑉[𝑃𝜺]    

                     = 𝑃𝑉(𝜺)𝑃′ 

                     = 𝑃(𝜎2Ω)𝑃′ = 𝜎2𝑃ΩP′ 
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 Note that    𝑃ΩP′ = 𝑃(Ω−1)−1𝑃′ 

                               = 𝑃(𝑃′𝑃)−1𝑃′ 

                               = 𝑃𝑃−1(𝑃′)−1𝑃′ = 𝐼 

 (Because P is both square and non-singular.) 

 So,   𝐸[𝜺∗] = 𝟎       and      𝑉[𝜀∗] = 𝜎2𝐼 . 

 The transformed model,  𝒚∗ = 𝑋∗𝜷 + 𝜺∗ , has an error-term that satisfies the usual 

assumptions.  In particular, it has a scalar covariance matrix.    

 

 So, if we apply (Ordinary) Least Squares to the model, 𝒚∗ = 𝑋∗𝜷 + 𝜺∗, we’ll get the BLU 

estimator of β, by the Gauss-Markhov Theorem. 

 

 We call this the Generalized Least Squares Estimator of  β. 

 

 The formula for this estimator is readily determined: 

 

                    �̂� = [𝑋∗′𝑋∗]−1𝑋∗′𝒚∗ 

                        = [(𝑃𝑋)′(𝑃𝑋)]−1(𝑃𝑋)′(𝑃𝒚) 

                        = [𝑋′𝑃′𝑃𝑋]−1𝑋′𝑃′𝑃𝒚 

                              = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 

 Note that we can also write the GLS estimator  as: 

                      �̂� = [𝑋′(𝜎2Ω)−1𝑋]−1𝑋′(𝜎2Ω)−1𝒚 

                         = [𝑋′Σ−1𝑋]−1𝑋′Σ−1𝒚  = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 

 Clearly, because 𝐸[𝜺∗] = 𝟎 as long as the regressors are non-random, the GLS estimator,  

�̂� is unbiased.     

 Moreover, the covariance matrix of the GLS estimator is: 

𝑉(�̂�) = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝑉(𝒚){[𝑋′Ω−1𝑋]−1𝑋′Ω−1}′ 
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                           = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝜎2ΩΩ−1𝑋[𝑋′Ω−1𝑋]−1 

                      = 𝜎2[𝑋′Ω−1𝑋]−1 . 

 If the errors are Normally distributed, then the full sampling distribution of the GLS 

estimator of β is: 

 

�̂� ~ 𝑁[𝜷 , 𝜎2[𝑋′Ω−1𝑋]−1, ] 

 

 The GLS estimator is just the OLS estimator, applied to the transformed model, and the 

latter model satisfies all of the usual conditions. 

 So, the Gauss-Markhov Theorem applies to the GLS estimator. 

 The GLS estimator is BLU for this more general model (with a non-scalar error covariance 

matrix). 

 Note: OLS must be inefficient in the present context. 

 Have a more general form of the GMT – the OLS version is a special case. 

 Moreover, all of the results that we established with regard to testing for linear restrictions 

and incorporating them into our estimation, also apply if we make some obvious 

modifications. 

                 �̂� = GLS estimator 

              �̂� = 𝒚∗ − 𝑋∗�̂� 

             �̂�2 = �̂�′�̂�/(𝑛 − 𝑘)  

 Then, to test    𝐻0: 𝑅𝜷 = 𝒒   vs.  𝐻𝐴: 𝑅𝜷 ≠ 𝒒   we would use the test statistic,    

             𝐹 = (𝑅�̂� − 𝒒)′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅�̂� − 𝒒) /𝐽�̂�2  

 If  𝐻0 is true, then is distributed as 𝐹𝐽,𝑛−𝑘. 

 We can also construct the Restricted GLS estimator, in the same way that we obtained 

the restricted OLS estimator of β. 
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 Check for yourself that this restricted estimator is 

 

       �̂�𝑟 = �̂� − (𝑋∗′𝑋∗)−1𝑅′[𝑅(𝑋∗′𝑋∗)−1𝑅′]−1(𝑅�̂� − 𝒒) 

             = �̂� − (𝑋′Ω−1𝑋)−1𝑅′[𝑅(𝑋′Ω−1𝑋)−1𝑅′]−1(𝑅�̂� − 𝒒) 

             = �̂� − (𝑋′Σ−1𝑋)−1𝑅′[𝑅(𝑋′Σ−1𝑋)−1𝑅′]−1(𝑅�̂� − 𝒒) 

 Then, if the residuals from this restricted GLS estimation are defined as �̂�𝒓 = 𝒚 − 𝑋�̂�𝑟, we 

can also write the F-test statistic as: 

                 𝐹 = [�̂�𝒓′�̂�𝒓 − �̂�′ �̂�] /(𝐽�̂�′ �̂�/(𝑛 − 𝑘)) 

 Recalling our formula for the GLS estimator, we see that it depends on the (usually 

unknown) covariance matrix of the error term: 

                 �̂� = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  . 

“Feasible” GLS Estimator 

 In order to be able to implement the GLS estimator, in practice, we’re usually going to 

have to provide a suitable estimator of  Ω (or Σ). 

 Presumably we’ll want to obtain an estimator that is at least consistent, and place this into 

the formula for the GLS estimator, yielding: 

                 �̃� = [𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚   

 Problem: The Ω matrix is (𝑛 × 𝑛), and it has 𝑛(𝑛 + 1)/2 distinct elements. However, we 

have only n observations on the data. This precludes obtaining a consistent estimator. 

 We need to constrain the elements of  Ω in some way. 

 In practice, this won’t be a big problem, because usually there will be lots of “structure” 

on the form of  Ω . 

 Typically, we’ll have Ω = Ω(𝜽), where the vector, 𝜽 has low dimension. 
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Example:                   Heteroskedasticity 

Suppose that          𝑣𝑎𝑟. (𝜀𝑖) ∝ (𝜃1 + 𝜃2𝑧𝑖) = 𝜎2(𝜃1 + 𝜃2𝑧𝑖) 

Then, 

Ω = (
𝜃1 + 𝜃2𝑧1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜃1 + 𝜃2𝑧𝑛

) 

There are just two parameters that have to be estimated, in order to obtain Ω̂ . 

Example:                   Autocorrelation 

Suppose that the errors follow a first-order autoregressive process: 

                 𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡   ;   𝑢𝑡  ~ 𝑁[0 , 𝜎𝑢
2]         (i.i.d.) 

Then (for reasons we’ll see later), 

 

                       Ω =
𝜎𝑢

2

1−𝜌2 [

1 𝜌 …
𝜌 1 𝜌
⋮ 𝜌 ⋱

     
𝜌𝑛−1

𝜌𝑛−2

⋮
𝜌𝑛−1 …     … 1

] = Ω(𝜌). 

 So, typically, we’ll just have to estimate a very small number of parameters in order to get 

an estimator of Ω . 

 As long as we use a consistent estimator for these parameters – the elements of 𝜃, this will 

give us a consistent estimator of  Ω and of  Ω−1, by Slutsky’s Theorem. 

 This in turn, will ensure that our Feasible GLS estimator of 𝛽 is also weakly consistent: 

𝑝𝑙𝑖𝑚(𝛽) = 𝑝𝑙𝑖𝑚 {[𝑋′Ω̂−1𝑋]
−1

𝑋′Ω̂−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚{[𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚  } 

                            = 𝑝𝑙𝑖𝑚(�̂�) = 𝛽 . 

 Also, if  Ω̂ is consistent for Ω then 𝛽 will be asymptotically efficient. 
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 In general, we can say little about the finite-sample properties of our feasible GLS 

estimator. 

 Usually it will be biased, and the nature of the bias will depend on the form of Ω and our 

choice of  Ω̂. 

 In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know 

the form of  Ω .  

 Typically, this is achieved by postulating various forms, and testing to see if these are 

supported by the data. 

Appendix – R-Code for perspective plots and contours  

(see http://quantcorner.wordpress.com/2012/09/21/bivariate-normal-distribution-with-r/) 

# Édouard Tallent @ TaGoMa.Tech 

# September 2012 

# This code plots simulated bivariate normal distributions 

 

# Some variable definitions 

mu1 <- 0 # expected value of x 

mu2 <- 0 # expected value of y 

sig1 <- 0.5 # variance of x 

sig2 <- 1 # variance of y 

rho <- 0.5 # corr(x, y) 

 

# Some additional variables for x-axis and y-axis  

xm <- -3 

xp <- 3 

ym <- -3 

yp <- 3 

 

x <- seq(xm, xp, length= as.integer((xp + abs(xm)) * 10))  # vector 

series x 

y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10))  # vector 

series y 

 

# Core function 

bivariate <- function(x,y){ 

 term1 <- 1 / (2 * pi * sig1 * sig2 * sqrt(1 - rho^2)) 

 term2 <- (x - mu1)^2 / sig1^2 

 term3 <- -(2 * rho * (x - mu1)*(y - mu2))/(sig1 * sig2) 

 term4 <- (y - mu2)^2 / sig2^2 

 z <- term2 + term3 + term4 

 term5 <- term1 * exp((-z / (2 *(1 - rho^2)))) 

 return (term5) 

} 
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# Computes the density values 

z <- outer(x,y,bivariate) 

 

# Plot 

persp(x, y, z, main = "Bivariate Normal Distribution", 

sub = bquote(bold(mu[1])==.(mu1)~", "~sigma[1]==.(sig1)~", 

"~mu[2]==.(mu2)~ ", "~sigma[2]==.(sig2)~", "~rho==.(rho)), 

col="lightblue", theta = 55, phi = 30, r = 40, d = 0.1, expand 

= 0.5,ltheta = 90, lphi = 180, shade = 0.4, ticktype = 

"detailed", nticks=5) 

 

#In order to see the contours, use:  

#contour(x,y,z) 

 


