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Topic 8: Autocorrelated Errors 

Consider the standard linear regression model  

                           𝒚 = 𝑋𝜷 + 𝜺      ;   𝜺 ~ 𝑁[𝟎 , 𝜎2𝐼𝑛] 

 Among other things, because the off-diagonal elements of  𝑉(𝜺) are all zero in value, we 

are assuming that the elements of the error vector are pair-wise uncorrelated.  

 That is, they do not exhibit any Autocorrelation. 

 Often, this assumption is unreasonable – especially with time-series data. 

 Often, current values of the error term are correlated with past values. 

 We often say they are “Serially Correlated ”. 

 In this case, the off-diagonal elements of 𝑉(𝜺) will be non-zero. 

 The particular values they take will depend on the form of autocorrelation. 

 That is, they will depend on the pattern  of the correlations between the elements of the 

error vector. 

                           𝑉(𝜺) = [

𝜎2 𝜎12 𝜎13

𝜎12 𝜎2 𝜎23

𝜎13 𝜎23 𝜎2

] 

 If the errors themselves are autocorrelated, often this will be reflected in the regression 

residuals also being autocorrelated. 

 That is, the residuals will follow some sort of pattern, rather than just being random. 

 Typically, this reflects a mis-specification of the model structure itself. 

 If the errors of our model are autocorrelated, then the OLS estimator of 𝜷 usually will be 

unbiased and consistent, but it will be inefficient. 

 In addition 𝑉(𝒃) will be computed incorrectly, and the standard errors, etc., will be 

inconsistent. 

 So, we need to consider formal methods for 

1.   Testing for the presence/absence of autocorrelation. 

2.   Estimating models when the errors are autocorrelated. 

 It will be helpful to consider various specific forms of autocorrelation that may arise in 

practice. 
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 As we’ll see, typically we can represent the important forms of autocorrelation with the 

addition of just a small number of parameters. 

 That is, 𝑉(𝜺) will be a function of 𝜎2, and just a small number of additional (unknown) 

parameters. 

Autoregressive Process 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]      ;    |𝜌| < 1   

This is an AR(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯+ 𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an AR(p) model for the error process. [e.g., p = 4 with quarterly data.] 

Moving Average Process 

𝜀𝑡 = 𝑢𝑡 + 𝜙𝑢𝑡−1     ;    𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]       

This is an MA(1) model for the error process. 

More generally: 

𝜀𝑡 = 𝑢𝑡 + 𝜙1𝜀𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞     ;    𝑢𝑡 ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2]  

This is an MA(q) model for the error process.  

We can combine both types of process into an ARMA(p , q) model: 

𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + ⋯𝜌𝑝𝜀𝑡−𝑝 + 𝑢𝑡 + 𝜙1𝑢𝑡−1 + ⋯+ 𝜙𝑞𝑢𝑡−𝑞      

where:                  𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁[0 , 𝜎𝑢
2] . 

 Note that in the AR(1) process, we said that   |𝜌| < 1  . 

 This condition is needed to ensure that the process is “stationary”. 

 Let’s see what this actually means, more generally. 

 Note – all MA processes are stationary. 
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Stationarity 

Suppose that the following 3 conditions are satisfied: 

1.   𝐸[𝜀𝑡] = 0                          ;     for all t 

2.   𝑣𝑎𝑟. [𝜀𝑡] = 𝜎2                  ;     for all t 

3.   𝑐𝑜𝑣. [𝜀𝑡 , 𝜀𝑠 ] = 𝛾|𝑡−𝑠|       ;     for all t, s;  𝑡 ≠ 𝑠 

Then we say that the time-series sequence, {𝜀𝑡} is “Covariance Stationary”; or “Weakly 

Stationary”. 

 More generally, this can apply to any time-series – not just the error process. 

 Unless a time-series is stationary, we can’t identify & estimate the parameters of the 

process that is generating its values. 

 Let's see how this notion relates to the AR(1) model, introduced above. 

 We have:      𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 

                 𝐸[𝑢𝑡] = 0 

            𝑣𝑎𝑟. [𝑢𝑡] = 𝐸[𝑢𝑡
2] = 𝜎𝑢

2 

       𝑐𝑜𝑣. [𝑢𝑡, 𝑢𝑠] = 0        ;       𝑡 ≠ 𝑠 

 So, 

                      𝜀𝑡 = 𝜌[𝜌𝜀𝑡−2 + 𝑢𝑡−1] + 𝑢𝑡 

     = 𝜌2𝜀𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌2[𝜌𝜀𝑡−3 + 𝑢𝑡−2] + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     = 𝜌3𝜀𝑡−3 + 𝜌2𝑢𝑡−2 + 𝜌𝑢𝑡−1 + 𝑢𝑡 

     etc. 

 Continuing in this way, eventually, we get: 

                       𝜀𝑡 = 𝑢𝑡 + 𝜌𝑢𝑡−1 + 𝜌2𝑢𝑡−2 + ⋯                     (1) 

[This is an infinite-order MA process.] 

The value of 𝜀𝑡 embodies the entire past history of the 𝑢𝑡 values. 

 From (1),  𝐸(𝜀𝑡) = 0, and 

𝑣𝑎𝑟. (𝜀𝑡) = 𝑣𝑎𝑟. (𝑢𝑡) + 𝑣𝑎𝑟. (𝜌𝑢𝑡−1) + 𝑣𝑎𝑟. (𝜌2𝜀𝑡−2) + ⋯ 

                = 𝜎𝑢
2 + 𝜌2𝜎𝑢

2 + 𝜌4𝜎𝑢
2 + ⋯ 
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= 𝜎𝑢
2 ∑𝜌2𝑠

∞

𝑠=0

= 𝜎𝑢
2 ∑(𝜌2)𝑠

∞

𝑠=0

 

 Now, under what conditions will this series converge? 

The series will converge to  𝜎𝑢
2(1 − 𝜌2)−1, as long as |𝜌2| < 1, and this in turn requires 

that |𝜌| < 1. 

 This is a necessary condition needed to ensure that the process, {𝜀𝑡} is stationary, because 

if this condition isn't satisfied, then 𝑣𝑎𝑟. [𝜀𝑡] is infinite. 

 So, for the AR(1) process, as long as |𝜌| < 1, then 𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2(1 − 𝜌2)−1. 

 In addition, stationarity implies that 𝑣𝑎𝑟. [𝜀𝑡] = 𝑣𝑎𝑟. [𝜀𝑡−𝑠], for all 's'. 

 So, now consider the covariances of terms in the process: 

 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑡−1] = 𝐸[(𝜀𝑡 − 𝐸(𝜀𝑡))(𝜀𝑡−1 − 𝐸(𝜀𝑡−1))] 

= 𝐸[𝜀𝑡𝜀𝑡−1] 

= 𝐸[𝜀𝑡−1(𝜌𝜀𝑡−1 + 𝑢𝑡)] 

= 𝜌𝐸[𝜀𝑡−1
2 ] + 0 

= 𝜌𝑣𝑎𝑟. [𝜀𝑡−1] = 𝜌𝜎𝑢
2/(1 − 𝜌2) 

 Similarly, 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑡−2] = 𝐸[(𝜀𝑡 − 𝐸(𝜀𝑡))(𝜀𝑡−2 − 𝐸(𝜀𝑡−2))] 

= 𝐸[𝜀𝑡−2(𝜌𝜀𝑡−1 + 𝑢𝑡)] 

= 𝐸[𝜀𝑡−2(𝜌(𝜌𝜀𝑡−2 + 𝑢𝑡−1) + 𝑢𝑡)] 

= 𝜌2𝐸[𝜀𝑡−2
2 ] + 0 

= 𝜌2𝑣𝑎𝑟. [𝜀𝑡−2] = 𝜌2𝜎𝑢
2/(1 − 𝜌2) 

 In general, then, for the AR(1) process: 

𝑐𝑜𝑣. [𝜀𝑡, 𝜀𝑠] = 𝜌(𝑡−𝑠)𝜎𝑢
2/(1 − 𝜌2)  ; depends on (t – s), not values of t, s ; and we can 

reverse t and s, so it actually depends on |𝑡 − 𝑠| . 

 Also, recall that   

𝑣𝑎𝑟. [𝜀𝑡] = 𝜎𝑢
2/(1 − 𝜌2) 

 So, the full covariance matrix for ε is: 
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𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

If we can find a matrix, P, such that Ω−1 = 𝑃′𝑃, and if the value of 𝜌 were known, then 

we could apply GLS estimation. 

 More likely, in practice, find P, which will depend on 𝜌, and then estimate 𝜌 consistently, 

and we can implement feasible GLS estimation. 

 Before we consider  GLS estimation any further, let's first see what implications 

autocorrelation of the errors has for the OLS estimator of  𝜷. 

 

OLS Estimation 

 Given that the error term in our model now has a non-scalar covariance matrix, we know 

that the OLS estimator, b, is still linear and unbiased, but it is inefficient. 

 In general, b will still be a consistent estimator. However, there is one important situation 

where it will be inconsistent. 

 This will be the case if the errors are autocorrelated, and one or more lagged values of the 

dependent variable enter the model as regressors. 

[The GLS estimator will also be inconsistent in this case.] 

 A quick way to observe that inconsistent estimation will result in this case is as follows: 

 

 Suppose that 

           𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝜀𝑡       ;      |𝛽| < 1                            (2) 

           𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

Now subtract 𝜌𝑦𝑡−1 from the expression for 𝑦𝑡 in equation (2): 

 

 (𝑦𝑡 − 𝜌𝑦𝑡−1) = (𝛽𝑦𝑡−1 + 𝜀𝑡) − 𝜌(𝛽𝑦𝑡−2 + 𝜀𝑡−1) 

or, 
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 𝑦𝑡 = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + (𝜀𝑡 − 𝜌𝜀𝑡−1) 

                   = (𝛽 + 𝜌)𝑦𝑡−1 − 𝛽𝜌𝑦𝑡−2 + 𝑢𝑡 

 

 So, if we estimate the model with just 𝑦𝑡−1 as the only regressor, then we are effectively 

omitting a relevant regressor, 𝑦𝑡−2, form the model. 

 This amounts to imposing a false (zero) restriction on the coefficient vector, and we 

know that this causes OLS to be not only biased, but also inconsistent. 

 As was noted when we were discussing the general situation involving a regression 

model whose error vector has a non-scalar covariance matrix (in Topic 6), the estimated 

𝑉(𝒃) will be inconsistent, regardless of the form of the regressors. 

 So, to get consistent standard errors for the elements of b, we can use the Newey-West 

correction when estimating 𝑉(𝒃). 

 

Testing for Serial Independence 

 Let’s consider the problem of testing the hypothesis, H0: “The errors in our regression 

model are serially independent”. 

 We’ll need to formulate both the null, and an alternative hypothesis, expressing them in 

terms of the underlying parameters of the model. 

 First, consider the possibility that the errors follow an AR(1) process, if they are not 

serially independent. 

 That is: 

           𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                   (3) 

                       𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

Then, we have     𝐻0: 𝜌 = 0    vs.    𝐻𝐴: 𝜌 ≠ 0      (> 0     ;     < 0  )  

 Notice that, as usual, we can learn something about the behaviour of the errors in our 

regression model by looking at the residuals obtained when we estimate the model. 

 So, estimate (3) by OLS (ignoring any possibility of serial correlation), and get the 

residuals, {𝑒𝑡}. 
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 Then, fit the following “auxiliary regression”: 

                 𝑒𝑡 = 𝑟𝑒𝑡−1 + 𝑣𝑡       ;      t = 2, 3, …, n 

 The OLS estimator of the coefficient, “r”, is: 

 

𝑟̂ = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

 

 We could think of using a “z-test” to test if 𝑟 = 0. This test will be valid, asymptotically: 

𝑧 =
(𝑟̂ − 0)

𝑠. 𝑒. (𝑟̂)
  

𝑑
→ 𝑁[0 , 1] 

 

 Now, testing for serial independence, against the alternative hypothesis that the process is 

AR(1) is very interesting. 

 Anderson (1948) proved that there does not exist any UMP test for this problem! 

 So, historically, there were lots of attempts to construct tests that were “approximately” 

most powerful. 

 These days we generally use tests from the so-called “Lagrange Multiplier Test” 

family. Also called the family of “Score Tests”. 

 Tests of this type can be used for all sorts of testing problems – not just for testing for 

serial independence. 

 They are especially useful when it is relatively easy to estimate the model under the 

assumption that the null hypothesis is true. 

 Here, such estimation involves just OLS. 

 LM tests have only asymptotic validity. Asymptotically, the distribution of the test 

statistic is Chi-Square, with d.o.f. equal to the number of restrictions being tested, if the 

null hypothesis is true. 

 The pay-off is that the test can be applied under very general conditions. 

 We don’t need to have normally distributed errors in our regression model. 

 The regressors can be random; etc. 
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 The Breusch-Godfrey Test for serial independence of the errors can be implemented as 

follows: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                   by 

OLS, and get the residuals  {𝑒𝑡}. 

2.   If the Alternative Hypothesis is that the errors follow either an AR(p) process, or 

an MA(p) process, then estimate the following auxiliary regression: 

               𝑒𝑡 = 𝒙′𝑡𝜸 + 𝛿1𝑒𝑡−1 + ⋯+𝛿𝑝𝑒𝑡−𝑝 + 𝑣𝑡          (4) 

 

3.   The test statistic is 𝐿𝑀 = 𝑛𝑅2, where 𝑅2 is the “uncentered” coefficient of 

determination from (4). 

 

4.   Reject 𝐻0 : 𝜀𝑡 𝑠𝑒𝑟𝑖𝑎𝑙𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡; if 𝐿𝑀 > 𝜒(𝑝)
2  critical value. 

 If we reject 𝐻0 , we’re left with incomplete information about the particular form of the 

autocorrelation. 

Estimation Allowing for Autocorrelation 

 Suppose we have a regression model with AR(1) errors:  

          𝑦𝑡 = 𝒙′𝑡𝜷 + 𝜀𝑡             ;    t = 1, 2, …., n                    

          𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]     ;  |𝜌| < 1 

 

 So, the full covariance matrix for ε is: 

𝑉(𝜺) = 𝜎𝑢
2Ω =

𝜎𝑢
2

(1 − 𝜌2)
[

1 𝜌
𝜌 1
⋮ ⋱

    
⋯ 𝜌𝑛−1

⋱ 𝜌𝑛−2

⋱ ⋮
𝜌𝑛−1 𝜌𝑛−2    … 1

] 

 

 We need to find a matrix, P, such that Ω−1 = 𝑃′𝑃, and then we can apply GLS 

estimation. 

 In the AR(1) case, we can show that: 
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 𝑃 = 

[
 
 
 
 
 
 √1 − 𝜌2    0    0     0    ⋯     0

−𝜌              1      0     0    ⋯     0 
   0          − 𝜌       1     0   ⋯       0   

     ⋮               ⋮           ⋮      ⋮               ⋮       
⋮               ⋮           ⋮      ⋮               ⋮  
0                  ⋯                − 𝜌    1   

  ]
 
 
 
 
 
 

 

 GLS is simply OLS, using the data 𝒚∗ and 𝑋∗, where: 

𝑦∗ =

[
 
 
 
 𝑦1√1 − 𝜌2

𝑦2 − 𝜌𝑦1

⋮
⋮

𝑦𝑛 − 𝜌𝑦𝑛−1]
 
 
 
 

    ;      𝑥𝑗
∗ =

[
 
 
 
 𝑥1𝑗√1 − 𝜌2

𝑥2𝑗 − 𝜌𝑥1𝑗

⋮
⋮

𝑥𝑛𝑗 − 𝜌𝑥𝑛−1,𝑗]
 
 
 
 

     ;    j = 1, 2, …, k 

 What if 𝜌 is unknown, as is likely to be the case? 

 We can apply feasible GLS – this is essentially what Cochrane & Orcutt (1949) did, 

except that they “dropped” the first observation as they didn’t know the leading (1 , 1) 

element of the P matrix. 

 The steps are: 

1.   Estimate the model,  𝑦𝑡 = 𝒙′
𝑡𝜷 + 𝜀𝑡 , by OLS and get the    residuals, {𝑒𝑡}. 

2.   Estimate  𝜌, using  

𝜌̂ = [∑𝑒𝑡𝑒𝑡−1

𝑛

𝑡=2

] / [∑𝑒𝑡−1
2

𝑛

𝑡=2

] 

                                                                                          

3.  Construct  𝒚∗ and 𝑋∗, using 𝜌̂ in place of 𝜌 . 

4.  Apply OLS using the transformed data. This is feasible GLS estimation. 

5.   Iterate Steps 1 through 4. 

6.   Continue until convergence is achieved. 

 

 Convergence is guaranteed in a finite number of steps, unless the model includes lagged 

values of the dependent variable. 

 The same approach can be used if the errors follow a (“simple”) AR(p) process:      𝜀𝑡 =

𝜌𝜀𝑡−𝑝 + 𝑢𝑡        ;     𝑢𝑡  ~ 𝑖. 𝑖. 𝑑. [0 , 𝜎𝑢
2]    

 Things are more complicated if the errors follow an MA(q) or ARMA(p , q) process. 


