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Topic 9: Maximum Likelihood Estimation 

There are many other estimation methodologies besides OLS. For example: GMM, Bayesian, 

non-parametric, and maximum likelihood (ML). In some of these methodologies, the OLS 

estimator is just a special case. 

 ML proposed by R. A. Fisher, 1921-1925 

 MLE is a parametric method.  

 That is, we assume each sample data is generated from a known probability distribution 

function (p.d.f.), 𝑝(𝑦𝑖|𝜽). i.e. 𝑦𝑖 comes from a “family”.  

Consider: 

 Random data 𝒚 = {𝑦1, … , 𝑦𝑛} 

 Parameter vector 𝜽 = (𝜃1, … , 𝜃𝑘)′ 

Objective: estimate 𝜽. 

 

The probability of jointly observing the data is 

 𝑝(𝑦1, … , 𝑦𝑛|𝜽) “joint p.d.f.” 

 

We can view 𝑝(𝑦1, … , 𝑦𝑛|𝜽) in two different ways: 

i. As a function of {𝑦1, … , 𝑦𝑛}, given 𝜽. 

ii. As a function of  (𝜃1, … , 𝜃𝑘), given 𝒚. i.e., the data is given, the parameters vary. 

The latter is called the likelihood function. 

 Note: 𝐿(𝜽) = 𝐿(𝜽|𝑦1, … , 𝑦𝑛) = 𝑝(𝑦1, … , 𝑦𝑛|𝜽) 

Definition: The Maximum Likelihood Estimator (MLE) of  𝜽 (say, �̃�) is that value of 𝜽 such that 

𝐿(�̃�) > 𝐿(�̂�), for all other �̂�. 

Idea: “given the 𝑦𝑖’s, what is the most likely 𝜽 to have generated such a sample?” 

Note: 

i. �̃� need not be unique. 
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ii. �̃� should locate the global max. of 𝐿(𝜽). 

iii. If the sample data are independent then 𝐿(𝜽|𝒚) = 𝑝(𝒚|𝜽) = ∏ 𝑝(𝑦𝑖|𝜽)𝑛
𝑖=1  

iv. Any monotonic transformation of 𝐿(𝜽) leaves location of extremum unchanged 

(e.g. log 𝐿(𝜽)) 

 

Some Basic Concepts and Notation: 

i. “Gradient/Score Vector”: [
𝜕 log 𝐿(𝜽)

𝜕𝜽
]          (𝑘 × 1) 

ii. “Hessian Matrix”: [
𝜕2 log 𝐿(𝜽)

𝜕𝜽𝜕𝜽′
]        (𝑘 × 𝑘) 

iii. “Likelihood Equations”: 
𝜕 log 𝐿(𝜽)

𝜕𝜽
= 0      (𝑘 × 1) 

 

The optimization problem is: 

max
𝜽

∏ 𝐿(𝜽|𝑦𝑖)

𝑛

𝑖=1                      

.  

So, to obtain the MLE, �̃�, we solve the likelihood equation(s) and then check the second-order 

condition(s) to make sure we have maximized (not minimized) 𝐿(𝜽). If the Hessian matrix is at 

least n.s.d., then log 𝐿(𝜽) is concave, and this is sufficient for a maximum. 

So, MLE is accomplished by: 

1) Specifying the likelihood function.  

 This involves writing down an equation which states the joint likelihood (or joint 

probability) of observing the sample data, conditional on the unknown parameter 

values of the probability distribution function.  

 Independence of the y data is usually assumed (and will be for the purposes of this 

course).  

 Given independence, the likelihood function is obtained by multiplying together 

the probability of each yi occurring. 

2) Taking the natural log of the likelihood function. This usually simplifies the next step. 

The location of the maximum will not change. 
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3) Taking the first derivative of the log-likelihood function with respect to all parameters, 

setting each derivative equal to zero, and solving for the parameter values. The solution 

of the FOCs provides the formulas for the MLEs. 

4) Checking to make sure the estimator in (3) attains a maximum (not a minimum). This 

involves taking the second derivatives of the log-likelihood function with respect to all 

parameters, so as to construct the Hessian matrix. If the Hessian is n.s.d., then the MLE 

achieves a global max. 

5) Obtaining the variance of the MLEs for use in hypothesis testing. A variance-covariance 

matrix can be found by inverting the negative of the expected Hessian. 

 

Properties of MLE 

 MLE has very desirable asymptotic properties.  

 Namely, MLE is Best Asymptotically Normal.  

 That is, under mild assumptions, ML estimators are consistent, asymptotically efficient, 

and asymptotically Normally distributed.  

 These properties are obtained by examining the asymptotic distribution of the MLE 

(which we will not derive in class): 

√𝑛(�̃� − 𝜃0)
𝑑
→ 𝑁[0, 𝐼𝐴−1(𝜃)], 

where  

𝐼𝐴−1(𝜃) = lim
𝑛→∞

(
1

𝑛
[−𝐸[𝐻(𝜃)]]

−1
) 

 𝐼𝐴−1(𝜃) is the asymptotic information matrix, and 𝐻(𝜃) is the Hessian.  

 The statement of the asymptotic distribution shows that the MLEs are consistent, 

asymptotically normal, and asymptotically efficient.  

 The efficiency result relies on the Cramer-Rao lower bound. The Cramer-Rao lower 

bound is a theoretical minimum variance that any estimator can obtain. The MLE attains 

this minimum, that is, 𝐼𝐴−1(𝜃) is equal to the asymptotic Cramer-Rao lower bound. 
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The asymptotic distribution also allows us to see the variance of the MLEs in finite samples. The 

variance-covariance of �̃� for finite samples can be solved from the asymptotic variance: 

𝑣𝑎𝑟[√𝑛(�̃�)] = 𝑛 × 𝑣𝑎𝑟(�̃�) =
1

𝑛
[−𝐸[𝐻(𝜃)]]

−1
, so 

𝑣𝑎𝑟(�̃�) = [−𝐸[𝐻(𝜃)]]
−1

. 

The matrix −𝐸[𝐻] is termed the “Information Matrix” and is denoted by 𝐼(𝜃). 

A very useful property of MLEs is their “invariance.” That is, the estimator for 𝑔(𝜃) is 𝑔(�̃�). 

Hence, an estimator for the variance-covariance of �̃� is: 

𝑣𝑎𝑟(�̃�)̃ = [−𝐸[𝐻(�̃�)]]
−1

. 

Note that if misspecification occurs (if we have selected the wrong probability density function 

to begin with), we are not assured of any of the asymptotic properties. 

 

Finite sample properties of MLEs 

MLEs can be biased in finite samples (and typically are). We can evaluate bias much like we 

have done in previous parts of the course; by taking 𝐸(�̃�). This knowledge can be used to correct 

for any bias (as in the case of �̃�2). However, in most cases, there is no closed-form solution for 

the MLE itself, and numerical methods must be used to solve for the estimate. When the 

estimator does not have a closed form solution, we cannot take 𝐸(�̃�), and we will not be able to 

“see” whether or not the estimator is biased. In this case, approximations or Monte Carlo 

experiments may be used to evaluate bias. 

 


