Topic 8: Autocorrelated Errors
Consider the standard linear regression model
y=XB+e ; £~N[0,0%],]

e Among other things, because the off-diagonal elements of V(&) are all zero in value, we
are assuming that the elements of the error vector are pair-wise uncorrelated.

e That is, they do not exhibit any Autocorrelation.

e Often, this assumption is unreasonable — especially with time-series data.

e Often, current values of the error term are correlated with past values.

e We often say they are “Serially Correlated .

e In this case, the off-diagonal elements of V(&) will be non-zero.

e The particular values they take will depend on the form of autocorrelation.

e That is, they will depend on the pattern of the correlations between the elements of the
error vector.
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e |f the errors themselves are autocorrelated, often this will be reflected in the regression
residuals also being autocorrelated.
e That is, the residuals will follow some sort of pattern, rather than just being random.
o Typically, this reflects a mis-specification of the model structure itself.
e If the errors of our model are autocorrelated, then the OLS estimator of g usually will be
unbiased and consistent, but it will be inefficient.
e In addition V(b) will be computed incorrectly, and the standard errors, etc., will be
inconsistent.
e S0, we need to consider formal methods for
1. Testing for the presence/absence of autocorrelation.
2. Estimating models when the errors are autocorrelated.
e It will be helpful to consider various specific forms of autocorrelation that may arise in

practice.



o Aswe’ll see, typically we can represent the important forms of autocorrelation with the
addition of just a small number of parameters.
e Thatis, V(g) will be a function of 62, and just a small number of additional (unknown)

parameters.
Autoregressive Process
& = p&_1+u ; u~i.i.d.N[0,c?] ; |Ipl<1
This is an AR(1) model for the error process.
More generally:
& = P16&r—1 + P2&rz + o F ppErpFur ;U ~i.i.d.N[0,0}]
This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.]
Moving Average Process
g =U+Pu;_y ; u,~i.i.d.N[0,oc?]
This is an MA(1) model for the error process.
More generally:
& =Ur+ Pr&rq + o+ Qqup_g ;U ~i.i.d.N[0,07]
This is an MA(q) model for the error process.
We can combine both types of process into an ARMA(p , g) model:
& = P1€t-1F P2Et—2 F  PpEe—p T U + PrU 1+ F Pl
where: u, ~i.i.d. N[0, 2] .

e Note that in the AR(1) process, we said that |p| <1 .
e This condition is needed to ensure that the process is “stationary”.
e Let’s see what this actually means, more generally.

e Note —all MA processes are stationary.



Stationarity

Suppose that the following 3 conditions are satisfied:

1. Elg] =0 ;  forallt
2. wvar.[g] = o? . forallt
3. cov.le, & ] = Ye—g ; forallt,s; t#s

Then we say that the time-series sequence, {&;} is “Covariance Stationary”; or “Weakly

Stationary”.

e More generally, this can apply to any time-series — not just the error process.
e Unless a time-series is stationary, we can’t identify & estimate the parameters of the
process that is generating its values.

e Let's see how this notion relates to the AR(1) model, introduced above.

e We have: & = pE&r_q + U
Elu;] =0
var.[u;] = E[u?] = o2
cov.[u,us] =0 : t+s
e So,

& = plper—2 +u 1] +u;
= P& + pU_y + Uy
= p?[per—z + Ue_p] + pus_g + U,
=p3er_z + pPuU_p + pupg +u,
etc.
e Continuing in this way, eventually, we get:
& = Up + pU_g + pPUrp + 1)
[This is an infinite-order MA process.]
The value of &, embodies the entire past history of the u; values.
e From (1), E(g;) =0, and
var. (&) = var. (u;) + var. (pus_,) + var. (p%ee_y) + -+

= 02 + pPal + ptod + -
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Now, under what conditions will this series converge?

The series will converge to ¢2(1 — p?)~1, as long as |p?| < 1, and this in turn requires
that |p| < 1.

This is a necessary condition needed to ensure that the process, {¢;} is stationary, because
if this condition isn't satisfied, then var. [&;] is infinite.

So, for the AR(1) process, as long as |p| < 1, then var. [s,] = 62(1 — p?)~1L.

In addition, stationarity implies that var. [e;] = var. [e;_], forall 's'".

So, now consider the covariances of terms in the process:

cov. (e, &-1] = E[(&r — E(&:))(et-1 — E(&-1))]
= Elerec—4]

= Ele—1(per-1 + ue)]

= pE[et ]+ 0

= pvar.[g_4] = po} /(1 - p?)

Similarly,

cov. &, &—2] = E[(er — E(0))(t—2 — E(&¢-2))]
= Eler—2(per—1 + ur)]

= Ele—2(p(per—2 + ur—1) + up)]

= p%E[ef_,] + 0

= p?var.[e._,] = p*oii/(1 - p?)

In general, then, for the AR(1) process:

cov. [, &] = pt~ a2 /(1 — p?) ; depends on (t —s), not values of t, s ; and we can
reverse t and s, so it actually depends on |t — s| .
Also, recall that

var.[e] = of/(1 - p?)

So, the full covariance matrix for ¢ is:



If we can find a matrix, P, such that Q=1 = P’P, and if the value of p were known, then
we could apply GLS estimation.

e More likely, in practice, find P, which will depend on p, and then estimate p consistently,
and we can implement feasible GLS estimation.

e Before we consider GLS estimation any further, let's first see what implications

autocorrelation of the errors has for the OLS estimator of .

OLS Estimation

e Given that the error term in our model now has a non-scalar covariance matrix, we know
that the OLS estimator, b, is still linear and unbiased, but it is inefficient.

e Ingeneral, b will still be a consistent estimator. However, there is one important situation
where it will be inconsistent.

e This will be the case if the errors are autocorrelated, and one or more lagged values of the
dependent variable enter the model as regressors.
[The GLS estimator will also be inconsistent in this case.]

e A quick way to observe that inconsistent estimation will result in this case is as follows:

e Suppose that
Ve =BYe-1+ & ;o 1Bl<1 (2)
& = PEr_q + U D oup~i.i.d.[0,02] ; Ipl<1

Now subtract py;_, from the expression for y, in equation (2):

e = pYe-1) = Bye-1 t &) — p(BYe—z + &-1)
or,



Ve =B+ p)yVe—1 — BpYe—z + (& — per_1)
=B +P)Ye-1 = LPYi2 + U

So, if we estimate the model with just y,_; as the only regressor, then we are effectively
omitting a relevant regressor, y;_,, form the model.

This amounts to imposing a false (zero) restriction on the coefficient vector, and we
know that this causes OLS to be not only biased, but also inconsistent.

As was noted when we were discussing the general situation involving a regression
model whose error vector has a non-scalar covariance matrix (in Topic 6), the estimated

V (b) will be inconsistent, regardless of the form of the regressors.

So, to get consistent standard errors for the elements of b, we can use the Newey-West

correction when estimating V (b).

Testing for Serial Independence

Let’s consider the problem of testing the hypothesis, Hy: “The errors in our regression
model are serially independent”.
We’ll need to formulate both the null, and an alternative hypothesis, expressing them in
terms of the underlying parameters of the model.
First, consider the possibility that the errors follow an AR(1) process, if they are not
serially independent.
That is:

ye =x' B+ & ;o t=1,2,....,n (3)

€t=p8t_1+ut ; ut"’lld [0,0-3] ; Ipl <1

Then,wehave Hy:p=0 vs. Hpu:p#0 (>0 ; <0)

Notice that, as usual, we can learn something about the behaviour of the errors in our
regression model by looking at the residuals obtained when we estimate the model.
So, estimate (3) by OLS (ignoring any possibility of serial correlation), and get the

residuals, {e;}.



Then, fit the following “auxiliary regression”:
€t=‘r'et_1+vt ; t=2,3,...,n

The OLS estimator of the coefficient, “r”, is:

We could think of using a “z-test” to test if r = 0. This test will be valid, asymptotically:
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Now, testing for serial independence, against the alternative hypothesis that the process is
AR(1) is very interesting.

Anderson (1948) proved that there does not exist any UMP test for this problem!

S0, historically, there were lots of attempts to construct tests that were “approximately”
most powerful.

These days we generally use tests from the so-called “Lagrange Multiplier Test”
family. Also called the family of “Score Tests”.

Tests of this type can be used for all sorts of testing problems — not just for testing for
serial independence.

They are especially useful when it is relatively easy to estimate the model under the
assumption that the null hypothesis is true.

Here, such estimation involves just OLS.

LM tests have only asymptotic validity. Asymptotically, the distribution of the test
statistic is Chi-Square, with d.o.f. equal to the number of restrictions being tested, if the
null hypothesis is true.

The pay-off is that the test can be applied under very general conditions.

We don’t need to have normally distributed errors in our regression model.

The regressors can be random; etc.



e The Breusch-Godfrey Test for serial independence of the errors can be implemented as
follows:
1. Estimate the model, y, = x':B + &; ;o t=1,2,....,n by
OLS, and get the residuals {e,}.
2.  If the Alternative Hypothesis is that the errors follow either an AR(p) process, or
an MA(p) process, then estimate the following auxiliary regression:

et = x't]/ + 518t_1 + .- +8pet_p + Ut- (4)

3.  The test statistic is LM = nR?, where R? is the “uncentered” coefficient of

determination from (4).

4. Reject Hy: g, serially independent; if LM > )((Zp) critical value.

e |If we reject Hy, we’re left with incomplete information about the particular form of the

autocorrelation.
Estimation Allowing for Autocorrelation

e Suppose we have a regression model with AR(1) errors:
ye=x"tf+e ; t=1,2,...,0n
& = PE—1 T U ;U ~i.i.d.[0,07] ; Ipl<1

e So, the full covariance matrix for ¢ is:

1 p pn_l
2
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e We need to find a matrix, P, such that Q=1 = P’P, and then we can apply GLS
estimation.

e Inthe AR(1) case, we can show that:



1-p2 0 0 O 0

—p 1 0 O 0

0 —-p 1 0 0

P = : : :
0 —p 1

GLS is simply OLS, using the data y* and X*, where:

[v1d1 = p?] [ X141 —p? |

. Y2 — PY1 . X2j = PX1j

Yn = PYn-1 Ltnj = pxp-s

What if p is unknown, as is likely to be the case?
We can apply feasible GLS - this is essentially what Cochrane & Orcutt (1949) did,
except that they “dropped” the first observation as they didn’t know the leading (1, 1)
element of the P matrix.
The steps are:

1. Estimate the model, y, = x'.B + ¢, , by OLS and get the residuals, {e;}.

2. Estimate p, using

S5

t=2

p=

3. Construct y* and X*, using p in place of p .
4.  Apply OLS using the transformed data. This is feasible GLS estimation.

o

Iterate Steps 1 through 4.

6. Continue until convergence is achieved.

Convergence is guaranteed in a finite number of steps, unless the model includes lagged
values of the dependent variable.

The same approach can be used if the errors follow a (“simple”) AR(p) process: & =
PE—p + Uy o U ~i.i.d.[0,02]

Things are more complicated if the errors follow an MA(q) or ARMA(p , q) process.



