Topic 6: Non-Spherical Disturbances

Our basic linear regression model is
y=XB+e ; £~N[0,0%],]
Now we’ll generalize the specification of the error term in the model:
Ele]=0 ; E[eg€]=2Z=0%Q ; (& Normal)
This allows for the possibility of one or both of

e Heteroskedasticity

e Autocorrelation (Cross-section; Time-series; Panel data)

Spherical Disturbances — Homoskedasticity and Non-Autocorrelation

Bivariate Normal Distribution
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In the above, consider x = &; and y = ¢;. The joint probability density function, p(g;, €;), is in
the direction of the z axis. Below is a contour of the above perspective. If we consider the joint
distribution of three error terms instead of two, the circles below would become spheres, hence

the terminology “spherical disturbances.”



Non-Spherical Disturbances — Heteroskedasticity and Non-Autocorrelation
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e How does the more general situation of non-spherical disturbances affect our (Ordinary)
Least Squares estimator?

e In particular, let’s first look at the sampling distribution of b:
b=X'X)"X'y=XX)"X'(XB +¢)
=B+ X'X)X'e.
So,
E(b)=B+X'X)"X'E(e) =P8 .

The more general form of the covariance matrix for the error term does not alter the fact that the

OLS estimator is unbiased.
e Next, consider the covariance matrix of our OLS estimator in this more general situation:
VD) =V[B+ (X'X)"X'e] = V[(X'X)"1X'e]
= [X'X)TXV(EXX'X)™]
=[(X'X)" X' 020X (X' X)™1]
# [o2(X'X)71] .
e So, under our full set of modified assumptions about the error term:
b~N[B,V*]
where
Ve =a2[(X' X)X QX (X' X)"1].

e S0, the usual computer output will be misleading, numerically, as it will be based on using
the wrong formula, namely s?(X'X)~1L.

e The standard errors, t-statistics, etc. will all be incorrect.

e Aswell as being unbiased, the OLS point estimator of g will still be weakly consistent.

e The L.V. estimator of g will still be weakly consistent.



e The NLLS estimator of the model’s parameters will still be weakly consistent.

e However, the usual estimator for the covariance matrix of b, namely s2(X’'X)~1, will be
an inconsistent estimator of the true covariance matrix of b!

e This has serious implications for inferences based on confidence intervals, tests of
significance, etc.

e S0, we need to know how to deal with these issues.

e This will lead us to some generalized estimators.

e First, let’s deal with the most pressing issue — the inconsistency of the estimator for the

covariance matrix of b.
White’s Heteroskedasticity-Consistent Covariance Matrix Estimator

e If we knew o2, then the “estimator” of the covariance matrix for b would just be:

V= [(X'X) X 020X (X' X) 71
=2 [Exx) Groron) o) |
S CONCRIEDN

e If X is unknown, then we need to find a consistent estimator of (%X’ZX).

e (Why not an estimator of just X ?)

e Note that at this stage of the discussion, the form of the £ matrix is quite arbitrary.

o Let Q" = (3x'2x) (k x K)

(kx1) (1xk)

e Inthe case of heteroskedastic errors, things simplify, because o;; = 0, for i # j.



Then, we have
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e White (1980) showed that if we define

1 n
— 2 !
So —;E e x;x;

Then, plim(S,) = Q*.
e This means that we can estimate the model by OLS; get the associated residual vector, € ;

and then a consistent estimator of V*, the covariance matrix of b, will be:

P = %[(%X’X)_l (% i=1 eizxixli) (%X,X)_l]

or,
7 =n[(X'X)"1S,(X'X)7].
e V* is a consistent estimator of V*, regardless of the (unknown) form of the
heteroskedasticity.
e This includes no heteroskedasticity (i.e., homoscedastic errors).
e Newey & West produced a corresponding consistent estimator of V* for when the errors
possibly exhibit autocorrelation (of some unknown form).

e Note that the White and the Newey-West estimators modify just the estimated covariance

matrix of b — not b itself.

e As aresult, the t-statistics, F-statistic, etc., will be modified, but only in a manner that is
appropriate asymptotically.

e So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance
estimator or not, the usual test statistics will be unreliable in finite samples.

e A good practical solution is to use White’s (or Newey-West’s) adjustment, and then use
the Wald test, rather than the F-test for exact linear restrictions.

e This Wald test will incorporate the consistent estimator of the covariance matrix of b, and

so it will still be valid, asymptotically.



e Now let’s turn to the estimation of £, taking account of the fact that the error term has a
non-scalar covariance matrix.
e Using this information should enable us to improve the efficiency of the LS estimator of

the coefficient vector.
Generalized Least Squares (Alexander Aitken, 1935)

e In the present context, (Ordinary) LS ignores some important information, and we’d
anticipate that this will result in a loss of efficiency when estimating .

e Let’s see how to obtain the fully efficient (linear unbiased) estimator.

e Recallthat V(e) = E[e€'] == = 620}

e Generally, Q will be unknown. However, to begin with, let’s consider the case where it is
actually known.

e Clearly, Q must be symmetric, as it is a covariance matrix.

e Suppose that Q is also positive-definite.

e Then, Q71 is also positive-definite, and so there exists a non-singular matrix, P, such that
Qt=pP

e In fact, P’ = CA~%/2, where the columns of C are the characteristic vectors of Q, and
AY? = diag. (y/2;). Here, the {1;} are the characteristic roots of Q.

e Our model is:

y=XB+e& ; &~][0,02%Q]
e Pre-multiply the equation by P:
Py = PXp + Pe
or,
y' =X"B+& ;o say

e Now, Q is non-random, so P is also non-random.
e So, Ele] =E[Pe] =PE[e]=0

e And V[e*] =V][Peg]
= PV (e)P’
= P(c2Q)P’ = a?PQP’



Note that PQP’ = P(Q~1)~1p’
= P(P'P)1P’
= PP-Y(P)P =1

(Because P is both square and non-singular.)
So, E[e]=0 and V[e*]=02I.
The transformed model, y* = X*"f + &* , has an error-term that satisfies the usual

assumptions. In particular, it has a scalar covariance matrix.

So, if we apply (Ordinary) Least Squares to the model, y* = X*B + &, we’ll get the BLU

estimator of g, by the Gauss-Markhov Theorem.

We call this the Generalized Least Squares Estimator of g.

The formula for this estimator is readily determined:

l’—;; — [ */X*]—1X*/y*
= [(PX)'(PX)]~*(PX)'(Py)
= [X'P'PX]"'X'P'Py

— [XIQ—lx]—lle—ly

Note that we can also write the GLS estimator as:
B =[X'"(a*Q) X1 X' (c2Q) 1y
= [X’Z‘lX]‘lx’E‘ly = [X’Q‘lX]‘lX’Q‘ly

Clearly, because E[€*] = 0 as long as the regressors are non-random, the GLS estimator,
B is unbiased.
Moreover, the covariance matrix of the GLS estimator is:

V(B) = X' QXX Qv (m{[x'a x] X'y



= [X'Q XX’ Qo200 X [X QXL
= g2[X'Q71X]"L.

If the errors are Normally distributed, then the full sampling distribution of the GLS

estimator of g is:

B~N[B,o?[X' Q71 X]™,]

The GLS estimator is just the OLS estimator, applied to the transformed model, and the
latter model satisfies all of the usual conditions.
So, the Gauss-Markhov Theorem applies to the GLS estimator.
The GLS estimator is BLU for this more general model (with a non-scalar error covariance
matrix).
Note: OLS must be inefficient in the present context.
Have a more general form of the GMT — the OLS version is a special case.
Moreover, all of the results that we established with regard to testing for linear restrictions
and incorporating them into our estimation, also apply if we make some obvious
modifications.
B = GLS estimator

2=y -X'B

62=28¢8/(n—k)
Then,totest Hy:RB =q vs. Hy: RB # q we would use the test statistic,

F=(RB-q)[RX"'X)'R'1"*(RB - q) /]&*
If H, is true, then is distributed as F) ,,_.
We can also construct the Restricted GLS estimator, in the same way that we obtained
the restricted OLS estimator of f.



e Check for yourself that this restricted estimator is
Br=B - X"X)T'R[R(XX)T'R'T™(RB - q)
=B - X'QX)RRX'QX)RTH(RB - q)
=B — (XITX)R[RX'TX)RTY(RB - q)
e Then, if the residuals from this restricted GLS estimation are defined as &, = y — X8, we
can also write the F-test statistic as:
F=[&'e —-28 /(g8 (n-k)
e Recalling our formula for the GLS estimator, we see that it depends on the (usually
unknown) covariance matrix of the error term:

B=[X0"'X]"'x'0y .
“Feasible” GLS Estimator

e In order to be able to implement the GLS estimator, in practice, we’re usually going to
have to provide a suitable estimator of Q (or X).

e Presumably we’ll want to obtain an estimator that is at least consistent, and place this into
the formula for the GLS estimator, yielding:

B=[xa'x]"x0y

e Problem: The Q matrix is (n X n), and it has n(n + 1) /2 distinct elements. However, we
have only n observations on the data. This precludes obtaining a consistent estimator.

e We need to constrain the elements of (0 in some way.

e In practice, this won’t be a big problem, because usually there will be lots of “structure”
on the form of Q.

e Typically, we’ll have Q = Q(8), where the vector, 8 has low dimension.
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Example: Heteroskedasticity

Suppose that var. (&) x (6, + 0,z;) = 02(0; + 0,2;)

91+92Z1 0
Qz( S )
0 o 0y + 6,2,

There are just two parameters that have to be estimated, in order to obtain £ .

Then,

Example: Autocorrelation
Suppose that the errors follow a first-order autoregressive process:
E = PE—1 +ut ; Ug NN[OIO-I%] (lld)

Then (for reasons we’ll see later),

= Q(p).

' 1

e So, typically, we’ll just have to estimate a very small number of parameters in order to get
an estimator of Q .

e Aslong as we use a consistent estimator for these parameters — the elements of 8, this will
give us a consistent estimator of Q and of Q~1, by Slutsky’s Theorem.

e This in turn, will ensure that our Feasible GLS estimator of S is also weakly consistent:
plim(B) = plim {[X’ﬁ‘lX]_lX’ﬁ‘ly }
= plim{[X'Q"1X]"1X'Q" 1y }
= plim(ﬁ) =p.

e Also, if Q is consistent for Q then 8 will be asymptotically efficient.
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e In general, we can say little about the finite-sample properties of our feasible GLS

estimator.

e Usually it will be biased, and the nature of the bias will depend on the form of Q and our

choice of Q.

e Inorder to apply either the GLS estimator, or the feasible GLS estimator, we need to know

the form of Q.

e Typically, this is achieved by postulating various forms, and testing to see if these are

supported by the data.

Appendix — R-Code for perspective plots and contours

(see http://quantcorner.wordpress.com/2012/09/21/bivariate-normal-distribution-with-r/)

# Edouard Tallent @ TaGoMa.Tech
# September 2012
# This code plots simulated bivariate normal distributions

# Some variable definitions

mul <- 0 # expected value of x
mu2 <- 0 # expected value of y
sigl <- 0.5 # variance of x

sig2 <- 1 # variance of y
rho <- 0.5 # corr(x, V)

# Some additional variables for x-axis and y-axis
xm <- -3

xp <- 3
ym <- -3
yp <= 3
x <- seqg(xm, xp, length= as.integer((xp + abs(xm)) * 10))

series x
y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10))
series y

# Core function
bivariate <- function (x,Vy) {
terml <- 1 / (2 * pi * sigl * sig2 * sgrt(l - rho"2))
term2 <- (x - mul)”"2 / sigl”"2
term3 <- -(2 * rho * (x — mul)*(y - mu2))/(sigl * sig2)
term4 <- (y - mu2)”"2 / sig2"2
7z <- term?2 + term3 + termé
term5 <- terml * exp((-z / (2 *(1 - rho"2))))
return (termb)

# vector

# vector
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# Computes the density values
z <- outer (x,y,bivariate)

# Plot

persp(x, y, z, main = "Bivariate Normal Distribution",
sub = bquote(bold(muf[l])==. (mul)~", "~sigma[l]==. (sigl)~",
"~mul[2]==.(mu2)~", "~sigma[2]==. (sig2)~", "~rho==. (rho)),
col="1lightblue", theta = 55, phi = 30, r = 40, d = 0.1, expand
= 0.5,1theta = 90, 1lphi = 180, shade = 0.4, ticktype =

"detailed", nticks=5)

#In order to see the contours, use:
fcontour (x,y, z)
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