Topic 7 Continued: Heteroskedasticity

Goldfeld-Quandt Test

- Suppose that we have two samples of data. That is, we have sampled from two potentially different populations.
- We want to test if the variance of the error term for our regression model is the same for both populations.
- We'll assume that we know that the coefficient vector is the same for both populations.
- So:

$$
\begin{array}{lll}
\boldsymbol{y}_{1}=X_{1} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{1} & ; \quad \boldsymbol{\varepsilon}_{1} \sim N\left[0, \sigma_{1}^{2} I_{n_{1}}\right] \\
\boldsymbol{y}_{2}=X_{2} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{2} & ; \quad \boldsymbol{\varepsilon}_{2} \sim N\left[0, \sigma_{2}^{2} I_{n_{2}}\right]
\end{array}
$$

(Subscripts denote samples)

- We want to test $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ vs. $H_{A}: \sigma_{1}^{2}>\sigma_{2}^{2} \quad$ (say)

The Goldfeld-Quandt test for homoscedasticity is constructed as follows:

1. Fit the model, using OLS, over each of the two samples, separately.
2. Let the two residual vectors be $\boldsymbol{e}_{\mathbf{1}}$ and $\boldsymbol{e}_{\mathbf{2}}$.
3. If the errors are Normally distributed, then the statistics:

$$
\left(e_{i}^{\prime} e_{i}\right) /\left(\sigma_{i}^{2}\right) \sim \chi_{\left(n_{i}-k\right)}^{2} \quad ; \quad i=1,2 .
$$

4. The two regressions are fitted quite separately, so these two statistics are statistically independent.
5. Consider the statistic:

$$
F=\left(e_{1}{ }^{\prime} e_{1}\right) /\left(\sigma_{1}^{2}\left(n_{1}-k\right)\right) /\left(e_{2}{ }^{\prime} e_{2}\right) /\left(\sigma_{2}^{2}\left(n_{2}-k\right)\right)
$$

6. If $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ is true, then $F=\left(\frac{s_{1}^{2}}{s_{2}^{2}}\right) \sim F_{\left(n_{1}-k ; n_{2}-k\right)}$.
7. We would reject H_{0} if $F>c(\alpha)$.

- If we do not reject H_{0}, then we would estimate the (common) coefficient vector, $\boldsymbol{\beta}$, by "pooling" both samples together, and applying OLS.
- On the other hand, if we reject H_{0}, then we would estimate the (common) coefficient vector, $\boldsymbol{\beta}$, by GLS.
- Let's see what form the latter estimator takes in this particular case.
- Recall that we have:

$$
\begin{array}{ll}
\boldsymbol{y}_{1}=X_{1} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{1} & ; \quad \boldsymbol{\varepsilon}_{1} \sim N\left[0, \sigma_{1}^{2} I_{n_{1}}\right] \\
\boldsymbol{y}_{2}=X_{2} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{2} & ; \quad \boldsymbol{\varepsilon}_{2} \sim N\left[0, \sigma_{2}^{2} I_{n_{2}}\right]
\end{array}
$$

- Let $\phi=\left(\sigma_{1} / \sigma_{2}\right) ;$ and let $\hat{\phi}=\left(s_{1} / s_{2}\right)$;
where $s_{i}^{2}=\left(\boldsymbol{e}_{i}{ }^{\prime} \boldsymbol{e}_{i}\right) /\left(n_{i}-k\right) ; \quad i=1,2$.
- Note that $\hat{\phi}$ is a consistent estimator of ϕ.
- If we knew the value of ϕ, we could use it to scale the model for the second subsample, as follows:

$$
\phi \boldsymbol{y}_{2}=\phi X_{2} \boldsymbol{\beta}+\phi \boldsymbol{\varepsilon}_{2}
$$

where $E\left[\phi \varepsilon_{2}\right]=0$ and
$V\left[\phi \varepsilon_{2}\right]=\phi^{2} V\left[\varepsilon_{2}\right]=\left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right) \sigma_{2}^{2} I_{n_{2}}=\sigma_{1}^{2} I_{n_{2}}$

- That is, the full error vector, $\boldsymbol{\varepsilon}^{\prime}=\left(\boldsymbol{\varepsilon}_{1}^{\prime}, \phi \boldsymbol{\varepsilon}_{2}{ }^{\prime}\right)^{\prime}$, is homoscedastic.
- GLS estimation then amounts to applying OLS to the "pooled" data, but where the data associated with the second sub-sample have been transformed in the above way.
- Typically, we won't know the value of $\phi=\left(\sigma_{1} / \sigma_{2}\right)$, but we can use $\hat{\phi}=$ $\left(s_{1} / s_{2}\right)$ instead to implement feasible GLS estimation.
- Because $\hat{\phi}$ is a consistent estimator of ϕ, this feasible GLS estimator will be consistent for $\boldsymbol{\beta}$.

Example

- Investment data for 2 companies - General Electric \& Westinghouse
- 20 years of annual data for each company - 1935 to 1954
- $\mathrm{I}=$ Gross investment, in 1947 dollars
- $\mathrm{V}=$ Market value of company as of 31 December, in 1947 dollars
- $\mathrm{K}=$ Stock of plant \& equipment, in 1947 dollars
- "Pool" the data - first 20 observations are for General Electric; second 20 observations are for Westinghouse

First, take a look at the data:

```
fglsdata=read.csv("http://home.cc.umanitoba.ca/~godwinrt/7010/fgls.csv
")
attach(fglsdata)
fglsdata
\begin{tabular}{rrrrrrrr} 
& Year & Ige & Vge & Kge & Iw & Vw & Kw \\
1 & 1935 & 33.1 & 1170.6 & 97.8 & 12.93 & 191.5 & 1.8 \\
2 & 1936 & 45.0 & 2015.8 & 104.4 & 25.90 & 516.0 & 0.8 \\
3 & 1937 & 77.2 & 2803.3 & 118.0 & 35.05 & 729.0 & 7.4 \\
4 & 1938 & 44.6 & 2039.7 & 156.2 & 22.89 & 560.4 & 18.1 \\
5 & 1939 & 48.1 & 2256.2 & 172.6 & 18.84 & 519.9 & 23.5 \\
6 & 1940 & 74.4 & 2132.2 & 186.6 & 28.57 & 628.5 & 26.5 \\
7 & 1941 & 113.0 & 1834.1 & 220.9 & 48.51 & 537.1 & 36.2 \\
8 & 1942 & 91.9 & 1588.0 & 287.8 & 43.34 & 561.2 & 60.8 \\
9 & 1943 & 61.3 & 1749.4 & 319.9 & 37.02 & 617.2 & 84.4 \\
10 & 1944 & 56.8 & 1687.2 & 321.3 & 37.81 & 626.7 & 91.2 \\
11 & 1945 & 93.6 & 2007.7 & 319.6 & 39.27 & 737.2 & 92.4 \\
12 & 1946 & 159.9 & 2208.3 & 346.0 & 53.46 & 760.5 & 86.0 \\
13 & 1947 & 147.2 & 1656.7 & 456.4 & 55.56 & 581.4 & 111.1 \\
14 & 1947 & 146.3 & 1604.4 & 543.4 & 49.56 & 662.3 & 130.6 \\
15 & 1949 & 98.3 & 1431.8 & 618.3 & 32.04 & 583.8 & 141.8 \\
16 & 1950 & 93.5 & 1610.5 & 647.4 & 32.24 & 635.2 & 136.7 \\
17 & 1951 & 135.2 & 1819.4 & 671.3 & 54.38 & 723.8 & 129.7 \\
18 & 1952 & 157.3 & 2079.7 & 726.1 & 71.78 & 864.1 & 145.5 \\
19 & 1953 & 179.5 & 2371.6 & 800.3 & 90.08 & 1193.5 & 174.8 \\
20 & 1954 & 189.6 & 2759.9 & 888.9 & 68.60 & 1188.9 & 213.5
\end{tabular}
```

Estimate the "pooled" regression:
$I=c(I g e, I w)$
$V=c(V g e, V w)$

```
K = c(Kge,Kw)
res = lm(I ~ V + K)
summary(res)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.872001 7.024081 2.544 0.0153 *
V 0.015193 0.006196 2.452 0.0191 *
K 0.143579 0.018601 7.719 3.19e-09 ***
---
Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.16 on 37 degrees of freedom
Multiple R-squared: 0.8098, Adjusted R-squared: 0.7995
F-statistic: 78.75 on 2 and 37 DF, p-value: 4.641e-14
```

Perform White's Heteroskedasticity test:

```
resids2 = res$residuals^2
V2 = V^2
K2 = K^2
VK = V*K
summary(lm(resids2 ~ V + K + V2 + K2 + VK))
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & Pr \((>|t|)\) \\
(Intercept) & \(-1.643 e+02\) & \(4.553 e+02\) & -0.361 & 0.7204 \\
V & \(-1.591 e-01\) & \(1.053 e+00\) & -0.151 & 0.8808 \\
K & \(5.238 e+00\) & \(2.592 e+00\) & 2.021 & 0.0512 \\
V2 & \(6.041 e-06\) & \(3.413 e-04\) & 0.018 & 0.9860 \\
K2 & \(-8.899 e-03\) & \(3.860 e-03\) & -2.305 & 0.0274 \\
VK & \(1.233 e-03\) & \(1.381 e-03\) & 0.893 & 0.3781
\end{tabular}.
---
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 586.8 on 34 degrees of freedom
Multiple R-squared: 0.337, Adjusted R-squared: 0.2395
F-statistic: 3.457 on 5 and 34 DF, p-value: 0.01242
1 - pchisq(40*0.337,5)
0.01927276
```

Now let's try the Goldfeld-Quandt Test:

```
resGE = lm(Ige ~ Vge + Kge)
summary(resGE)
```

Coefficients:

```
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.95631 31.37425 -0.317 0.755
Vge 0.02655 0.01557 1.706 0.106
Kge 0.15169 0.02570 5.902 1.74e-05 ***
---
Signif. codes: 0 '***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 27.88 on 17 degrees of freedom
Multiple R-squared: 0.7053, Adjusted R-squared: 0.6706
F-statistic: 20.34 on 2 and 17 DF, p-value: 3.088e-05
\[
\frac{e_{1}{ }^{\prime} e_{1}}{n_{1}-k}=27.88^{2}=777.45
\]
resW = lm(Iw ~ Vw + Kw)
summary(resW)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.50939 8.01529 -0.064 0.95007
Vw 0.052890 .015713 .3680 .00365 **
$\begin{array}{lllll}\text { Kw } & 0.09241 \quad 0.05610 \quad 1.647 & 0.11787\end{array}$

- - -

Signif. codes: $0{ }^{\text {'***' } 0.001 ~ ' * * ' ~} 0.01$ '*' $0.05 ~ ' . ' ~_{0.1}$ ' ' 1

Residual standard error: 10.21 on 17 degrees of freedom Multiple R-squared: 0.7444, Adjusted R-squared: 0.7144

F-statistic: 24.76 on 2 and 17 DF, p-value: 9.196e-06

$$
\frac{e_{2}{ }^{\prime} e_{2}}{n_{2}-k}=10.21^{2}=104.31
$$

In this example, there is more variability in the error term over the first sub-sample (General Electric) than there is over the second sub-sample (Westinghouse): $s_{1}^{2}=777.45 ; s_{2}^{2}=$ 104.31

- $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad$ vs. $H_{A}: \sigma_{1}^{2}>\sigma_{2}^{2}$
- $F=(777.45 / 104.31)=7.45$
- If H_{0} is true, $F \sim F_{\left(n_{1}-k ; n_{2}-k\right)}=F_{(17 ; 17)}$
- 5% critical value $=2.4 ; 1 \%$ critical value $=3.5$
- 1 - $\operatorname{pf}(7.45,17,17)$
$7.172914 \mathrm{e}-05$
- Reject \boldsymbol{H}_{0}
- So, leave the data for the first sub-sample unchanged, but multiply the data (including the intercept) for the second sub-sample by $\hat{\phi}=\frac{s_{1}}{s_{2}}=\frac{27.88}{10.21}=2.73$
- This means that instead of using a constant term in our regression, we must create a vector that consists of 201 's, followed by 20 values of 2.73 (Cstar), and use this vector as the first term in our regression.

```
Istar = c(Ige, 2.73 * Iw)
Cstar =c(rep (1,20), rep (2.73,20))
Vstar = c(Vge, 2.73 * Vw)
Kstar = c(Kge, 2.73 * Kw)
summary(lm(Istar ~ Cstar + Vstar + Kstar -1)
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
Cstar 16.747017 4.785409 3.500 0.00123 **
Vstar 0.020391 0.007245 2.814 0.00778 **
Kstar 0.133713 0.024144 5.538 2.65e-06 ***
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 29.74 on 37 degrees of freedom
Multiple R-squared: 0.9436, Adjusted R-squared: 0.939
F-statistic: 206.3 on 3 and 37 DF, p-value: < 2.2e-16
```

