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Topic 8: Autocorrelated Errors 

Consider the standard linear regression model  

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

 Among other things, because the off-diagonal elements of  𝑉(𝜺) are all zero in value, we 

are assuming that the elements of the error vector are pair-wise uncorrelated.  

 That is, they do not exhibit any Autocorrelation. 

 Often, this assumption is unreasonable – especially with time-series data. 

 Often, current values of the error term are correlated with past values. 

 We often say they are “Serially Correlated ”. 

 In this case, the off-diagonal elements of 𝑉(𝜺) will be non-zero. 

 The particular values they take will depend on the form of autocorrelation. 

 That is, they will depend on the pattern  of the correlations between the elements of the 

error vector. 

                           𝑉(𝜺) = [

𝜎2 𝜎12 𝜎13

𝜎12 𝜎2 𝜎23

𝜎13 𝜎23 𝜎2

] 

 If the errors themselves are autocorrelated, often this will be reflected in the regression 

residuals also being autocorrelated. 

 That is, the residuals will follow some sort of pattern, rather than just being random. 

 Typically, this reflects a mis-specification of the model structure itself. 

 If the errors of our model are autocorrelated, then the OLS estimator of 𝜷 usually will be 

unbiased and consistent, but it will be inefficient. 

 In addition 𝑉(𝒃) will be computed incorrectly, and the standard errors, etc., will be 

inconsistent. 

 So, we need to consider formal methods for 

1.   Testing for the presence/absence of autocorrelation. 

2.   Estimating models when the errors are autocorrelated. 

 It will be helpful to consider various specific forms of autocorrelation that may arise in 

practice. 
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 As we’ll see, typically we can represent the important forms of autocorrelation with the 

addition of just a small number of parameters. 

 That is, 𝑉(𝜺) will be a function of 𝜎2, and just a small number of additional (unknown) 

parameters. 

Autoregressive Process 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]      ;    |𝜌| < 1   

This is an AR(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯+ 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] 

Moving Average Process 

𝜀𝑡 = 𝑢𝑡 + 𝜙𝑢𝑡−1     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]       

This is an MA(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝑢𝑡 + 𝜙1𝜀𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞     ;    𝑢𝑡 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an MA(q) model for the error process.  

We can combine both types of process into an ARMA(p , q) model: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡 + 𝜙1𝑢𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞      

where:                  𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2] . 

 Note that in the AR(1) process, we said that   |𝜌| < 1  . 

 This condition is needed to ensure that the process is “stationary”. 

 Let’s see what this actually means, more generally. 

 Note – all MA processes are stationary. 
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Stationarity 

Suppose that the following 3 conditions are satisfied: 

1.   𝐸[𝜀𝑡] = 0                          ;     for all t 

2.   𝑣𝑎𝑟. [𝜀𝑡] = 𝜎2                  ;     for all t 

3.   𝑐𝑜𝑣. [𝜀𝑡 , 𝜀𝑠 ] = 𝛾|𝑡−𝑠|       ;     for all t, s;  𝑡 ≠ 𝑠 

Then we say that the time-series sequence, {𝜀𝑡} is “Covariance Stationary”; or “Weakly 

Stationary”. 

 More generally, this can apply to any time-series – not just the error process. 

 Unless a time-series is stationary, we can’t identify & estimate the parameters of the 

process that is generating its values. 

 Let's see how this notion relates to the AR(1) model, introduced above. 

 We have:      𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 

                 𝐸[𝑢𝑡] = 0 

            𝑣𝑎𝑟. [𝑢𝑡] = 𝐸[𝑢𝑡
2] = 𝜎𝑢

2 

       𝑐𝑜𝑣. [𝑢𝑡, 𝑢𝑠] = 0        ;       𝑡 ≠ 𝑠 

 So, 

                      𝜀𝑡 = 𝜌[𝜌𝜀𝑡−2 + 𝑢𝑡−1] + 𝑢𝑡 

     = 𝜌2𝜀𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌2[𝜌𝜀𝑡−3 + 𝑢𝑡−2] + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌3𝜀𝑡−3 + 𝜌2𝑢𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     etc. 

 Continuing in this way, eventually, we get: 

                       𝜀𝑡 = 𝑢𝑡 + 𝜌𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯                     (1) 

[This is an infinite-order MA process.] 

The value of 𝜀𝑡 embodies the entire past history of the 𝑢𝑡 values. 

 From (1),  𝐸(𝜀𝑡) = 0, and 

𝑣𝑎𝑟. (𝜀𝑡) = 𝑣𝑎𝑟. (𝑢𝑡) + 𝑣𝑎𝑟. (𝜌𝑢𝑡−1) + 𝑣𝑎𝑟. (𝜌2𝜀𝑡−2) + ⋯ 

                = 𝜎𝑢
2 + 𝜌2𝜎𝑢

2 + 𝜌4𝜎𝑢
2 + ⋯ 
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= 𝜎𝑢
2 ∑𝜌2𝑠

∞

𝑠=0

= 𝜎𝑢
2 ∑(𝜌2)𝑠

∞

𝑠=0

 

 Now, under what conditions will this series converge? 

The series will converge to  𝜎𝑢
2(1 − 𝜌2)−1, as long as |𝜌2| < 1, and this in turn requires 

that |𝜌| < 1. 

 This is a necessary condition needed to ensure that the process, {𝜀𝑡} is stationary, because 

if this condition isn't satisfied, then 𝑣𝑎𝑟. [𝜀𝑡] is infinite. 

 So, for the AR(1) process, as long as |𝜌| < 1, then 𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2(1 − 𝜌2)−1. 

 In addition, stationarity implies that 𝑣𝑎𝑟. [𝜀𝑡] = 𝑣𝑎𝑟. [𝜀𝑡−𝑠], for all 's'. 

 So, now consider the covariances of terms in the process: 

 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑡−1] = 𝐸[(𝜀𝑡 − 𝐸(𝜀𝑡))(𝜀𝑡−1 − 𝐸(𝜀𝑡−1))] 

= 𝐸[𝜀𝑡𝜀𝑡−1] 

= 𝐸[𝜀𝑡−1(𝜌𝜀𝑡−1 + 𝑢𝑡)] 

= 𝜌𝐸[𝜀𝑡−1
2 ] + 0 

= 𝜌𝑣𝑎𝑟. [𝜀𝑡−1] = 𝜌𝜎𝑢
2/(1 − 𝜌2) 

 Similarly, 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑡−2] = 𝐸[(𝜀𝑡 − 𝐸(𝜀𝑡))(𝜀𝑡−2 − 𝐸(𝜀𝑡−2))] 

= 𝐸[𝜀𝑡−2(𝜌𝜀𝑡−1 + 𝑢𝑡)] 

= 𝐸[𝜀𝑡−2(𝜌(𝜌𝜀𝑡−2 + 𝑢𝑡−1) + 𝑢𝑡)] 

= 𝜌2𝐸[𝜀𝑡−2
2 ] + 0 

= 𝜌2𝑣𝑎𝑟. [𝜀𝑡−2] = 𝜌2𝜎𝑢
2/(1 − 𝜌2) 

 In general, then, for the AR(1) process: 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑠] = 𝜌(𝑡−𝑠)𝜎𝑢
2/(1 − 𝜌2)  ; depends on (t – s), not values of t, s ; and we can 

reverse t and s, so it actually depends on |𝑡 − 𝑠| . 

 Also, recall that   

𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2/(1 − 𝜌2) 

 So, the full covariance matrix for ε is: 
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𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

If we can find a matrix, P, such that Ω−1 = 𝑃′𝑃, and if the value of 𝜌 were known, then 

we could apply GLS estimation. 

 More likely, in practice, find P, which will depend on 𝜌, and then estimate 𝜌 consistently, 

and we can implement feasible GLS estimation. 

 Before we consider  GLS estimation any further, let's first see what implications 

autocorrelation of the errors has for the OLS estimator of  𝜷. 

 

OLS Estimation 

 Given that the error term in our model now has a non-scalar covariance matrix, we know 

that the OLS estimator, b, is still linear and unbiased, but it is inefficient. 

 In general, b will still be a consistent estimator. However, there is one important situation 

where it will be inconsistent. 

 This will be the case if the errors are autocorrelated, and one or more lagged values of the 

dependent variable enter the model as regressors. 

[The GLS estimator will also be inconsistent in this case.] 

 A quick way to observe that inconsistent estimation will result in this case is as follows: 

 

 Suppose that 

           𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝜀𝑡       ;      |𝛽| < 1                            (2) 

           𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

Now subtract 𝜌𝑦𝑡−1 from the expression for 𝑦𝑡 in equation (2): 

 

 (𝑦𝑡 − 𝜌𝑦𝑡−1) = (𝛽𝑦𝑡−1 + 𝜀𝑡) − 𝜌(𝛽𝑦𝑡−2 + 𝜀𝑡−1) 

or, 
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 𝑦𝑡 = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + (𝜀𝑡 − 𝜌𝜀𝑡−1) 

                   = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + 𝑢𝑡 

 

 So, if we estimate the model with just 𝑦𝑡−1 as the only regressor, then we are effectively 

omitting a relevant regressor, 𝑦𝑡−2, form the model. 

 This amounts to imposing a false (zero) restriction on the coefficient vector, and we 

know that this causes OLS to be not only biased, but also inconsistent. 

 As was noted when we were discussing the general situation involving a regression 

model whose error vector has a non-scalar covariance matrix (in Topic 6), the estimated 

𝑉(𝒃) will be inconsistent, regardless of the form of the regressors. 

 So, to get consistent standard errors for the elements of b, we can use the Newey-West 

correction when estimating 𝑉(𝒃). 

 

Testing for Serial Independence 

 Let’s consider the problem of testing the hypothesis, H0: “The errors in our regression 

model are serially independent”. 

 We’ll need to formulate both the null, and an alternative hypothesis, expressing them in 

terms of the underlying parameters of the model. 

 First, consider the possibility that the errors follow an AR(1) process, if they are not 

serially independent. 

 That is: 

           𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                   (3) 

                       𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

Then, we have     𝐻0: 𝜌 = 0    vs.    𝐻𝐴: 𝜌 ≠ 0      (> 0     ;     < 0  )  

 Notice that, as usual, we can learn something about the behaviour of the errors in our 

regression model by looking at the residuals obtained when we estimate the model. 

 So, estimate (3) by OLS (ignoring any possibility of serial correlation), and get the 

residuals, {𝑒𝑡}. 
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 Then, fit the following “auxiliary regression”: 

                 𝑒𝑡 = 𝑟𝑒𝑡−1 + 𝑣𝑡       ;      t = 2, 3, …, n 

 The OLS estimator of the coefficient, “r”, is: 

 

�̂� = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

 

 We could think of using a “z-test” to test if 𝑟 = 0. This test will be valid, asymptotically: 

𝑧 =
(�̂� − 0)

𝑠. 𝑒. (�̂�)
  

𝑑
→ 𝑁[0 , 1] 

 

 Now, testing for serial independence, against the alternative hypothesis that the process is 

AR(1) is very interesting. 

 Anderson (1948) proved that there does not exist any UMP test for this problem! 

 So, historically, there were lots of attempts to construct tests that were “approximately” 

most powerful. 

 These days we generally use tests from the so-called “Lagrange Multiplier Test” 

family. Also called the family of “Score Tests”. 

 Tests of this type can be used for all sorts of testing problems – not just for testing for 

serial independence. 

 They are especially useful when it is relatively easy to estimate the model under the 

assumption that the null hypothesis is true. 

 Here, such estimation involves just OLS. 

 LM tests have only asymptotic validity. Asymptotically, the distribution of the test 

statistic is Chi-Square, with d.o.f. equal to the number of restrictions being tested, if the 

null hypothesis is true. 

 The pay-off is that the test can be applied under very general conditions. 

 We don’t need to have normally distributed errors in our regression model. 

 The regressors can be random; etc. 
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 The Breusch-Godfrey Test for serial independence of the errors can be implemented as 

follows: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                   by 

OLS, and get the residuals  {𝑒𝑡}. 

2.   If the Alternative Hypothesis is that the errors follow either an AR(p) process, or 

an MA(p) process, then estimate the following auxiliary regression: 

               𝑒𝑡 = 𝒙′𝑡𝜸 + 𝛿1𝑒𝑡−1 + ⋯+𝛿𝑝𝑒𝑡−𝑝 + 𝑣𝑡          (4) 

 

3.   The test statistic is 𝐿𝑀 = 𝑛𝑅2, where 𝑅2 is the “uncentered” coefficient of 

determination from (4). 

 

4.   Reject 𝐻0 : 𝜀𝑡 𝑠𝑒𝑟𝑖𝑎𝑙𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡; if 𝐿𝑀 > 𝜒(𝑝)
2  critical value. 

 If we reject 𝐻0 , we’re left with incomplete information about the particular form of the 

autocorrelation. 

Estimation Allowing for Autocorrelation 

 Suppose we have a regression model with AR(1) errors:  

          𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                    

          𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

 So, the full covariance matrix for ε is: 

𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

 We need to find a matrix, P, such that Ω−1 = 𝑃′𝑃, and then we can apply GLS 

estimation. 

 In the AR(1) case, we can show that: 
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 𝑃 = 

[
 
 
 
 
 
 √1 − 𝜌2    0    0     0    ⋯     0

−𝜌              1      0     0    ⋯     0 
   0          − 𝜌       1     0   ⋯       0   

     ⋮               ⋮           ⋮      ⋮               ⋮       
⋮               ⋮           ⋮      ⋮               ⋮  
0                  ⋯                − 𝜌    1   

  ]
 
 
 
 
 
 

 

 GLS is simply OLS, using the data 𝒚∗ and 𝑋∗, where: 

𝑦∗ =

[
 
 
 
 𝑦1√1 − 𝜌2

𝑦2 − 𝜌𝑦1

⋮
⋮

𝑦𝑛 − 𝜌𝑦𝑛−1]
 
 
 
 

    ;      𝑥𝑗
∗ =

[
 
 
 
 𝑥1𝑗√1 − 𝜌2

𝑥2𝑗 − 𝜌𝑥1𝑗

⋮
⋮

𝑥𝑛𝑗 − 𝜌𝑥𝑛−1,𝑗]
 
 
 
 

     ;    j = 1, 2, …, k 

 What if 𝜌 is unknown, as is likely to be the case? 

 We can apply feasible GLS – this is essentially what Cochrane & Orcutt (1949) did, 

except that they “dropped” the first observation as they didn’t know the leading (1 , 1) 

element of the P matrix. 

 The steps are: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′
𝑡𝜷 + 𝜀𝑡 , by OLS and get the    residuals, {𝑒𝑡}. 

2.   Estimate  𝜌, using  

�̂� = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

                                                                                          

3.  Construct  𝒚∗ and 𝑋∗, using �̂� in place of 𝜌 . 

4.  Apply OLS using the transformed data. This is feasible GLS estimation. 

5.   Iterate Steps 1 through 4. 

6.   Continue until convergence is achieved. 

 

 Convergence is guaranteed in a finite number of steps, unless the model includes lagged 

values of the dependent variable. 

 The same approach can be used if the errors follow a (“simple”) AR(p) process:      𝜀𝑡 =

𝜌𝜀𝑡−𝑝 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]    

 Things are more complicated if the errors follow an MA(q) or ARMA(p , q) process. 


