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Topic 7: Heteroskedasticity 

Consider the linear regression model  

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2Ω] 

where     

𝜎2Ω = 𝜎2 [
𝜔11 ⋯ 0

⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

] = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜎𝑛

2
] = 𝑑𝑖𝑎𝑔. (𝜎𝑖

2) 

Then the errors exhibit Heteroskedasticity, but they are still uncorrelated. 

 We know, from Topic 6, that in this case the OLS estimator of 𝜷 is unbiased and consistent, 

but it is inefficient. 

 We know that we can use White’s modified estimator for the covariance matrix of 𝜷 to 

ensure that the standard errors of the bi’s are consistent estimators for the true s.e.(bi)’s. 

 We also know that we can use GLS to obtain the BLU estimator of 𝜷 if Ω is known. 

 If                           Ω = [
𝜔11 ⋯ 0

⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

]   , 

then                       𝑃 = [
𝜔11

−1/2 ⋯ 0
⋮ ⋱ ⋮
0 … 𝜔𝑛𝑛

−1/2
] , 

so that             𝑃′𝑃 = Ω−1 

 So, in this particular case, GLS estimation involves transforming the data: 

                         𝒚∗ = 𝑃𝒚   ;    𝑋∗ = 𝑃𝑋    

 Just multiply the model by the matrix, P, or simply scale the ith observation of all variables 

by 𝜔𝑖𝑖
−1/2

 : 

     𝜔𝑖𝑖
−1/2

𝑦𝑖 = 𝛽1𝜔𝑖𝑖
−1/2

+ 𝛽2 (𝜔
𝑖𝑖

−
1

2𝑥𝑖2) + ⋯ + (𝜔
𝑖𝑖

−
1

2𝜀𝑖) 
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 This particular variant of GLS is often referred to as “Weighted Least Squares” 

estimation. It is just OLS applied using “weighted” data. 

 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 

𝐸[𝜀𝑖] = 0      ;     𝑣𝑎𝑟. [𝜀𝑖] ∝ 𝑥𝑖2
2        

So, we can write: 

𝑣𝑎𝑟. [𝜀𝑖] = 𝜎2𝑥𝑖2
2        ;     𝜔𝑖𝑖 = 𝑥𝑖2

2       ;       𝜔𝑖𝑖
−1/2 = 1/𝑥𝑖2  

(𝑦𝑖/𝑥𝑖2) = 𝛽1(1/𝑥𝑖2) + 𝛽2 + ⋯ + 𝛽𝑘(𝑥𝑖𝑘/𝑥𝑖2) + 𝜀𝑖
∗ 

where         𝜀𝑖
∗ = (

𝜀𝑖

𝑥𝑖2
)    ;    𝐸[𝜀𝑖

∗] = 0              (assumption?) 

𝑣𝑎𝑟. [𝜀𝑖
∗] = (1/𝑥𝑖2)2𝑣𝑎𝑟. [𝜀𝑖] = (1/𝑥𝑖2)2 𝜎2𝑥𝑖2

2 = 𝜎2        

 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 

𝐸[𝜀𝑖] = 0      ;     𝑣𝑎𝑟. [𝜀𝑖] ∝ 𝑧𝑖
𝑝
   

𝑣𝑎𝑟. [𝜀𝑖] = 𝜎2𝑧𝑖
𝑝
       ;     𝜔𝑖𝑖 = 𝑧𝑖

𝑝
      ;       𝜔𝑖𝑖

−1/2 = 𝑧𝑖
−𝑝/2

 

(𝑦𝑖𝑧𝑖
−𝑝/2

) = 𝛽1(𝑧𝑖
−𝑝/2

) + 𝛽2(𝑥𝑖2𝑧𝑖
−𝑝/2

) + ⋯ + 𝛽𝑘(𝑥𝑖𝑘𝑧𝑖
−𝑝/2

) + 𝜀𝑖
∗ 

where         𝜀𝑖
∗ = (𝜀𝑖𝑧𝑖

−𝑝/2
)    ;    𝐸[𝜀𝑖

∗] = 0              (assumption?) 

𝑣𝑎𝑟. [𝜀𝑖
∗] = (𝑧𝑖

−𝑝/2
)

2
𝑣𝑎𝑟. [𝜀𝑖] = 𝑧𝑖

−𝑝𝜎2𝑧𝑖
𝑝 = 𝜎2   

Note that in this case we end up with a fitted model with no intercept, but we are still estimating 

the original parameters of interest. 
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 In some cases we will actually know the form of the heteroskedasticity, so we can apply 

WLS directly. 

 

Example: 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 

𝐸[𝜀𝑖] = 0      ;     𝑣𝑎𝑟. [𝜀𝑖] = 𝜎2       ;     i.i.d 

However, suppose that we only observe “grouped” data, rather than the observations on the 

individual agents. 

This happens frequently in practice, when data are released in this way to preserve confidentiality. 

Suppose there are m groups (e.g., income groups), with nj observations in the jth group;   j = 1, 2, 

…., m.   

The model we can actually estimate is of the form: 

�̅�𝑗 = 𝛽1 + 𝛽2�̅�𝑗2 + ⋯ + 𝛽𝑘�̅�𝑗𝑘 + 𝜀�̅�    ;     j = 1, 2, ..., m 

and clearly, 

𝐸[𝜀�̅�] = 𝐸 [
1

𝑛𝑗
∑ 𝜀𝑖

𝑛𝑗

𝑖=1
] = [

1

𝑛𝑗
∑ 𝐸(𝜀𝑖)

𝑛𝑗

𝑖=1
] = 0       

𝑣𝑎𝑟. [𝜀�̅�] = 𝑣𝑎𝑟. [
1

𝑛𝑗
∑ 𝜀𝑖

𝑛𝑗

𝑖=1
] = [

1

𝑛𝑗
2

∑ 𝑣𝑎𝑟. (𝜀𝑖

𝑛𝑗

𝑖=1
)] 

                           = (𝑛𝑗𝜎2/𝑛𝑗
2) 

                           = (𝜎2/𝑛𝑗)  . 

The nj values are generally reported, so we know the error covariance matrix: 

                           𝜎2Ω = 𝜎2 [
1/𝑛1 ⋯ 0

⋮ ⋱ ⋮
0 … 1/𝑛𝑚

] . 



4 
 

Because Ω is known, we can compute the GLS estimator of the coefficient vector immediately: 

                              �̂� = [𝑋′Ω−1𝑋]−1𝑋′Ω−1𝒚 . 

However, in many other applications, we won’t know the values of the elements of  Ω , and we’ll 

have to use Feasible GLS estimation. 

 

FGLS Example: 

 Estimate 𝛽 by OLS (𝑏 is at least consistent) 

 Obtain the OLS residuals, 𝒆 

 Estimate Ω by: Ω̂𝑂𝐿𝑆 = 𝑑𝑖𝑎𝑔(𝑒1
2, … , 𝑒𝑛

2) 

 Estimate �̂�𝐹𝐺𝐿𝑆1 = [𝑋′Ω̂𝑂𝐿𝑆
−1 𝑋]

−1
𝑋′Ω̂𝑂𝐿𝑆

−1 𝒚  

 

The procedure can be iterated, until estimation of Ω̂ converges. Note that the benefit of iterating 

is questionable, as each estimator for 𝛽 past the first iteration is consistent. 

 

Testing for Homoskedasticity 

 Clearly, it would be very useful to have a test of the hypothesis that the errors in our 

regression model are homoscedastic, against the alternative that they exhibit some sort of 

heteroskedasticity. 

 Recall that heteroskedasticity reduces the efficiency of the OLS estimator of 𝜷 and has 

serious implications for the properties of the associated standard errors, confidence 

intervals, and tests. 

 Because OLS is still a consistent estimator of 𝜷 even if the errors are heteroskedastic, this 

means that we can use the OLS residuals to construct tests that will still be (at least) 

asymptotically valid. 

 In particular, we can use these residuals to construct asymptotically valid tests for 

homoskedasticity. 
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White’s Test 

𝑦𝑖 = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖 

  𝐸[𝜀𝑖] = 0      ;     𝑣𝑎𝑟. [𝜀𝑖] = 𝜎𝑖
2       ;     i.i.d 

Consider the following null and alternative hypotheses: 

𝐻0: 𝜎𝑖
2 = 𝜎2      ;      i = 1, 2, …, n  𝐻𝐴: 𝑁𝑜𝑡 𝐻0  

 The Alternative Hypothesis is very general. 

  No specific form of heteroskedasticity is declared. 

 To implement the test – 

 

1.   Estimate the model by OLS, and get the residuals,  𝑒𝑖 ; i = 1, 2, …, n. 

2.   Using OLS, regress the 𝑒𝑖
2 values on each of the x’s in the original model; their 

squared values; all of the cross-products of the regressors; and an intercept. 

3.   𝑛𝑅2 from the regression in Step 2 is asymptotically 𝜒(𝑝)
2  if 𝐻0 is true; where p is 

the number of parameters that are estimated at Step 2. 

4.   Reject 𝐻0 in favour of 𝐻𝐴 if  𝑛𝑅2 > 𝑐(α) . 

 Note the limitations of this test: 

1.   It is valid only asymptotically. 

2.   The test is “non-constructive”, in the sense that if we reject 𝐻0, we       don’t 

know what form of heteroskedasticity we may have. 

3.   This means that it won’t be clear what form the GLS estimator should  take. 

 However, this may be enough information to alert us to the fact that we should  probably 

use White’s “heteroskedasticity-consistent” estimator of 𝑉(𝒃). 

 In fact, there is little, if anything, to be lost in using this covariance matrix estimator, 

anyway, as long as the sample is large. 
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Example   

Data is on average monthly credit card expenditure (avgexp). The explanatory variables are age, 

ownrent (= 1 if homeowner, = 0 if renter), and income (in $10,000). Produce a scatter plot of 

avgexp against income.       

 

ccard=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/credi

tcard.csv") 

attach(ccard) 

plot(income,avgexp) 

 

Does it look like heteroskedasticity is apparent? 

 

Estimate the following model by OLS: 

𝑎𝑣𝑔𝑒𝑥𝑝 =  𝛽1 + 𝛽2𝑎𝑔𝑒 + 𝛽3𝑜𝑤𝑛𝑟𝑒𝑛𝑡 + 𝛽4𝑖𝑛𝑐𝑜𝑚𝑒 + 𝛽5𝑖𝑛𝑐𝑜𝑚𝑒2 + 𝜀 

 

income2 = income^2 

res = lm(avgexp ~ age + ownrent + income + income2) 

summary(res) 

 

2 4 6 8 10

0
5

0
0

1
0

0
0

1
5

0
0

income

a
v
g

e
x
p



7 
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -237.147    199.352  -1.190  0.23841    

age           -3.082      5.515  -0.559  0.57814    

ownrent       27.941     82.922   0.337  0.73721    

income       234.347     80.366   2.916  0.00482 ** 

income2      -14.997      7.469  -2.008  0.04870 * 

 

White’s heteroskedasticity consistent standard errors can be calculated using standard 

econometric software (e.g. Eviews, Stata). However, we can easily write R code to estimate the 

appropriate variance-covariance matrix. 

Recall that in the presence of heteroskedasticity, White’s estimator for the var-cov matrix of 𝑏 is: 

�̂�∗ = 𝑛[(𝑋′𝑋)−1𝑆0(𝑋′𝑋)−1] 

where 

𝑆0 =
1

𝑛
∑ 𝑒𝑖

2𝒙𝑖𝒙𝑖
′

𝑛

𝑖=1

 

To code this into R:  

resids2 = res$residuals^2 

n = length(avgexp) 

X = matrix(c(rep(1,n),age,ownrent,income,income2),n,5) 

S = matrix(0,5,5)  

for(i in 1:n){ 

S = S + (resids2[i]) * X[i,] %*% t(X[i,])  

} 

S = S/n 

diag((n*solve(t(X) %*% X) %*% S %*% solve(t(X) %*% X))^.5) 

 

212.990530   3.301661  92.187777  88.866352   6.944563 

How do these compare to the previous standard errors? 

Read the sample size from the data 

Create “empty” S matrix 
Create X matrix 

This is a “for” loop. In each iteration, 𝑒𝑖
2𝒙𝑖𝒙𝑖

′ will be added to the S matrix. 

Finally, this reports the diagonal elements of the �̂�∗ matrix. 

Get the squared resids. from 1st regression 
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White’s Heteroskedasticity Test - Example 

We’ll regress the squared residuals from the OLS regression on all explanatory variables, and 

squared and cross-products of the explanatory variables. If the 𝑅2 from this auxiliary regression 

is high enough, we’ll reject the null of homoscedasticity. 

First, create all the variables needed for the auxiliary regression, then run OLS: 

age2 = age^2 

income4 = income^4 

age_own = age*ownrent 

age_inc = age*income 

age_inc2 = age*income2 

own_inc = ownrent*income 

own_inc2 = ownrent*income2 

inc_inc2 = income^3 

summary(lm(resids2 ~ age + ownrent + income + income2 + age2 + 

income4 + age_own + age_inc + age_inc2 + own_inc + own_inc2 + 

inc_inc2)) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  1637390.4  1290979.7   1.268   0.2097   

age             5366.2    48893.8   0.110   0.9130   

ownrent       812036.8   991630.2   0.819   0.4161   

income      -2021697.6  1053559.1  -1.919   0.0598 . 

income2       669055.3   365666.7   1.830   0.0724 . 

age2            -424.1      627.5  -0.676   0.5018   

income4         3762.7     2277.4   1.652   0.1038   

age_own         4661.7    14424.6   0.323   0.7477   

age_inc        11499.9    15614.3   0.736   0.4643   

age_inc2       -1093.3     1568.1  -0.697   0.4884   

own_inc      -510192.3   469792.6  -1.086   0.2819   

own_inc2       51835.1    61799.8   0.839   0.4050   

inc_inc2      -86805.3    51162.6  -1.697   0.0950 . 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 274600 on 59 degrees of freedom 

Multiple R-squared:  0.199,     Adjusted R-squared:  0.0361  

F-statistic: 1.222 on 12 and 59 DF,  p-value: 0.2905  
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 Can variation in 𝒆′𝒆 be explained? 

 Should we use the F-test reported in the regression results? 

 > 1 - pchisq(n*0.199,12) 

[1] 0.280255 

 

So, even though regression seems apparent from the plot of avgexp against income, we cannot 

reject the null of homoskedasticity using White’s test. 

 

What would be the safe thing to do in this case? 


