Topic 6: Non-Spherical Disturbances

Our basic linear regression model is

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 ; $\boldsymbol{\varepsilon} \sim N[\mathbf{0}, \sigma^2 I_n]$

Now we'll generalize the specification of the error term in the model:

 $E[\boldsymbol{\varepsilon}] = \mathbf{0}$; $E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \boldsymbol{\Sigma} = \sigma^2 \boldsymbol{\Omega}$; (& Normal)

This allows for the possibility of one or both of

- Heteroskedasticity
- Autocorrelation (Cross-section; Time-series; Panel data)

Spherical Disturbances - Homoskedasticity and Non-Autocorrelation

In the above, consider $x = \varepsilon_i$ and $y = \varepsilon_j$. The joint probability density function, $p(\varepsilon_i, \varepsilon_j)$, is in the direction of the z axis. Below is a contour of the above perspective. If we consider the joint distribution of three error terms instead of two, the circles below would become spheres, hence the terminology "spherical disturbances."

Bivariate Normal Distribution

- How does the more general situation of non-spherical disturbances affect our (Ordinary) Least Squares estimator?
- In particular, let's first look at the sampling distribution of *b*:

$$\boldsymbol{b} = (X'X)^{-1}X'\boldsymbol{y} = (X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{\varepsilon})$$
$$= \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}.$$

So,

$$E(\boldsymbol{b}) = \boldsymbol{\beta} + (X'X)^{-1}X'E(\boldsymbol{\varepsilon}) = \boldsymbol{\beta} .$$

The more general form of the covariance matrix for the error term does not alter the fact that the OLS estimator is *unbiased*.

• Next, consider the covariance matrix of our OLS estimator in this more general situation:

$$V(\boldsymbol{b}) = V[\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{\varepsilon}] = V[(X'X)^{-1}X'\boldsymbol{\varepsilon}]$$
$$= [(X'X)^{-1}X'V(\boldsymbol{\varepsilon})X(X'X)^{-1}]$$
$$= [(X'X)^{-1}X'\sigma^2\Omega X(X'X)^{-1}]$$
$$\neq [\sigma^2(X'X)^{-1}] .$$

• So, under our full set of modified assumptions about the error term:

$$\boldsymbol{b} \sim N[\boldsymbol{\beta}, V^*]$$

where

$$V^* = \sigma^2[(X'X)^{-1}X'\Omega X(X'X)^{-1}].$$

- So, the usual computer output will be misleading, *numerically*, as it will be based on using the wrong formula, namely $s^2(X'X)^{-1}$.
- The standard errors, t-statistics, *etc*. will all be incorrect.
- As well as being *unbiased*, the OLS point estimator of β will still be *weakly consistent*.
- The I.V. estimator of β will still be *weakly consistent*.

- The NLLS estimator of the model's parameters will still be *weakly consistent*.
- However, the usual estimator for the covariance matrix of b, namely $s^2(X'X)^{-1}$, will be an *inconsistent estimator* of the true covariance matrix of b!
- This has serious implications for inferences based on confidence intervals, tests of significance, *etc*.
- So, we need to know how to deal with these issues.
- This will lead us to some *generalized estimators*.
- First, let's deal with the most pressing issue the inconsistency of the estimator for the covariance matrix of **b**.

White's Heteroskedasticity-Consistent Covariance Matrix Estimator

• If we knew $\sigma^2 \Omega$, then the "estimator" of the covariance matrix for **b** would just be: $V^* = [(X'X)^{-1}X'\sigma^2\Omega X(X'X)^{-1}]$

$$= \frac{1}{n} \left[\left(\frac{1}{n} X' X \right)^{-1} \left(\frac{1}{n} X' \sigma^2 \Omega X \right) \left(\frac{1}{n} X' X \right)^{-1} \right]$$
$$= \frac{1}{n} \left[\left(\frac{1}{n} X' X \right)^{-1} \left(\frac{1}{n} X' \Sigma X \right) \left(\frac{1}{n} X' X \right)^{-1} \right]$$

- If Σ is *unknown*, then we need to find a consistent estimator of $\left(\frac{1}{n}X'\Sigma X\right)$.
- (Why not an estimator of just Σ ?)
- Note that at this stage of the discussion, the form of the Σ matrix is quite arbitrary.
- Let $Q^* = \left(\frac{1}{n}X'\Sigma X\right)$ $(k \times k)$ $= \frac{1}{n}\sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} x_i x'_j$

$$(k \times 1) (1 \times k)$$

• In the case of *heteroskedastic errors*, things simplify, because $\sigma_{ij} = 0$, for $i \neq j$.

Then, we have

$$Q^* = \frac{1}{n} \sum_{i=1}^n \sigma_i^2 x_i x_i'$$

• White (1980) showed that if we define

$$S_0 = \frac{1}{n} \sum_{i=1}^n e_i^2 \boldsymbol{x}_i \boldsymbol{x}_i'$$

Then, $plim(S_0) = Q^*$.

• This means that we can estimate the model by OLS; get the associated residual vector, *e*; and then a consistent estimator of *V*^{*}, the covariance matrix of *b*, will be:

$$\widehat{V}^* = \frac{1}{n} \left[\left(\frac{1}{n} X' X \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n e_i^2 \boldsymbol{x}_i \boldsymbol{x}_i' \right) \left(\frac{1}{n} X' X \right)^{-1} \right]$$

or,

$$\hat{V}^* = n[(X'X)^{-1}S_0(X'X)^{-1}].$$

- \hat{V}^* is a consistent estimator of V^* , regardless of the (unknown) form of the heteroskedasticity.
- This includes no heteroskedasticity (*i.e.*, homoscedastic errors).
- Newey & West produced a corresponding consistent estimator of V^* for when the errors possibly exhibit autocorrelation (of some unknown form).
- Note that the White and the Newey-West estimators modify just the <u>estimated covariance</u> <u>matrix of b not b</u> itself.
- As a result, the *t*-statistics, *F*-statistic, *etc.*, will be modified, but only in a manner that is appropriate *asymptotically*.
- So, if we have heteroskedasticity (or autocorrelation), whether we modify the covariance estimator or not, the usual test statistics will be unreliable in finite samples.
- A good practical solution is to use White's (or Newey-West's) adjustment, and then use the Wald test, rather than the *F*-test for exact linear restrictions.
- This Wald test will incorporate the consistent estimator of the covariance matrix of *b*, and so it will still be valid, *asymptotically*.

- Now let's turn to the estimation of β , taking account of the fact that the error term has a non-scalar covariance matrix.
- Using this information should enable us to improve the *efficiency* of the LS estimator of the coefficient vector.

Generalized Least Squares

(Alexander Aitken, 1935)

- In the present context, (Ordinary) LS ignores some important information, and we'd anticipate that this will result in a loss of efficiency when estimating β .
- Let's see how to obtain the fully efficient (linear unbiased) estimator.
- Recall that $V(\boldsymbol{\varepsilon}) = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \Sigma = \sigma^2 \Omega$.
- Generally, Ω will be *unknown*. However, to begin with, let's consider the case where it is actually *known*.
- Clearly, Ω must be *symmetric*, as it is a covariance matrix.
- Suppose that Ω is also *positive-definite*.
- Then, Ω^{-1} is also positive-definite, and so there exists a *non-singular* matrix, *P*, such that $\Omega^{-1} = P'P$.
- In fact, $P' = C\Lambda^{-1/2}$, where the columns of *C* are the characteristic vectors of Ω , and $\Lambda^{1/2} = diag.(\sqrt{\lambda_i})$. Here, the $\{\lambda_i\}$ are the characteristic roots of Ω .

.

• Our model is:

$$\mathbf{y} = X\mathbf{\beta} + \boldsymbol{\varepsilon}$$
 ; $\boldsymbol{\varepsilon} \sim [0, \sigma^2 \Omega]$

• Pre-multiply the equation by *P*:

$$P\mathbf{y} = PX\boldsymbol{\beta} + P\boldsymbol{\varepsilon}$$

or,

$$\mathbf{y}^* = X^* \boldsymbol{\beta} + \boldsymbol{\varepsilon}^* \qquad ; \quad \text{say}$$

- Now, Ω is non-random, so *P* is also non-random.
- So, $E[\boldsymbol{\varepsilon}^*] = E[P\boldsymbol{\varepsilon}] = P E[\boldsymbol{\varepsilon}] = \mathbf{0}$
- And $V[\boldsymbol{\varepsilon}^*] = V[P\boldsymbol{\varepsilon}]$ = $PV(\boldsymbol{\varepsilon})P'$ = $P(\sigma^2\Omega)P' = \sigma^2 P\Omega P'$

• Note that $P\Omega P' = P(\Omega^{-1})^{-1}P'$

$$= P(P'P)^{-1}P'$$

= $PP^{-1}(P')^{-1}P' = I$

- (Because *P* is both square and non-singular.)
- So, $E[\boldsymbol{\varepsilon}^*] = \mathbf{0}$ and $V[\boldsymbol{\varepsilon}^*] = \sigma^2 I$.
- The transformed model, $y^* = X^*\beta + \varepsilon^*$, has an error-term that satisfies the *usual* assumptions. In particular, it has a scalar covariance matrix.
- So, if we apply (Ordinary) Least Squares to the model, $y^* = X^*\beta + \varepsilon^*$, we'll get the BLU estimator of β , by the Gauss-Markhov Theorem.
- We call this the **Generalized Least Squares Estimator** of β .
- The formula for this estimator is readily determined:

$$\widehat{\boldsymbol{\beta}} = [X^{*'}X^{*}]^{-1}X^{*'}\boldsymbol{y}^{*}$$
$$= [(PX)'(PX)]^{-1}(PX)'(P\boldsymbol{y})$$
$$= [X'P'PX]^{-1}X'P'P\boldsymbol{y}$$
$$= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\boldsymbol{y}$$

• Note that we can also write the GLS estimator as:

$$\widehat{\boldsymbol{\beta}} = [X'(\sigma^2 \Omega)^{-1} X]^{-1} X'(\sigma^2 \Omega)^{-1} \boldsymbol{y}$$
$$= [X' \Sigma^{-1} X]^{-1} X' \Sigma^{-1} \boldsymbol{y} = [X' \Omega^{-1} X]^{-1} X' \Omega^{-1} \boldsymbol{y}$$

- Clearly, because E[ε*] = 0 as long as the regressors are non-random, the GLS estimator,
 β is unbiased.
- Moreover, the covariance matrix of the GLS estimator is:

$$V(\widehat{\boldsymbol{\beta}}) = [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}V(\boldsymbol{y})\{[X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\}'$$

$$= [X'\Omega^{-1}X]^{-1}X'\Omega^{-1}\sigma^{2}\Omega\Omega^{-1}X[X'\Omega^{-1}X]^{-1}$$
$$= \sigma^{2}[X'\Omega^{-1}X]^{-1}.$$

• If the errors are Normally distributed, then the full sampling distribution of the GLS estimator of β is:

$$\widehat{\boldsymbol{\beta}} \sim N[\boldsymbol{\beta}, \sigma^2[X'\Omega^{-1}X]^{-1},]$$

- The GLS estimator is just the OLS estimator, applied to the transformed model, and the latter model satisfies all of the usual conditions.
- So, the *Gauss-Markhov Theorem* applies to the GLS estimator.
- The GLS estimator is BLU for this more general model (with a non-scalar error covariance matrix).
- Note: OLS must be *inefficient* in the present context.
- Have a more general form of the GMT the OLS version is a special case.
- Moreover, all of the results that we established with regard to testing for linear restrictions and incorporating them into our estimation, also apply if we make some obvious modifications.
- $\widehat{\beta} = \text{GLS estimator}$ $\widehat{\epsilon} = y^* - X^* \widehat{\beta}$ $\widehat{\sigma}^2 = \widehat{\epsilon}' \widehat{\epsilon} / (n - k)$
- Then, to test $H_0: R\beta = q$ vs. $H_A: R\beta \neq q$ we would use the test statistic,

$$F = \left(R\widehat{\boldsymbol{\beta}} - \boldsymbol{q}\right)' [R(X^*'X^*)^{-1}R']^{-1} \left(R\widehat{\boldsymbol{\beta}} - \boldsymbol{q}\right) / J\widehat{\sigma}^2$$

- If H_0 is true, then is distributed as $F_{I,n-k}$.
- We can also construct the Restricted GLS estimator, in the same way that we obtained the restricted OLS estimator of β.

• Check for yourself that this restricted estimator is

$$\begin{split} \widehat{\boldsymbol{\beta}}_r &= \widehat{\boldsymbol{\beta}} - (X^{*'}X^{*})^{-1}R'[R(X^{*'}X^{*})^{-1}R']^{-1}(R\widehat{\boldsymbol{\beta}} - \boldsymbol{q}) \\ &= \widehat{\boldsymbol{\beta}} - (X'\Omega^{-1}X)^{-1}R'[R(X'\Omega^{-1}X)^{-1}R']^{-1}(R\widehat{\boldsymbol{\beta}} - \boldsymbol{q}) \\ &= \widehat{\boldsymbol{\beta}} - (X'\Sigma^{-1}X)^{-1}R'[R(X'\Sigma^{-1}X)^{-1}R']^{-1}(R\widehat{\boldsymbol{\beta}} - \boldsymbol{q}) \end{split}$$

• Then, if the residuals from this restricted GLS estimation are defined as $\hat{\boldsymbol{\varepsilon}}_r = \boldsymbol{y} - X \hat{\boldsymbol{\beta}}_r$, we can also write the F-test statistic as:

$$F = \left[\hat{\boldsymbol{\varepsilon}}_r'\hat{\boldsymbol{\varepsilon}}_r - \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}\right] / (J\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}/(n-k))$$

• Recalling our formula for the GLS estimator, we see that it depends on the (usually unknown) covariance matrix of the error term:

$$\widehat{\boldsymbol{\beta}} = [X' \Omega^{-1} X]^{-1} X' \Omega^{-1} \boldsymbol{y}$$

"Feasible" GLS Estimator

- In order to be able to implement the GLS estimator, in practice, we're usually going to have to provide a *suitable estimator* of Ω (or Σ).
- Presumably we'll want to obtain an estimator that is *at least consistent*, and place this into the formula for the GLS estimator, yielding:

$$\widetilde{\boldsymbol{\beta}} = \left[X' \widehat{\boldsymbol{\Omega}}^{-1} X \right]^{-1} X' \widehat{\boldsymbol{\Omega}}^{-1} \boldsymbol{y}$$

- Problem: The Ω matrix is $(n \times n)$, and it has n(n + 1)/2 *distinct* elements. However, we have only *n* observations on the data. This precludes obtaining a consistent estimator.
- We need to constrain the elements of Ω in some way.
- In practice, this won't be a big problem, because usually there will be lots of "structure" on the form of Ω .
- Typically, we'll have $\Omega = \Omega(\boldsymbol{\theta})$, where the vector, $\boldsymbol{\theta}$ has low dimension.

Example:

Heteroskedasticity

Suppose that $var.(\varepsilon_i) \propto (\theta_1 + \theta_2 z_i) = \sigma^2(\theta_1 + \theta_2 z_i)$

Then,

$$\Omega = \begin{pmatrix} \theta_1 + \theta_2 z_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \theta_1 + \theta_2 z_n \end{pmatrix}$$

There are just two parameters that have to be estimated, in order to obtain $\widehat{\Omega}$.

Example: Autocorrelation

Suppose that the errors follow a *first-order autoregressive process*:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$
; $u_t \sim N[0, \sigma_u^2]$ (i.i.d.)

Then (for reasons we'll see later),

$$\Omega = \frac{\sigma_u^2}{1-\rho^2} \begin{bmatrix} 1 & \rho & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \rho^{n-2} \\ \vdots & \rho & \ddots & \vdots \\ \rho^{n-1} & \dots & \dots & 1 \end{bmatrix} = \Omega(\rho).$$

- So, typically, we'll just have to estimate a very small number of parameters in order to get an estimator of Ω .
- As long as we use a *consistent estimator* for these parameters the elements of θ , this will give us a consistent estimator of Ω and of Ω^{-1} , by Slutsky's Theorem.
- This in turn, will ensure that our Feasible GLS estimator of β is also *weakly consistent*:

$$plim(\tilde{\beta}) = plim\left\{ \left[X' \widehat{\Omega}^{-1} X \right]^{-1} X' \widehat{\Omega}^{-1} y \right\}$$
$$= plim\{ \left[X' \Omega^{-1} X \right]^{-1} X' \Omega^{-1} y \right\}$$
$$= plim(\hat{\beta}) = \beta .$$

• Also, if $\widehat{\Omega}$ is consistent for Ω then $\widehat{\beta}$ will be *asymptotically efficient*.

- In general, we can say little about the *finite-sample* properties of our feasible GLS estimator.
- Usually it will be *biased*, and the nature of the bias will depend on the form of Ω and our choice of Ω.
- In order to apply either the GLS estimator, or the feasible GLS estimator, we need to know the form of Ω .
- Typically, this is achieved by postulating various forms, and testing to see if these are supported by the data.

Appendix – R-Code for perspective plots and contours

(see http://quantcorner.wordpress.com/2012/09/21/bivariate-normal-distribution-with-r/)

```
# Édouard Tallent @ TaGoMa.Tech
# September 2012
# This code plots simulated bivariate normal distributions
# Some variable definitions
mu1 <- 0 # expected value of x</pre>
mu2 <- 0 # expected value of y</pre>
sig1 <- 0.5 # variance of x
sig2 <- 1 # variance of y</pre>
rho <- 0.5 # corr(x, y)
# Some additional variables for x-axis and y-axis
xm < - -3
xp <- 3
ym <- −3
yp <- 3
x <- seq(xm, xp, length= as.integer((xp + abs(xm)) * 10)) # vector</pre>
series x
y <- seq(ym, yp, length= as.integer((yp + abs(ym)) * 10)) # vector</pre>
series y
# Core function
bivariate <- function(x,y) {</pre>
     term1 <- 1 / (2 * pi * sig1 * sig2 * sqrt(1 - rho^2))
     term2 <- (x - mul)^2 / sig1^2
     term3 <- -(2 * rho * (x - mu1)*(y - mu2))/(sig1 * sig2)
     term4 <- (y - mu2)^2 / sig2^2
     z < - term2 + term3 + term4
     term5 <- term1 * exp((-z / (2 *(1 - rho^2))))
     return (term5)
}
```