
Introduction to Econometrics
A textbook for ECON 3040

Ryan T. Godwin1

University of Manitoba

1email: ryan.godwin@umanitoba.ca



i

Copyright © 2021 by Ryan T. Godwin

Winnipeg, Manitoba, Canada

January, 2021

All rights reserved. This book or any portion thereof may not be reproduced
or used in any manner whatsoever without the express written permission
of the author except for the use of brief quotations.

ISBN 978-1-77284-004-9



Contents

1 Introduction 1
1.1 What is Econometrics? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 R Statistical Environment and R Studio . . . . . . . . . . . . 2

2 Probability Review 5
2.1 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Probability function . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Example: probability function for a die roll . . . . . . 8
2.3.2 Example: probability function for a normally distributed

random variable . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Probabilities of events . . . . . . . . . . . . . . . . . . 9
2.3.4 Cumulative distribution function . . . . . . . . . . . . 9

2.4 Moments of a random variable . . . . . . . . . . . . . . . . . 10
2.4.1 Mean or expected value . . . . . . . . . . . . . . . . . 10
2.4.2 Median and Mode . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.4 Skewness and Kutosis . . . . . . . . . . . . . . . . . . 12
2.4.5 Covariance . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.6 Correlation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.7 Conditional distribution and conditional moments . . 14
2.4.8 Example: Joint distribution . . . . . . . . . . . . . . . 14

2.5 Some Special Probability Functions . . . . . . . . . . . . . . . 15
2.5.1 The normal distribution . . . . . . . . . . . . . . . . . 15
2.5.2 The standard normal distribution . . . . . . . . . . . . 15
2.5.3 The central limit theorem . . . . . . . . . . . . . . . . 16
2.5.4 The Chi-square (χ2) distribution . . . . . . . . . . . . 18

2.6 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



CONTENTS iii

3 Statistics Review 22
3.1 Random Sampling from the Population . . . . . . . . . . . . 22
3.2 Estimators and Sampling Distributions . . . . . . . . . . . . . 23

3.2.1 Sample mean . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Sampling distribution of the sample mean . . . . . . . 25
3.2.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.5 Consistency . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Hypothesis Tests (known σ2
y) . . . . . . . . . . . . . . . . . . 29

3.3.1 Significance of a test . . . . . . . . . . . . . . . . . . . 31
3.3.2 Type I error . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Type II error . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Test statistics . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Critical values . . . . . . . . . . . . . . . . . . . . . . 34
3.3.6 Confidence intervals . . . . . . . . . . . . . . . . . . . 34

3.4 Hypothesis Tests (unknown σ2
y) . . . . . . . . . . . . . . . . . 35

3.4.1 Estimating σ2
y . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 The t-test . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Ordinary Least Squares (OLS) 42
4.1 Motivating Example 1: Demand for Liquor . . . . . . . . . . 42
4.2 Motivating Example 2: Marginal Propensity to Consume . . 43
4.3 The Linear Population Regression Model . . . . . . . . . . . . 45

4.3.1 The importance of β1 . . . . . . . . . . . . . . . . . . 46
4.3.2 The importance of ε . . . . . . . . . . . . . . . . . . . 46
4.3.3 Why it’s called a population model . . . . . . . . . . . 46

4.4 The estimated model . . . . . . . . . . . . . . . . . . . . . . . 46
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Introduction

1.1 What is Econometrics?
Econometrics is the study of statistical methods applied to economics data.
It is a subset of statistics. Similarly, biology has “biometrics”, psychology
has “psychometrics”, etc. Econometrics uses those methods most suited to
economics data.

Econometrics can be used to test economics theories. Economics is a
social science, and economics benefits from the scientific method. Theories
are formed and tested using observations from the real world. The testing
part mostly relies on econometrics.

Econometrics can be used to estimate causal effects, though it should
not be used to find them. That is, the theoretical model (e.g. from Micro
or Macro) should specify which variable causes which. It is then up to
the econometrician to estimate how much of an effect one variable has on
another. Econometrics may also be used to forecast or predict economic
variables, although forecasting is not covered in this course.

Econometrics specializes in dealing with observational data. Observa-
tional data is in contrast to experimental data. In an experiment, there is
some element of control - a variable can be changed by the researcher, and
the effect of the change on another variable can be more easily measured. In
observational data the causal variable is changing on its own, and this can
be very problematic. Typically there are important omitted variables in ob-
servational data. An experiment provides a better way to estimate a causal
effect, since the missing variables are not a problem in a well constructed
experiment.

Economic models often suggest that one variable causes another. This
often has policy implications. The economic models, however, do not provide
quantitative magnitudes of the causal effects. For example:

• How would a change in the price of alcohol or cigarettes effect the
quantity consumed?

1



1. INTRODUCTION 2

• If income increases, how much of the increase will be consumed?

• If an additional fireplace is added to a house, how much will the price
of the house increase?

• How does another year of education change earnings?

How would you use an experiment to determine the above four causal
effects? You will likely conclude that using an experiment would be too
costly and/or unethical. Hence, we must rely on observational data, and try
to sort out the associated problems.

It is important to be aware of the limitations of statistics. It can never be
used to determine causation. Causation must be theorized. If two variables
are correlated, statistics alone cannot tell which variable causes which, or if
there is any causation at all. That is, correlation does not imply causation.
If, however, we find that two variables are statistically independent from
each other, one variable can not cause the other.

Objectives

Some objectives of this text are the following:

• Learn a method for estimating causal effects (OLS)

• Understand some theoretical properties of OLS

• Learn about hypothesis testing

• Learn to read regression analyses, so as to understand empirical eco-
nomics papers in other courses

• Practice OLS using data sets

1.2 R Statistical Environment and R Studio
The theory and concepts presented in this course will be illustrated by
analysing several data sets. Data analysis will be accomplished through
the R Statistical Environment and RStudio. Both are free, and R is fast
becoming the best and most widely used statistical software. Download
R from https://cran.r-project.org/bin/windows/base/ (for Windows)
or https://cran.r-project.org/bin/macosx/ (for Mac). Download RStu-
dio from https://www.rstudio.com/products/rstudio/download/.

Once you download and install R and R Studio, open R Studio. Figures
1.1, 1.2, and 1.3 give you a basic idea of how to run a command in R.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/
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Figure 1.1: Open up RStudio. It should look like something this:

Variables and data
will be shown here

Output will be 
displayed here Scatterplots and figures

will be shown here

Figure 1.2: Create an R Script. To keep track of your commands, you should
use an R Script. Go to “File” →“New File” →“R Script”.

Create a new R Script by clicking
"File", "New File", "R Script"
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Figure 1.3: To run a command in R Studio: 1) Type a command in the
“R Script” window. 2) Highlight the command. 3) Click the “Run” button.
4) The output will be displayed in the "R Console" window. 5) Save your
script by making sure the “R Script” window is selected, and click “File”
→“Save”.

1)Type a command
2) Highlight it 3) Click "Run"

4) Output is displayed here
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Probability Review

This is a brief review. These are concepts that you should know from your
previous statistics courses.

2.1 Fundamental Concepts

2.1.1 Randomness

Randomness is unpredictability. Outcomes that we cannot predict are ran-
dom. Randomness represents our inability as humans to accurately predict
things. For example, if I roll two dice, the outcome is random because I am
not smart enough or skilled enough to predict what the roll will be. Things
that I cannot, or do not want to predict, are random. We cannot know
everything. However, we can attempt to model the randomness mathemat-
ically.

Randomness: the inability to predict an outcome.

This definition of randomness does not oppose a deterministic world view
(fate). While many things in our lives appear to be random, I still think that
at some fundamental level the world is deterministic, and that all events are
potentially predictable. In the dice example, it is not far-fetched to believe
that a computer could analyze my hand movements and perfectly predict
the outcome of the roll.

It is sometimes useful to construct a set, or sample space of the possible
outcomes of interest. In the dice example, the sample space is { , ,

, . . . , }. An event is a subset of the sample space, and consists of
one or more of the possible outcomes. For example, rolling higher than ten
is an event consisting of three outcomes { , , }.

5



2. PROBABILITY REVIEW 6

2.1.2 Probability

A probability is a number between 0 and 1 that is assigned to an event
(sometimes expressed as a percentage). A standard definition is: the prob-
ability of an event is the proportion of times it occurs in the long run. This
is fine for the dice example, and you may be aware that the probability of
rolling a seven is 1/6 or of rolling higher than ten is 1/12. This definition
works for this example because we can imagine rolling the dice repeatedly
under similar settings and observing that a seven occurs one-sixth of the
time.

What about events that occur seldomly or only once? What is the prob-
ability that you will obtain an A+ in this course? What is the probability
that Donald Trump will be president in 2021? For these events, the for-
mer definition of probability is less satisfactory. A more general definition
is: probability is a mathematical way of quantifying uncertainty. For the
Trump example, the probability of reelection is subjective. I may think the
probability is 0.1, but someone else may assign a probability of 0.9. Which
is right? These problems are better suited to a Bayesian framework, which
is not discussed in this book. Luckily, the first definition of probability will
be sufficient.

Probability: a number between 0 and 1 representing the portion of
times an event will occur, if it could occur repeatedly.

2.2 Random variables
A random variable translates outcomes into numerical values. For example,
a die roll only has numerical meaning because someone has etched numbers
onto the sides of a cube. A random variable is a human-made construct,
and the choice of numerical values can be arbitrary. Different choices can
lead to different properties of the random variable. For example, I could
measure temperature in Celsius, Fahrenheit, Kelvin or something new (de-
grees Ryans). The probability that it will be above 20◦ tomorrow depends
critically on how I have constructed the random variable.

Random variables can be separated into two categories, discrete and
continuous. A discrete random variable takes on a countable number of
values, e.g. {0, 1, 2, ...}. The result of the dice roll is a discrete random
variable. A continuous random variable takes on a continuum of possible
values (an infinite number of possibilities).

Even when the random variable has lower and upper bounds, there are
still infinite possibilities. The temperature tomorrow is a continuous ran-
dom variable. It may be bound between -50◦C and 50◦C, but there are still
infinite possibilities. What is the probability that it is 20◦C? What about
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20.1◦C? What about 20.0001◦C? We could keep adding 0s after the deci-
mal. In fact, the probability of the temperature taking on any one value
approaches 0. Instead, we must talk about the probability of a range of
numbers. For example, the probability that the temperature is between
19◦C and 21◦C.

The continuum of possibilities makes it more difficult to discuss con-
tinuous random variables than it does discrete random variables. We will
use discrete random variables for examples and try to extend the logic to
continuous random variables.

Finally, note the difference between a random variable and the realization
of a random variable. Before I roll the die, the outcome is random. After I
roll the die and get a (for example), the 4 is just a number - a realization
of a random variable.

Key Points

• A random variable can take on different values (or ranges of
values), with different probabilities

• There are discrete and continuous random variables

• Continuous random variables can take on an infinite number of
possible values, so we can only assign probabilities to ranges of
values

• We can assign probabilities to all possible values for a discrete
random variable

• The realization of a random variable is just a number, it used
to be random, but now we’ve seen the outcome

2.3 Probability function
A probability function is also called a probability distribution, or a probability
distribution function (PDF). Sometimes a distinction is made: probability
mass function (PMF) for discrete variables instead of PDF for continuous
variables. I will use probability function for both.

A probability function is an equation (it can also be a graph or table),
which contains information about a random variable. The nature and prop-
erties of the randomness determines what type of equation is appropriate.
A different equation would be used for a dice roll than would be used for
the wage of a worker. The probability function is very important. The
probability function accomplishes two things: (i) it lists all possible numer-
ical values that the random variable can take, and (ii) assigns a probability
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Figure 2.1: Probability function for the result of a die roll
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to each value. Note that the probabilities of all outcomes must sum to 1
(something must happen). The probability function contains all possible
knowledge that we can have about the random variable (before we observe
its realization).

2.3.1 Example: probability function for a die roll

Let Y = the result of a die roll. The probability function for Y is:

Pr(Y = 1) = 1
6 , P r(Y = 2) = 1

6 , . . . , P r(Y = 6) = 1
6 (2.1)

Note how the function lists all possible numerical outcomes and assigns
a probability to each. A more compact way of expressing (2.1) is:

Pr(Y = y) = 1
6 ; y = 1, . . . , 6 (2.2)

The probability function in (2.2) may also be expressed in a graph (see
Figure 2.1).
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2.3.2 Example: probability function for a normally distributed
random variable

The normal distribution is an important probability distribution. Later, we
will discuss why it is so important and prevalent. For now, I will present the
probability function for a random variable (you do not need to memorize
this).

f(y|µ, σ2) = 1√
2πσ2

exp−(y − µ)2

2σ2 ; −∞ < y <∞ (2.3)

Do not be scared. y is the random variable, µ and σ2 are the parameters
that govern the probability of y. µ turns out to be the mean or expected
value of y, and σ2 turns out to be the variance of y. If µ and σ2 are known
(usually they aren’t), then you can determine the probability that y takes
on any range of values. However, this requires integration (you won’t have
to integrate in this course).

2.3.3 Probabilities of events

Recall that the probability function contains all possible information about
the random variable (all the outcomes, and a probability assigned to each
outcome), and that an event is a collection of outcomes. The probability
function can be used to calculate the probability of events occurring.

Example. Let Y be the result of a die roll. What is the probability of
rolling higher than 3?

Pr(Y > 3) = Pr(Y = 4) + Pr(Y = 5) + Pr(Y = 6) = 1
6 + 1

6 + 1
6 = 1

2

2.3.4 Cumulative distribution function

The cumulative distribution function (CDF) is related to the probability
function. It is the probability that the random variable is less than or
equal to a particular value. While every random variable has a probability
function, it does not always have a CDF (but usually does). Again, let Y
be the result of a die roll, then the CDF for Y is expressed as equation 2.4
or as figure 2.2.

Pr(Y ≤ 1) = 1/6
Pr(Y ≤ 2) = 2/6
Pr(Y ≤ 3) = 3/6
Pr(Y ≤ 4) = 4/6
Pr(Y ≤ 5) = 5/6
Pr(Y ≤ 6) = 1

(2.4)
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Figure 2.2: Cumulative density function for the result of a die roll
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2.4 Moments of a random variable
The term “moment” is related to a concept in physics. The first moment of
a random variable is the mean, the second (central) moment is the variance,
the third the skewness, and the fourth the kurtosis. In this book, we will
make extensive use of mean and variance, as well as the mixed moment
covariance (and correlation).

2.4.1 Mean or expected value

Themean or expected value of a random variable is the value that is expected,
or the value that occurs on average through repeated realizations of the
random variable. The mean of a random variable can be determined from
its probability function. Recall that the probability function contains all
possible information we could hope to have about the random variable. So,
it should be no surprise that if we want to determine the mean we have to
do some math to the probability function. The mean (and variance, etc.) is
just summarized information contained in the probability function.

Let Y be the random variable, the result of a die roll for example. No-
tation for the mean of Y or expectation of Y is µY or E[Y ]. As mentioned
above, the mean of Y is determined from its probability function. For such
discrete random variables as Y, the mean is determined by taking a weighted
average of all possible outcomes, where the weights are the probabilities. The
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equation for the mean of (Y) is:

E[Y ] =
K∑
i=1

piYi (2.5)

where pi is the probability of the ith event, Yi is the value of the ith outcome,
and K is the total number of outcomes (K can be infinite). Study this
equation. It is a good way of understanding what the mean is.

Equation 2.5 is valid for any discrete random variable Y. For our partic-
ular example, using the probability function we have that K = 6 and each
pi = 1/6, so the mean of Y is:

E(Y ) = 1
6 × (1) + 1

6 × (2) + ...+ 1
6 × (6) = 3.5

Calculating the mean of a continuous random variable is analogous, but
more difficult. Again, the mean is determined from the probability function,
but instead of summing across all possible outcomes we have to integrate
(since the random variable can take on a continuum of possibilities).

Let y be a continuous random variable. The mean of y is

E[y] =
∫
yf(y) dy

If y is normally distributed, then f(y) is equation (2.3), and the mean of
y turns out to by µ. You do not need to integrate for this course, but you
should have some idea about how the mean of a continuous random variable
is determined from its probability function.

Some properties of the mean are:

• E[X + Y ] = E[X] + E[Y ]

• E[cY ] = cE[Y ], where c is a constant

• E[c+ Y ] = c+ E[Y ]

• E[c] = c

2.4.2 Median and Mode

The mean of a random variable is not to be confused with the median
or mode of a random variable, although all three are measures of “central
tendency”. The median is the “middle” value, where 50% of values will be
above and below. The mode is the value which occurs the most.

For variables that are normally distributed, the mean, median and mode
are all the same, but this is not always true. For a die roll, the mean and
median are 3.5, but there either is no mode or all of the values are the mode
(depending on which statistician you ask).
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2.4.3 Variance

The variance of a random variable is a measure of its spread or dispersion.
Variance is often denoted by σ2. In words, variance is the expected squared
difference of the random variable from its mean. In an equation, the variance
of Y is

Var(Y ) = E[(Y − E[Y ])2] (2.6)

When Y is a discrete random variable, then equation (2.6) becomes

Var(Y ) =
K∑
i=1

pi × (Yi − E[Yi])2 (2.7)

where pi, Yi, and K are defined as before. Note that equation 2.7 is a
weighted averaged of squared distances. The variance is measuring how far,
on average, the variable is from its mean. The higher the variance, the
higher the probability that the random variable will be far away from its
expected value.

When the random variable is continuous, equation (2.6) becomes:

Var(y) =
∫

(y − E[y])2f(y) dy

but you don’t need to know this for the course.

Some properties of the variance are:

• Var[X + Y ] = Var[X] + Var[Y ] + 2× Cov[X,Y ]

• Var[cY ] = c2Var[Y ], where c is a constant

• Var[c+ Y ] = Var[Y ]

• Var[c] = 0

2.4.4 Skewness and Kutosis

Notice in the variance formula (2.6), that there is an expectation of a squared
term (E[]̇2). This partly explains why the variance is called the second
(central) moment. Similarly, we could take the expectation of the Y to the
third power, or fourth power, etc. Doing so would (almost) give us the third
and fourth moments.

The third (central) moment is called skewness and the fourth is called
kurtosis. Much less attention is paid to these moments than is to the mean
and the variance. However, it is worth noting that if a random variable is
normally distributed, it has a skewness of 0 and a kurtosis of 3.
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2.4.5 Covariance

Covariance is a measure of the relationship between two random variables.
Random variables Y and X are said to have a joint probability distribution.
The joint probability distribution is like the probability functions we have
seen before (equations 2.1 and 2.3), except that it involves two random
variables. The joint probability function for Y and X would (i) list all
possible combinations that Y and X could take, and (ii) assign a probability
to each combination. A useful summary of the information contained in the
joint probability function, is the covariance.

The covariance between Y and X is the expected difference of Y from
its mean, multiplied by the expected value of X from its mean. Covariance
tells us something about how two variables move together. That is, if the
covariance is positive, then when one variable is larger (or smaller) than
its mean, the other variable tends to be larger (or smaller) as well. The
larger the magnitude of covariance, the more often this statement tends
to be true. Covariance tells us about the direction and strength of the
relationship between two variables.

The formula for the covariance between Y and X is

Cov(Y,X) = E[(Y − µY )(X − µX)] (2.8)

The covariance between Y and X is often denoted as σYX . Note the following
properties of σYX :

• σYX is a measure of the linear relationship between Y and X. Non-
linear relationships will be discussed later.

• σYX = 0 means that Y and X are linearly independent.

• If Y and X are independent (neither variable causes the other), then
σYX = 0. The converse is not necessarily true (because of non-linear
relationships).

• The Cov(Y, Y ) is the Var(Y ).

• A positive covariance means that the two variables tend to differ from
their mean in the same direction.

• A negative covariance means that the two variables tend to differ from
their mean in the opposite direction.

2.4.6 Correlation

Correlation is similar to covariance. It is usually denoted with the Greek
letter ρ. Correlation conveys all the same information that covariance does,
but is easier to interpret, and is frequently used instead of covariance when
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summarizing the linear relationship between two random variables. The
formula for correlation is

ρYX = Cov(Y,X)√
Var(Y )Var(X)

= σYX
σY σX

(2.9)

The difficulty in interpreting the value of covariance is because −∞ <
σYX <∞. Correlation transforms covariance so that it is bound between -1
and 1. That is, −1 ≤ ρYX ≤ 1.

• ρYX = 1 means perfect positive linear association between Y and X.

• ρYX = −1 means perfect negative linear association between Y and
X.

• ρYX = 0 means no linear association between Y and X (linear inde-
pendence).

2.4.7 Conditional distribution and conditional moments

When we introduced covariance, and began to talk about the relationship
between two random variable, we introduced the concept of the joint prob-
ability distribution function. Recall that the joint probability function lists
all combinations of the random variables, assigning a probability to each
combination.

Sometimes, however, it is useful to obtain a conditional distribution from
the joint distribution. The conditional distribution just fixes the value of
one of the variables, while providing a probability function for the other.
This probability function may change depending on the fixed value.

We need this concept for the conditional expectation, which will be im-
portant later when we discuss dummy variables. The conditional expectation
is just the expected or mean value of one variable, conditional on some value
for the other variable.

Let Y be a discrete random variable. Then, the conditional mean of Y
given some value for X is

E(Y |X = x) =
K∑
i=1

(pi|X = x)Yi (2.10)

2.4.8 Example: Joint distribution

Suppose that you have a midterm tomorrow, but that there is a possibility
of a blizzard. You are wondering if the midterm might be canceled. If there
is a blizzard, there is a strong chance of cancellation. If there is no blizzard,
then you can only hope that the professor gets severely ill, but that still only
gives a small chance of cancellation. The joint probability distribution for
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the two random events (occurrence of the blizzard, and occurrence of the
midterm) is given in table (2.1). Note how all combinations of events have
been described, and a probability assigned to each combination, and that
all probabilities in the table sum to 1.

Table 2.1: Joint distribution for snow and a canceled midterm
Midterm (Y = 1) No Midterm (Y = 0)

Blizzard (X = 1) 0.05 0.20
No Blizzard (X = 0) 0.72 0.03

What is E[Y ]? It is 0.77. This means there is a 77% chance you will
have a midterm. E[Y ] is an unconditional expectation; it is the mean of
Y before you look out the window in the morning and see if there is a
blizzard. The conditional expectations, however, are E[Y |X = 1] = 0.20 and
E[Y |X = 0] = 0.96. This means there is only a 20% chance of a midterm if
you see a blizzard in the morning, but a 96% chance with no blizzard. Some
other review questions using table (2.1) are left to the Review Questions.

2.5 Some Special Probability Functions
In this section, we present some common probability functions that we will
reference in this course. We start with the normal distribution, and a dis-
cussion of the central limit theorem.

2.5.1 The normal distribution

The probability function for a normally distributed random variable, y, has
already been given in equation (2.3). What is the use of knowing this? If
we know that y is normal, and if we knew the parameters µ and σ2 (we
will likely have to estimate them) then we know all we can possibly hope
to about y. That is, we can use equation (2.3) to determine the mean and
variance of y. We can draw out equation (2.3), and calculate areas under the
curve. These areas would tell us about the probability of events occurring.

Suppose that we knew y had mean 0 and variance 1. What is the proba-
bility that y < −2? Using equation (2.3), we could draw out the probability
function, and calculate the area under the curve, to the left of -2. See figure
(2.3). This area, and probability, is 0.023.

2.5.2 The standard normal distribution

The probability function drawn out in figure (2.3) is actually the probability
function for a standard normal variable. A variable is standard normal when
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Figure 2.3: Probability function for a standard normal variable, py<−2 in
gray
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its mean is 0 and variance is 1. When µ = 0 and σ2 = 1, the probability
function for a normal variable (equation 2.3) becomes:

f(y) = 1√
2π

exp −y
2

2 (2.11)

Note that any random normal variable can be “standardized”. That is, if
we subtract the variable’s mean, and divide by it’s standard deviation, then
we change the mean to 0, and variance to 1. It becomes “standard normal”.
This practice is useful in hypothesis testing, as we shall see.

2.5.3 The central limit theorem

So why do we care so much about the normal distribution? There are
hundreds of probability functions, that are appropriate in various situations.
The heights of waves might be described by the Nakagami distribution. The
probability of successfully drawing a certain number of red balls out of a hat
of red and blue balls is described by the binomial distribution. The number
of customers that visit a store in an hour might be described by the Poisson
distribution. The result of a die roll is uniformly distributed. So why should
we pay so much attention to the normal distribution?

The answer is the central limit theorem (CLT). Loosely speaking, the
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Figure 2.4: Probability function for the sum of two dice
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CLT says that if we add up enough random variables, the resulting sum
tends to be normal. It doesn’t matter if some are Poisson and some are
uniform. It only matters that we add up enough. If the random outcomes
that we seek to model using probability theory are the results of many
random factors all added together, then the central limit theorem applies.
This turns out to be plausible for the types of economic models we are going
to consider. This has been a very casual explanation of the CLT; you should
be aware that there are several conditions required for it to hold, and several
versions.

Pr(Y = 2) = 1/36
Pr(Y = 3) = 2/36
Pr(Y = 4) = 3/36
Pr(Y = 5) = 4/36
Pr(Y = 6) = 5/36
Pr(Y = 7) = 6/36
Pr(Y = 8) = 5/36

...
Pr(Y = 12) = 1/36

(2.12)
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Figure 2.5: Probability function for three dice, and normal distribution
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Example. Let Y be the result of summing two die rolls. The probability
function for Y is displayed in equation 2.12 and in figure (2.4). Notice how
each individual die has a uniform (flat) distribution, but summed together,
begins to get a "curve".

Now, let’s add a third die, and see if the probability function looks more
normal. Let Y = the sum of three dice. It turns out the mean of Y is
10.5 and the variance is 8.75. The probability function for Y is shown
in figure (2.5). Also in figure (2.5), the probability function for a normal
distribution with µ = 10.5 and σ2 = 8.75. Notice the similarity between the
two probability functions.

The CLT says that if we add up the result of enough dice, the resulting
probability function should become normal. Finally, we add up eight dice,
and show the probability function for both the dice and the normal distribu-
tion in figure(2.6), where the mean and variance of the normal probability
function has been set equal to that of the sum of the dice.

2.5.4 The Chi-square (χ2) distribution

Suppose that y is normally distributed. If we add or subtract from y we
change the mean of y, but it still will follow a normal distribution. If we
multiply or divide y by a number, we change its variance, but y will still be
normal. In fact, this is how we standardize a normal variable (we subtract
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Figure 2.6: Probability function for eight dice, and normal distribution
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its mean, and divide by its standard deviation).
While a linear transformation (addition, multiplication, etc.) of a normal

variable leaves the variable normally distributed, normal variables are not
invariant to non-linear transformations. If we square a standard normal
variable (e.g. y2), it becomes a χ2 distributed variable. We will use this
distribution for the F-test in a later chapter.

2.6 Review Questions
1. Define the following terms:

outcome event random variable
discrete variable continuous variable parameter
CLT mean variance
probability function covariance correlation

2. Let X be a random variable, where X = 1 with probability 0.5, and
X = −1 with probability 0.5. Let Y be a random variable, where
Y = 0 if X = −1, and if X = 1, Y = 1 with probability 0.5, and
Y = −1 with probability 0.5. (a) What is the Cov(X,Y )? (b) Are X
and Y independent?

3. Let X be a normal random variable, where E[X] = 0. Remember that
a random normal variable has a skewness of zero (the third moment
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is zero), so that E[X3] = 0. Now, let Y = X2. (a) What is the
Cov(X,Y )? (b) Are X and Y independent?

4. Use table (2.1). (a) What are the probability functions for Y and X
(independent from each other)? (b) What are the mean and variance
of X? (c) What is Cov(X,Y )? (d) What is ρXY ?

2.7 Answers
2. The joint probability function for X and Y is:

Y = −1 Y = 0 Y = 1
X = 1 0.25 0 0.25
X = −1 0 0.5 0

a) The formula for the covariance of X and Y is:

Cov (X,Y ) = E [(X − µX) (Y − µY )]

The mean of X and Y are:

µX = 0.5(1) + 0.5(−1) = 0

µY = 0.25(−1) + 0.5(0) + 0.25(1) = 0
Finally, the covariance is:

Cov (X,Y ) = E [XY ] = 0.25(1)(−1) + 0.5(−1)(0) + 0.25(1)(1) = 0

b) Even though the covariance is 0, X and Y are not independent! We
can see this by looking at the joint probability function. If we observe
the value of Y , then we know, with certainty, the value of X. That
is, if we observe Y = −1 or Y = 1, then we know that X = 1. If we
observe Y = 0, then we know that X = −1. Y can predict the value
of X, so X and Y are not independent. The point is that covariance
measures linear association between two variables. In this example,
the relationship between X and Y is non-linear. If we were to graph
the relationship between the two variables, we would see a “U” shape.

3. a) The covariance between X and Y is:

Cov [X,Y ] = Cov
[
X,X2

]
= E

[(
X − E (X)

)(
X2 − E

(
X2))]

= E
[
X3 − E (X)X2 −XE

(
X2)+ E (X) E

(
X2)]

= E
(
X3)− E (X) E

(
X2)− E (X) E

(
X2)+ E (X) E

(
X2)

= 0
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b) X and Y are not independent, since Y = X2. Knowing one vari-
able allows us to know the other variable, perfectly. This is another
example of how the covariance between two variables can be zero, even
when the variables are clearly related. Covariance is a measure of lin-
ear dependence. It is possible to find situations where a non-linear
relationship yields zero covariance.

4. a) To get the uncoditional probabilities for Y we can sum the columns,
and for the probabilities of X we can sum the rows, of table (2.1). The
probability function for Y is:

Pr (Y = 1) = 0.77 ; Pr (Y = 0) = 0.23

and for X is:

Pr (X = 1) = 0.25 ; Pr (Y = 0) = 0.75

b)
E [X] = 0.25(1) + 0.75(0) = 0.25

Var [X] = 0.25(1− 0.25)2 + 0.75(0− 0.25)2 = 0.1875

c) To get the covariance, we will need the mean of Y :

E [Y ] = 0.77(1) + 0.23(0) = 0.77

Now, the covariance is:

Cov (X,Y ) = 0.05(1− 0.25)(1− 0.77)
+ 0.20(1− 0.25)(0− 0.77)
+ 0.72(0− 0.25)(1− 0.77)
+ 0.03(0− 0.25)(0− 0.77)
= −0.1425

d) The formula for correlation is given in equation (2.9). We have
already calculated Cov (X,Y ) and Var [X], but we need Var [Y ]:

Var [Y ] = 0.77(1− 0.77)2 + 0.23(0− 0.77)2 = 0.1771

Now, the correlation is:

ρYX = Cov(Y,X)√
Var(Y )Var(X)

= −0.1425√
0.1875× 0.1771

= −0.7820
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Statistics Review

A statistic is any mathematical function using a sample of data. It is just
an equation applied to the data. When a statistic is used to estimate a
population parameter, it is called an estimator. One of the main goals of
this course is to become familiar with a particular estimator - the ordinary
least squares estimator, but for this chapter we will review some simpler
estimators.

We will discuss the population, and why the sample y should be con-
sidered random. Then, we will discuss some estimators. A very important
point is that, because y is random, functions of y are also random. Since an
estimator is just an equation applied to y, the estimator itself is also random.
As we know from the previous chapter, random variables have probability
functions.

The probability function for an estimator is given a special name - the
sampling distribution. Obtaining some properties of the estimator from its
sampling distribution, such as mean and variance, will tell us whether or
not the estimator is “good”, and will guide our choice of which estimator to
use.

3.1 Random Sampling from the Population
A sample of data is a collection of variables. In econometrics, most of these
variables are realizations of a random process. The numbers that make up
(at least some of) the sample values came from a random process. The
sample typically appears to us on our computer screen as a “spreadsheet”
where each column is a different variable and each row is a different sample
unit. The sampling “units” could be people, countries, firms, etc.

There are at least two ways to think about where a random sample, y,
comes from. Both ways make use of the idea of a population. The population
holds all of the information, the truth. If we knew the entire population, our
jobs as statisticians or econometricians would be much easier. Instead we

22
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will obtain only a piece of the puzzle, a sample of data from the population.
The first way to think about the population, is that it is a data generating

process (dgp). It is a random process that generates the y variables that
we observe. It is as if a die is being rolled, generating the numbers in the
sample, but we can’t quite see what the die looks like. Alternatively, if y
is normally distributed, then values in y are generated from equation (2.3),
but where µ and σ2 are unknown. This might be a difficult way to think
about things.

A second, possibly easier way to think about the population, is to imag-
ine it consisting of all of the data possible. When we obtain economic data,
we typically do not observe everyone or everything in the population of in-
terest. Instead we observe a sample of the population. Hopefully, members
of the population will be selected randomly into the sample (otherwise we
will have problems).

Suppose we want to know the mean height of a male U of M student.
We can not afford to measure the height of every student, so we collect a
sample, and hope that it represents the population. Suppose we stand in
the University Centre for an hour and measure heights of students. The
sample that we will collect is random - we don’t know what the heights will
be yet. On a different day, at a different time, or in a parallel universe, we
will randomly select different students, get different heights, and a different
sample.

We will want this sample to be independently and identically distributed
(iid). Indpendent - none of the random variables in the sample have any
connection. Independence would be violated if a basketball team walked
through the University Centre and I sampled all of their heights. Identical
- all of the random variables in the sample come from the same population
(or probability function). The identical assumption would be violated if I
accidentally sampled some Mini U students (grade school students touring
campus).

As an example, let’s pretend that the entire population of heights is in
table (3.1). This is a simplified example of a population - the table should
be much larger - usually we assume the population is near-infinite. Let’s
collect a random sample from this population, say 20 observations (the bold
numbers in the table). Our sample is then denoted y = {173.9, 171.7, 182.6,
181.5, 162.1, 174.9, 165.7, 182.2, 171.7, 168.1, 189.9, 175.7, 163.4, 186.3,
169.5, 171.9, 173.9, 172.0, 172.7, 172.0}. y is random because we could have
selected different heights from the table.

3.2 Estimators and Sampling Distributions
An estimator is a way of using the sample data y in order to “guess” some-
thing about the population that y comes from. In the example of the heights
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Table 3.1: Entire population of heights (in cm). The true (unobservable)
population mean and variance are µy = 176.8 and σ2

y = 39.7.
177.3 170.2 187.2 178.3 170.3 179.4 181.2 180.0 173.9
178.7 171.7 160.5 183.9 175.7 175.9 182.6 181.7 180.2
181.5 176.5 162.1 180.3 175.6 174.9 165.7 172.7 178.9
175.3 178.7 175.6 166.4 173.1 173.2 175.6 183.7 181.3
174.2 180.9 179.9 171.2 171.0 178.6 181.4 175.2 182.2
171.7 178.4 168.1 186.0 189.9 173.4 168.7 180.0 175.1
175.7 180.8 176.2 170.8 177.3 163.4 186.3 177.1 191.2
171.0 180.3 169.5 167.2 178.0 172.9 176.0 176.5 171.9
175.1 184.2 165.3 180.2 178.3 183.4 173.9 178.6 177.9
184.5 184.1 180.9 187.1 179.9 167.1 172.0 167.4 172.7
171.6 186.6 182.4 185.5 174.8 178.8 192.8 179.3 172.0

of male U of M students, we might be interested in knowing the mean height.
The mean height would provide the best prediction for the height of the next
random student that walks through the door. So, we collect our sample, y
= {173.9, 171.7, 182.6, 181.5, 162.1, 174.9, 165.7, 182.2, 171.7, 168.1, 189.9,
175.7, 163.4, 186.3, 169.5, 171.9, 173.9, 172.0, 172.7, 172.0}. How should we
use this sample to estimate the mean height?

The difference between a population value (such as the population mean
or variance), and an estimator (such as the sample mean or variance), is
very important. The population mean is the unobservable truth, and is a
constant (non-random). The sample mean is an estimator for the population
mean, and as we shall see, is a random variable. In this section we want to
build up the idea of the sampling distribution of an estimator, in order to
determine its properties. This will help us to determine if the estimator is
“good”.

3.2.1 Sample mean

A popular choice for estimating the population mean (E[y] or µy) is the
sample mean (or sample average, or just average). The sample mean of y
is usually denoted by ȳ. You have seen the equation for the sample mean
before:

ȳ = 1
n

n∑
i=1

yi (3.1)

where yi denotes the ith observation, and where n denotes the sample size.
If we plug in our sample of heights into equation (3.1) we get ȳ = 174.1.

An important question is: how good is the estimator? That is, how good
of a job is the estimator doing at “guessing” the true unobservable thing in
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the population? In our specific example: how good is the sample mean
at estimating the true population mean of heights? This is an importannt
question, because there are many ways that we could use the information in
y to try to estimate the mean height. Why is equation (3.1) so popular?

To answer these questions, we need to enter a hypothetical situation,
which will likely not be the case in the real world. Let’s pretend we can
“see” the entire population of heights (all of Table 3.1). If we can see all
of Table (3.1), and not just the sample y, then we know the true mean
height. We just take the average of the entire population, and get 176.8.
So, ȳ = 174.1 is wrong!

Recall that the sample, y, is random. Each element of y was selected
randomly from the population. We could have selected a different sample
of size n = 20. For example, in a parallel universe, we could have gotten y∗
= {175.9, 175.3, 182.2, 178.6, 175.2, 180.3, 178.3, 183.7, 176.0, 167.4, 178.7,
178.7, 186.0, 175.6, 180.0, 168.7, 178.6, 173.1, 173.2, 187.1}, where the *
in y∗ denotes that we are in the parallel universe. In this parallel universe,
we got ȳ∗ = 177.6. But in every universe, the population (table 3.1), is the
same.

So, ȳ is a random variable. ȳ is random because y is random. We could
have drawn a different random sample, in which case we would have gotten a
different ȳ. In our example, there are a near infinite number (about 4×1020)
of different samples of size n = 20, and ȳs, that we could get from the same
population. Some of the ȳs will be close to the true population mean height
of 176.8, others far away. Whether or not ȳ is a good idea for estimating
the population mean E(y) can be determined by analyzing all the possible
values that ȳ can take.

3.2.2 Sampling distribution of the sample mean

Recall the discussion on probability functions in Chapter 2. A random vari-
able (usually) has a probability function. This probability function describes
all the possible values that the random variable can take, assigning a prob-
ability to each possibility. The form of the probability function depends on
the nature of the random variable.

When the random variable is an estimator, then the probability func-
tion gets a special name - the sampling distribution. That is, a sampling
distribution is just a fancy name for the probability function of an estima-
tor. The sampling distribution is a hypothetical construct. It describes the
probability of outcomes of ȳ, but in the real world we only get one sample
y and one estimate ȳ.

An alternative way of defining the sampling distribution follows. Imag-
ine that you could draw all possible random samples of size n = 20 from
the population, calculate ȳ each time, and construct a relative frequency
diagram (a histogram) for all of the ȳs. This relative frequency diagram
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Figure 3.1: Histogram for 1 million ȳs
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would be the sampling distribution of the estimator ȳ for n = 20.
This alternative definition of the sampling distribution can be approxi-

mated using a computer. Using a computer, I have drawn 1 million different
random samples of size n = 20 from table (3.1), and have calculated ȳ each
time. (This takes about 10 seconds on a fast computer). I have drawn a his-
togram using all of the ȳs (figure 3.1). Figure (3.1) is a simulated sampling
distribution.

Which probability function describes ȳ? Look again at equation (3.1).
Notice the summation operator. ȳ involves taking the sum of random vari-
ables (the yis). It turns out that if the sample size is large enough (our n =
20 might be a bit too small) then the central limit theorem applies, and ȳ is
normally distributed (recall the summation of dice). Notice also that figure
(3.1) resembles a normal distribution.

We will derive some features of an estimator from its sampling distribu-
tion. These features will tell us whether the estimator is “good” or “bad”.
Some important properties of the estimator are its mean (expected value)
and its variance. This may be a strange idea at first. For example, we will
take the expected value of the sample mean (which is an estimator for an
expected value). That is, we will take the mean of the sample mean (meta!).

Three important properties of an estimator, that will largely guide whether
the estimator is “good” or not, are bias, efficiency, and consistency. These
properties are partly determined from the sampling distribution of the esti-
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mator, and we will now discuss each property in turn.

3.2.3 Bias

What happens if we consider the expected value, or the mean, of an esti-
mator? An estimator is random, so it should have a mean. What would we
want the expected value of the estimator to be? The thing we are trying
to estimate, of course. So, if we are estimating the population mean using
the sample mean (equation 3.1), then we want to get the "right" answer on
average. That is, we want E[ȳ] = E[y]. If this is true, then I can "expect" to
get the right answer when using ȳ in many situations.

If E[ȳ] = E[y], then ȳ is said to be unbiased. If E[ȳ] 6= E[y], then ȳ
would be a biased estimator; it would not give us the “right” answer on
average. Given the popularity of ȳ as an estimator for the population mean,
you might anticipate that it is an unbiased estimator. The following is a
short proof of the unbiasedness of the sample average.

Assume that yi ∼ (µy, σ2
y), and that the yis are iid. This just says that

each random variable, yi, in the sample, has the same population mean
(µy) and population variance (σ2

y). Now, take the expected value of the
estimator:

E [ȳ] = E
[

1
n

n∑
i=1

yi

]

= 1
n

E
[
n∑
i=1

yi

]

= 1
n

E [y1 + y2 + · · ·+ yn]

= 1
n

(E [y1] + E [y2] + · · ·+ E [yn])

= 1
n

(µy + µy + · · ·+ µy)

= nµy
n

= µy

(3.2)

We find that the expected value of ȳ is equal to the true unobservable
population mean, and so ȳ is an unbiased estimator.

3.2.4 Efficiency

Suppose that the estimator is unbiased. What happens now if we consider
the variance of an estimator? What do want this variance to be? We would
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want it to be as small as possible. That is, we would want the estimator to
have a high probability of being close to the thing we are trying to estimate.
In the case of ȳ, we should hope that the Var[ȳ] is small so that on average,
ȳ is close to µy.

Efficiency is when an estimator has the smallest variance, compared to all
other potential estimators. We will restrict our attention to other estimators
that are also linear and unbiased. So, ȳ is efficient if Var[ȳ] ≤ Var[µ̂y],
where µ̂y is any other linear unbiased estimator for the population mean of
y. It turns out that there are many linear and unbiased estimators for the
population mean, but that the sample mean has the smallest variance. So,
we say that ȳ is efficient.

The proof of the efficiency of ȳ is omitted, however, an important part
of the proof is included. In order to compare the variance of ȳ to other
potential estimators, we first have to be able to derive it:

Var [ȳ] = Var
[

1
n

n∑
i=1

yi

]

= 1
n2 Var

[
n∑
i=1

yi

]

= 1
n2 Var [y1 + y2 + · · ·+ yn]

= 1
n2 (Var [y1] + Var [y2] + · · ·+ Var [yn])

= 1
n2

(
σ2
y + σ2

y + · · ·+ σ2
y

)

=
nσ2

y

n2 =
σ2
y

n

(3.3)

Note that the n in the denominator means the variance gets smaller as the
sample size grows. That is, a larger sample provides an estimate that is on
average closer to the true population mean. This is one reason why larger
samples are better than smaller ones.

Now that we have derived the mean and variance of ȳ, and have used
the central limit theorem to say that ȳ is normally distributed, we can write
the full sampling distribution: ȳ ∼ N(µy, σ2

y/n). Recall that this sampling
distribution contains all the knowledge that we can have about the random
variable ȳ. This sampling distribution is not only useful to determine the
properties of unbiasedness, efficiency, and consistency, but will also be useful
for hypothesis testing.
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3.2.5 Consistency

Consistency is the last statistical property of an estimator that we will
consider. An estimator is consistent if, having all possible information in
the population, it provides the “right answer” every time. That is, as the
sample size grows to infinity, the estimator provides the thing it’s trying
to estimate with probability 1. Two conditions are required for ȳ to be
(strongly) consistent: limn→∞ E[ȳ] = µy and limn→∞Var[ȳ] = 0. The first
condition says that the bias should disappear as the sample size grows. Since
ȳ is unbiased this condition is easily met. The second condition says that
the variance of the estimator should go to 0 as the sample size grows; this
is easily verified by noting the n in the denominator of Var[y].

Consistency is the most important property for an estimator to have.
Without consistency, the estimator is useless. In all, we have shown that ȳ
is unbiased, efficient, and consistent. Sometimes the acronym BLUE (best
linear unbiased estimator) is used to describe such an estimator. That ȳ is
BLUE is a very good reason to use it as an estimator for µy, among the
many possibilities.

3.3 Hypothesis Tests (known σ2
y)

The types of hypotheses we are talking about concern statements about the
unobservable population. For example, we might hypothesize that the true
population mean height of U of M students is 173 cm. A hypothesis test uses
the information in the sample to assess the plausibility of the hypothesis. In
general, a hypothesis test begins with a null hypothesis, and an alternative
hypothesis. For example:

H0 : µy = µy,0

HA : µy 6= µy,0
(3.4)

H0 is the null hypothesis. The null hypothesis is “choosing” a value
for the population mean, µy. The hypothesized value of the population
mean is denoted µy,0. The alternative hypothesis (HA) is two-sided; the null
hypothesis is wrong if the population mean (µy) is either “too small” or “too
big” relative to the hypothesized value. Since most tests in econometrics are
two-sided, we will not consider one-sided tests here, although they are very
similar.

The hypothesis test concludes with either: (i) “reject” H0 in favour
of HA, or (ii) “fail to reject” H0. Which decision is reached ultimately
depends on a probability (p-value), and on the researcher (you) deciding
subjectively whether this probability is small or large. The sample data, and
our knowledge of the sampling distribution of the estimator, will determine
this probability.
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Let’s go back to the heights example. From our sample of n = 20 we
estimated the population mean to be ȳ = 174.1. Suppose that the null and
alternative hypotheses are:

H0 : µy = 173
HA : µy 6= 173

(3.5)

Our estimate of 174.1 is clearly different from our hypothesis that the true
population mean height is 173. Notice that the difference between what we
actually estimated from the sample, and our null hypothesis, is 174.1−173 =
1.1. This difference of 1.1 does not necessarily imply we should reject the
null hypothesis. Rather, is this difference big enough to warrant rejection of
H0? More accurately, we should only reject H0 if the probability of getting
a ȳ further away than 1.1 from H0, is small. This probability is called a
p-value.

Recall once again that ȳ is a random variable. Its value depends on the
random sample that we draw from the population. A different sample might
give us ȳ = 190. This would be “worse” for the null hypothesis of 173, than
getting the value ȳ = 174.1. Out of all the samples that we could draw, out
of all the parallel universes, what proportion of them would provide a ȳ that
is further than 1.1 from H0? Imagine that only 4.3% of possible samples
from the population were further than 1.1 from H0. We have to decide one
of two things. Either we have witnessed a rare event (are living in a strange
universe) and the null is true, or the null is false. The actual p-value for
this example is not 4.3%. We will now discuss how to determine the actual
p-value for this problem, and for other problems in general.

As we have repeatedly stated, ȳ is a random variable. It has a probability
function, which we call a sampling distribution (because it’s an estimator).
We have derived the sampling distribution: ȳ ∼ N(µy, σ2

y/n). The sampling
distribution can be used to calculate various events involving ȳ. For example,
if we want to know the probability that ȳ > 18, we can draw out the normal
curve (provided that we know µy and σ2

y/n) and calculate the area under the
curve, to the right of 18.

Classical hypothesis testing proceeds by assuming that H0 is true. If
H0 is true, then the sampling distribution of ȳ is N(µy,0, σ2

y/n). That is, if
the null hypothesis is correct, the true mean of ȳ is µy,0. To calculate the
p-value, we still need to know σ2

y . For now, we will assume that it is know,
but this is an unrealistic assumption. In the real world, we will have to
estimate σ2

y .
Assuming that we know that σ2

y = 39.7 (again, this is very unrealistic)
then we have the variance of the sample average (σ2

y/n = 39.7/20 = 2.0), and so
the full sampling distribution of the sample mean under the null hypothesis
is: ȳ ∼ N(173, 2). This probability function is drawn in figure (3.2). All
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Figure 3.2: Normal distribution with µ = 173 and σ2 = 39.7/20. Shaded area
is the probability that the normal variable is greater than 174.1.
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that remains is to calculate the probability of obtaining a ȳ that is more
adverse to the null hypothesis than the one we just calculated. Half of this
probability is represented by the shaded region in figure (3.2). This is a two
sided test, so it doesn’t matter if ȳ is too large or too small: we need to
multiply the one-sided p-value by 2. So, the p-value for our two-sided test
is 0.22× 2 = 0.44.

The interpretation of the p-value of 0.44 is as follows. If the null hypoth-
esis of H0 = 173 is true, then there is a 44% chance of observing a ȳ that
is further away from 173 than the difference of 174.1 − 173 = 1.1 that we
just observed. Would you “reject” or “fail to reject” based on this? Most
researchers would fail to reject. There is a high probability of getting a ȳ
much more adverse to the null, so the null seems plausible.

3.3.1 Significance of a test

At what point should we decide that the p-value is too small, and reject
the null hypothesis? The choice is somewhat arbitrary, and is up to the
researcher (you). Standard choices have been 10%, 5%, and 1%. A pre-
decided maximum p-value under which H0 will be rejected is called the
significance level of the test. It is sometimes denoted by α. In the previous
example, we fail to reject the null at the 10% significance level. Note that
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failing to reject at the 10% level implies that we also fail to reject H0 at the
5% and 1% significance levels.

3.3.2 Type I error

Take another look at figure (3.2). Even when the null hypothesis is true
and figure (3.2) is the correct sampling distribution for ȳ, we will sometimes
randomly draw a weird sample that makes H0 appear to be “wrong”. That
is, even when the null is true, in some of the parallel universes we will draw
a sample that gives a ȳ that is very far from the truth. In these cases, we
will erroneously reject the null. If the null hypothesis is falsely rejected, it
is called a type I error. Type I error is the probability that H0 is rejected
when the null is true:

Pr(type I error) = Pr(reject H0 | H0 is true) (3.6)

How do we determine what this type I error will be? As soon as we
pick the significance of the test, it has been determined. That is, type I
error = α. When we decide that 5% of ȳs that are furthest from H0 are
just too rare, we are deciding that we will make a type I error in 5% of
the parallel universes (or in 5% of other similar situations). That is, if we
conduct thousands of scientific studies where we always use α = 5%, in 5%
of those studies where we reject the null, we will be doing so falsely.

In reality, we do not know the population values, so we will never know
if we have made a type I error or not. That is, the idea of type I error tells
us nothing about the particular sample that we are working with. It only
tells us something about what happens through repeated applications of our
tested procedure.

3.3.3 Type II error

There is another type of error we can make. There are two possibilities
for H0: either it is true or false. In type I error, we considered that H0 is
actually true. If we consider that H0 is actually false, then we make a type
II error if we fail to reject. The probability of a type II error is:

Pr(type II error) = Pr(fail to reject H0 | H0 is false) (3.7)

If H0 is actually false, one of two things can happen: we “reject” or we
“fail to reject”. The probabilities of both of these events must sum to 1
(something must happen). So:

Pr(1− type II error) = Pr(reject H0 | H0 is false) (3.8)

Equation (3.8) is called the power of the test. We want the power to be
as high as possible. That is, we do not want to make a type II error, and
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we want the probability of rejection to be as high as possible when H0 is
actually false.

Determining the type II error (and power) of a test is difficult or impossi-
ble. This is because power depends on knowing the unobservable population.
The concept is useful, however, when we are trying to find the “best” test
available. In may be possible to determine that some ways of testing are
more powerful than others, even though we may not know what the actual
numbers are.

3.3.4 Test statistics

A test statistic is a convenient way of assessing the null hypothesis, and
provides an easier way to obtain a p-value. If we wanted to use the above
testing procedure for different problems, we would have to “graph” a differ-
ent normal curve (similar to the one in figure 3.2), and calculate a different
area under the curve, for each testing problem. Decades ago, calculating
an area under the normal curve was difficult (now it is easily done by com-
puters). Consequently, a method was devised so that every such testing
problem would use the standard normal curve. That way, different areas
under the curve could be tabulated for various values on the x-axis.

To standardize a variable, we subtract its mean and divide by its standard
deviation. This creates a new normal random variable from the old one,
called a “standard normal” variable. For example, let y ∼ N(µy, σ2

y). Create
a new variable z where:

z = y − µy
σy

(3.9)

Now, z is still normally distributed, but has mean 0 and variance 1 since

E[z] = E[y − µy] = E[y]− µy = µy − µy = 0
and

Var[z] = Var
[
y

σy

]
= Var[y]

σ2
y

=
σ2
y

σ2
y

= 1

(refer to the rules of mean and variance).
How is this helpful? Recall the sampling distribution of ȳ under the

null hypothesis: ȳ ∼ N(µy,0, σ2
y/n). Create a new variable z. Subtract µy,0

(the mean of ȳ if the null is true) from ȳ. Now z has mean 0 (if the null is
actually true). Divide by the standard error (standard error = the standard
deviation of an estimator) of ȳ, and z has variance of 1. That is:

z = ȳ − µy,0√
σ2

y/n
∼ N(0, 1) (3.10)

This is the “z test statistic” for the null hypothesis that µy = µy,0. If the
null is true, then ȳ should be close to µy,0, implying that z should be close
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to 0. The probability of observing a ȳ further away from H0 than what we
just observed from the sample is obtained by plugging ȳ and µy,0 into the
z statistic formula, and calculating a probability using the standard normal
distribution. From our heights example, the z statistic is:

z = 174.1− 173√
39.7
20

= 0.78

Now, the question: “what is the probability of getting further away than
174.1 from the null hypothesis of 173?” has just been translated to: “What
is the probability of a N(0, 1) variable being greater than 0.78 (or less than
-0.78)?” So, as you may have guessed:

Pr(z > 0.78) = 0.22 (3.11)

Since all such testing problems can be standardized, we only need to
calculate the area under the curve for several possible z values. These were
tabulated long ago, and are reproduced in Table (3.2).

3.3.5 Critical values

Critical values are the most extreme values allowable for the test statistic,
before the null hypothesis is rejected. Suppose that we choose a 5% sig-
nificance level for our test. This means that if we receive a p-value that
is less than 0.0250 in Table 3.2, we should reject the null hypothesis (since
2.5%× 2 = 5%). If we use Table 3.2 to find the z statistic that corresponds
to a significance level, we are finding the critical value for the test. Accord-
ing to Table 3.2, we see that a p-value of 0.0250 corresponds to a z statistic
of 1.96. This is the 5% critical value. We know that if the z statistic that
we calculate for our test end up being greater than 1.96 or less than -1.96,
we will get a p-value that is less than 0.05, and we will reject the test.

3.3.6 Confidence intervals

A confidence interval corresponds to a significance level. Suppose that the
significance level is 5%. Then, the 95% confidence interval contains all of
the values for µy,0 (all values for null hypotheses) that will not be rejected
at 5% significance.

What is the probability that our z statistic will be within a certain
interval, if the null hypothesis is true? For example, what is the following
probability?

Pr (−1.96 ≤ z ≤ 1.96)? (3.12)

Using Table 3.2, we can figure out that this probability is 0.95. Note
that -1.96 and 1.96 are the left and right critical values, respectively, for a



3. STATISTICS REVIEW 35

test with 5% significance. Now, to solve for the confidence interval around
ȳ, we will first substitute the formula for the z statistic into equation 3.12:

Pr
(
−1.96 ≤ ȳ − µy,0√

σ2
y/n

≤ 1.96
)

= 0.95 (3.13)

Finally, we solve equation 3.13 so that the null hypothesis µy,0 is in the
middle of the probability statement:

Pr
(
ȳ − 1.96×

√
σ2

y

n ≤ µy,0 ≤ ȳ + 1.96×
√

σ2
y

n

)
= 0.95 (3.14)

This just says that 1.96 × σ2
y/n is the maximum distance that the null

hypothesis can be from the sample average that we calculate, before we
would get a p-value less than 0.05, and reject the test at the 5% significance
level.

An alternative interpretation of the confidence interval (other than con-
taining the set of values for the null that won’t be rejected), is the following.
Out of many such 95% confidence intervals that we construct in many hy-
pothesis tests, 95% of such intervals will include the true population mean,
µy. Two common misinterpretations of a confidence interval are: (i) there’s
a 95% probability that µy lies within the interval; and (ii) the confidence in-
terval includes µy 95% of the time. The reason these last two interpretation
are wrong has to do with the fact that the confidence interval is random and
µy is fixed.

3.4 Hypothesis Tests (unknown σ2
y)

So far we have assumed that σ2
y is known. We needed this σ2

y in order to
calculate the variance of ȳ (which is σ2

y/n), and calculate our p-value.
But, if we have to estimate µy, it is unlikely that we would know σ2

y .
That is, if the population mean is unknown, it is likely that the population
variance would be unknown as well. Hence, we now need to figure out how
to estimate σ2

y from our sample of data, y.

3.4.1 Estimating σ2
y

Recall that the variance for a discrete random variable is defined as:

Var(Y ) =
K∑
i=1

pi × (Yi − E[Yi])2

where Yi are the different values that the random variable can take, and pi
are the probabilities of those values occurring. A sensible way of estimating
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σ2
y may be to take the sample average of the squared distances, but replacing

E[Yi] with ȳ. That is, a natural estimator for σ2
y might be:

σ̂2
y = 1

n

n∑
i=1

(yi − ȳ)2 (3.15)

When we considered whether or not ȳ was a good estimator for µy, we
first took the expected value of ȳ, and determined that it was unbiased.
That is, it turned out that E [ȳ] = µy. Well, it turns out that σ̂2

y is a biased
estimator! We won’t derive the expected value here, we will only state it:

E
[
σ̂2
y

]
= n− 1

n
σ2
y (3.16)

Equation 3.16 says that if we were to use equation 3.15 to estimate
the variance of y, on average our estimate would be a little bit too small
compared to the truth (by a factor of (n− 1)/n). However, armed with this
knowledge, we can construct what is called a bias corrected estimator. If
we just multiply the right-hand-side of 3.16 by n/(n− 1), the bias disappears!
That is, if we multiply the estimator σ̂2

y by n/(n− 1), the resulting estimator
is unbiased. This bias corrected estimator is usually denoted s2

y, where:

s2
y = n

n− 1 × σ̂
2
y = n

n− 1 ×
1
n

n∑
i=1

(yi − ȳ)2 = 1
n− 1

n∑
i=1

(yi − ȳ)2 (3.17)

3.4.2 The t-test
Now that we know how to estimate σ2

y , we can estimate the variance of the
sample average using:

Estimated variance of ȳ =
s2
y

n

We can implement hypothesis testing by replacing the unknown σ2
y with its

estimator s2
y. The z test statistic now becomes:

ȳ − µy,0√
s2

y/n
= t

This is the t statistic. Because we have replaced σ2
y with s2

y (a random
estimator) in the z statistic formula, the form of the randomness of z has
changed. The t statistic is no longer a standard normal variable. It follows
its own probability distribution, called the t distribution. When performing
a t test, the p-values are different than in Table 3.2. However, as the sample
size grows, the t distribution becomes the standard normal distribution.
This means that, for sample sizes of approximately n > 100, using the
standard normal distribution (Table 3.2) instead of the t distribution, makes
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very little difference. For the purposes of this course, we will assume that
the sample size is large enough that the t statistic follows a standard normal
distribution.

Finally, note that confidence intervals can be constructed, in practice, by
replacing the unknown σ2

y in equation 3.14 with the estimator s2
y. As long as

the sample size is reasonably large, we do not have to worry about replacing
the critical values in the confidence interval formula (for example, 1.96) with
critical values from the t distribution. An example of performing a t test
and constructing a confidence interval, is left for the Review Questions.

3.5 Review Questions
1. Prove that ȳ is a random variable. Why might ȳ follow a Normal

distribution? What is the sampling distribution for ȳ?

2. Derive the mean and variance of ȳ. How does this help us determine
if ȳ is: (i) unbiased; (ii) efficient; and (iii) consistent?

3. Assume that yi ∼ (µy, σ2
y), and that yi is i.i.d. Let µ̃y = y1+yn

2 . Is
µ̃y an unbiased estimator for µy? Compare the variance of µ̃y to the
variance of ȳ.

4. Assume that yi ∼ (µy, σ2
y), that yi is i.i.d., and that the sample size,

n, is even. Let

µ̂y = 1
2ny1 + 3

2ny2 + 1
2ny3 + 3

2ny4 + · · ·+ 1
2nyn−1 + 3

2nyn

Is µ̂y an unbiased estimator for µy? Compare the variance of µ̂y to
the variance of ȳ.

5. Refer to the above two questions. Are µ̃y and µ̂y consistent estimators
for µy?

6. Perform a t test of the null hypothesis in equation (3.5), using the
heights data from table 3.1. Also, construct 95% and 90% confidence
intervals around ȳ.

3.6 Answers
1. The formula for ȳ is 1/n

∑n
i=1 yi. It is a linear function of the random

yi values, so it is a random variable itself. ȳ might follow a Normal
distribution due to the central limit theorem, which (loosely speaking)
says that if we add up random variables the resulting sum tends to be
Normally distributed. Note the summation operator in the formula
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for ȳ. Finally, the full sampling distribution can be written as: ȳ ∼
N(µy, σ2

y/n).

2. The mean of ȳ is derived in equation (3.2) and the variance in equation
(3.3). (i) The mean of ȳ tells us that the estimator is unbiased. (ii)
The variance of ȳ allows us to compare to the variance of all other
possible linear and unbiased estimators of µy, and determine that σ2

y/n
is smallest, and thus ȳ is efficient. (iii) The n in the denominator
of σ2

y/n shows us that ȳ is consistent. We know that the estimator
is unbiased, and as the sample size grows, the variance of ȳ goes to
zero. This means that with a infinitely large sample size, our estimator
would give the value µy with probability 1.

3. To derive the bias of the estimator µ̃y, we compare its expected value
to µy:

E [µ̃y] = E
[
y1 + yn

2

]
= 1

2E [y1 + yn] = 2µy
2 = µy

Since the expected value of the estimator is equal to µy, the estimator
is unbiased.
The variance of µ̃y is:

Var [µ̃y] = Var
[
y1 + yn

2

]
= 1

4Var [y1 + yn]

The i.i.d. assumption gives us the independence of the yi values, al-
lowing us to expand within the variance operator:

1
4Var [y1 + yn] = 1

4 (Var [y1] + Var [yn]) =
2σ2

y

4 =
σ2
y

2

Comparing this variance to the variance of the sample average, we
find:

σ2
y

2 >
σ2
y

n
;n > 2

which is not surprising result, since we know that ȳ is an efficient
estimator.

4. Again, we start by taking the expected value of the estimator:

E [µ̂y] = E
[

1
2ny1 + 3

2ny2 + 1
2ny3 + · · ·+ 3

2nyn
]

= 1
2nµy + 3

2nµy + 1
2nµy + · · ·+ 3

2nµy

= µy

So, µ̂y is an unbiased estimator.
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Next, we find the variance of µ̂y, again making use of the independence
assumption:

Var [µ̂y] = Var
[

1
2ny1 + 3

2ny2 + 1
2ny3 + · · ·+ 3

2nyn
]

= 1
4n2 Var [y1] + 9

4n2 Var [y2] + . . .

= 1
4n2 σ

2
y + 9

4n2 σ
2
y + . . .

= 5
4n σ

2
y

We can see that this variance is larger than the variance of ȳ, which
is another illustration of the efficiency property of ȳ.

5. µ̃y (for example) is a consistent estimator if limn→∞ E[µ̃y] = µy and
limn→∞Var[µ̃y] = 0. We have already shown that the estimator is
unbiased, so the first condition is satisfied. However, the variance of
this estimator does not go to 0 as the sample size increases, so this
estimator is not consistent! That is:

lim
n→∞

σ2
y

2 =
σ2
y

2

On the other hand, the estimator µ̂y is consistent, since there is an n
in the denominator of 5

4nσ
2
y .

6. The null and alternative hypotheses are:

H0 : µy = 173
HA : µy 6= 173

The sample mean and the sample variance are ȳ = 174.1 and s2
y = 53.0.

The sample size is n = 20. The t statistic is:

t = 174.1− 173√
53.0/20

= 0.68

Assuming that the sample size is large enough (even though n = 20
is too small), we can use the standard Normal distribution, and table
3.2 to find that the p−value = 0.2483× 2 = 0.5. We fail to reject the
null hypothesis.
The 95% confidence interval is:

ȳ ± 1.96×
√
s2

y/n = 174.1± 1.96× 1.63 = [170.9, 177.3]
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For the 90% confidence interval, we need to change the critical value
of 1.96. Using table 3.2, we find the z value which has 5% area under
the curve (5% × 2 = 10% significance, 100% - 10% = 90% confidence).
The 10% critical value is 1.64, so the 90% confidence interval is:

ȳ ± 1.64×
√
s2

y/n = 174.1± 1.64× 1.63 = [171.4, 176.8]
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Table 3.2: Area under the standard normal curve, to the right of z.
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
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Ordinary Least Squares
(OLS)

In this chapter, we discuss a method to estimate the marginal effect of
one variable on another. Economic models typically posit that one variable
causes or determines another variable. Seldom (or never) does the economic
model quantify the marginal effect. We need data and econometrics in order
to estimate a number for the marginal effect.

We begin the chapter with two motivating examples. They are meant
to show that many simple economic models can be represented through the
equation for a line. We then proceed to estimate this line uses data. The
method that we use to fit a straight line through data points is ordinary
least squares (OLS) or just least squares. We will make some simplifying
assumptions, and discuss the properties of the OLS estimator.

4.1 Motivating Example 1: Demand for Liquor
How much less alcohol will people consume if we raise the price? In first-
year microeconomics you learned about the law of demand. The quantity
demanded of a product should depend on its price (and other things):

Qd = a+ bP (4.1)

where a is the intercept of the demand “curve”, and b is the slope. See figure
4.1. You learned that the slope of the demand curve, b, depends on the type
of good. For example, necessities such as medicine should have relatively
flatter demand curves than luxuries such as a diamonds.

Estimating the slope of the demand curve is important for policy makers
who might want to affect the quantity demanded of a good. For example,
we might want to reduce consumption of alcohol or cigarettes by increasing
price (taxing them). But before we fiddle with the price of these products,

42
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Figure 4.1: A typical demand “curve”. Note this is an “inverse” demand
curve (quantity demanded is on the vertical axis, and price on the horizontal
axis).

Qd

P

a

b

we should estimate how much quantity demanded will change given a change
in price (if it changes at all).

Using data from Prest (1949), we plot the yearly (from 1870 to 1938)
per-capita consumption of spirits (in proof gallons), and the relative price
of spirits (deflated by a cost-of-living index). See figure 4.2. How should
we fit a line through the data in figure 4.2? If we can pick a “good” line,
then we will have a good estimate for the slope, b. This estimated b could
then be used to determine how much alcohol consumption will decrease if we
increase the tax on alcohol by $1, for example. Note that b is the marginal
effect of a change in price of spirits, on the quantity demanded of spirits,
holding all else constant.

4.2 Motivating Example 2: Marginal Propensity
to Consume

This example uses data on total disposable income and consumption (in
millions of Pounds) from 1971-1985 (quarterly) in the U.K. (Verbeek and
Marno, 2008). The data is shown in figure 4.3.

An increase in consumption is induced by an increase in income, but not
all of the increase in income is consumed. Marginal propensity to consume
is the proportion of an increase in disposable income that individuals spend
on consumption:

MPC = ∆C
∆Y (4.2)

where ∆C is the change in consumption “caused” by the change in income,
∆Y . John Maynard Keynes supposed that the MPC should be less than
one, but without data and econometrics there is no way to put an actual
number to the MPC.
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Figure 4.2: Per capita consumption, and price, of spirits. Choosing a line
through the data necessarily chooses the slope of the line, b, which deter-
mines how much Qd decreases for an increase in P .
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Figure 4.3: Income and consumption in the U.K. (Verbeek and Marno,
2008).
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We can also write the relationship between consumption and disposable
income through the equation of a line:

C = a+MPC × Y (4.3)

where a is again the intercept of the line (representing the amount of con-
sumption with disposable income of zero), and where this time MPC is
the slope of the line. Remember that MPC is the thing we are trying to
estimate.

One of the points we are trying to make here is that many economics
models can be represented by the equation of a straight line. If we can figure
out how to estimate the line, then we have an estimate for the slope (the
marginal effect), which is of great practical usefulness.

The next question is: how should we fit a line through data points (like
the ones in figures 4.2 and 4.3)? Before we determine how to pick the line,
however, we need to introduce some definitions and general notation.

4.3 The Linear Population Regression Model
The general regression model is:

Yi = β0 + β1Xi + εi (4.4)

• X is called the independent variable or regressor. It is the variable
that is assumed to cause the Y variable. In the “Demand for Liquor”
example, this variable was price (P ). See equation 4.1. In the MPC
example the regressor was income. See equation 4.3.

• Y is the dependent variable. This variable is assumed to be caused
by X (it depends on X). In the demand example the dependent vari-
able was quantity demanded (Qd) and in the MPC example it was
consumption (C).

• β0 is the population intercept. It was labelled a in both examples. It
is unobservable, but we can try to estimate it.

• β1 is the population slope. When X increases by 1, Y increases by
β1. This is the primary object of interest, and is unobservable. We
want to estimate β1. β1 is interpreted as the marginal effect in many
economics models.

• ε is the regression error term. It consists of all the other factors or
variables that determine Y , other than the X variable. All of these
other variables causing Y are combined into ε. ε is considered to be a
random variable since we can not observe it.
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• i = 1, . . . , n. The subscript i denotes the observation. n is the sample
size. For example, Y4 refers to the fourth Y observation in the data
set.

4.3.1 The importance of β1

Note that in equation 4.4, the object of interest is β1. It is the thing we are
trying to estimate. It is the causal, or marginal effect, of X on Y . That is,
a change in X of ∆X causes a β1 change in Y :

∆Y
∆X = β1

4.3.2 The importance of ε

ε (epsilon) is the random component of the model. Without ε, statistic-
s/econometrics is not required. ε represents all of the other things that
determine Y , other than X. They are all added up and lumped into this
one random variable. Because we can not observe all of these other factors,
we consider them to be random. The fact that ε is random makes Y random
as well.

Later, we will make some assumptions about the randomness of ε, that
will ultimately determine the properties of the way that we choose to esti-
mate β1.

4.3.3 Why it’s called a population model

Equation 4.4 is called a “population” model because it represents the true,
but unknown way in which the Y variable is “created” or “determined”. β0
and β1 are unknown (and so is ε). We will observe a sample of Y and X,
and use the sample to try to figure out the βs.

4.4 The estimated model
Our primary goal is to estimate β1 (the marginal effect of X on Y ), but to
do so we’ll also have to estimate β0. This estimated intercept and slope will
define a straight line. These estimates will be denoted b0 and b1, the OLS
intercept and slope.

Let’s start with a very simple example using data that I made up: Y =
{1, 4, 5, 4}, X = {2, 4, 6, 8}. The data, and estimated OLS line, are shown in
figure 4.4. The OLS estimated intercept is b0 = 1, and the estimated slope
is b1 = 0.5.

We still don’t know how to get b0 and b1! Before we decide how to fit a
straight line through some data points, we need to define two terms first.
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Figure 4.4: A simple data set with the estimated OLS line in blue. b0 is the
OLS intercept, and b1 is the OLS slope.
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4.4.1 OLS predicted values (Ŷi)

The OLS predicted (or fitted) values, are the values for Y that we get when
we “plug” the X values back into the estimated OLS line. These predicted Y
values are denoted by Ŷ . We can find each predicted value, Ŷi, by plugging
each Xi into the estimated equation.

In general, the estimated equation (or line) is written as:

Ŷi = b0 + b1Xi. (4.5)

For our simple example, equation 4.5 becomes Ŷi = 1+0.5Xi, and each OLS
predicted values is:

Ŷ1 = 1 + 0.5(2) = 2
Ŷ2 = 1 + 0.5(4) = 3
Ŷ3 = 1 + 0.5(6) = 4
Ŷ4 = 1 + 0.5(8) = 5

These OLS predicted values are added to the plot in figure 4.5. Notice how
each predicted value lies on the blue line, directly above or below the data
point.
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Figure 4.5: The OLS predicted values shown by ×.
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4.4.2 OLS residuals (ei)

An OLS predicted value tells us what the estimated model predicts for Y
when given a particular value of X. When we plug in the sample values for
X (as we did in the previous section), we see that the predicted values (Ŷi)
don’t quite line up with the actual Yi values. The differences between the
two are the OLS residuals. The OLS residuals are like prediction errors, and
are determined by:

ei = Yi − Ŷi (4.6)

Using equation 4.6 for our simple example, each OLS residual is:

e1 = 1− 2 = −1
e2 = 4− 3 = 1
e3 = 5− 4 = 1
e4 = 4− 5 = −1

These OLS residuals are indicated in figure 4.6. They are the vertical dis-
tances between the actual data points (the circles) and the OLS predicted
values (the ×).

Each data point (Yi) is equal to its predicted value, plus its residual.
That is, we can rearrange equation 4.6 and write:

Yi = Ŷi + ei



4. ORDINARY LEAST SQUARES (OLS) 49

Figure 4.6: The OLS residuals (ei) are the vertical distances between the
actual data points (circles) and the OLS predicted values (×).
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or, using equation 4.5 for the definition of Ŷi:

Yi = b0 + b1Xi + ei, (4.7)

which will be useful in the next chapter. Note that equation 4.7 is the
observable counterpart to the unobservable population model in equation
4.4.

4.5 How to choose b0 and b1, the OLS estimators
Now that we have defined the OLS residuals (ei), we can define the OLS
estimators b0 and b1 by coming up with an equation that will tell us how to
use the X and Y data.

The OLS estimators are defined in the following way. They are the values
for b0 and b1 that minimize the sum of squared vertical distances between
the OLS line and the actual data points (Yi). These vertical distances have
already been defined as the OLS residuals (ei). So the “objective” is to
choose b0 and b1 so that

∑n
i=1 e

2
i is minimized. This is an optimization

problem from calculus. Formally stated, the OLS estimator is the solution
to the minimization problem:

min
b0,b1

n∑
i=1

e2
i (4.8)
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Substituting the value for ei (equation 4.6) into equation 4.8:

min
b0,b1

n∑
i=1

(
Yi − Ŷi

)2

and substituting in the value for Ŷi (from equation 4.5) we get:

min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2 (4.9)

To solve this minimization problem, we take the partial derivatives of
∑n
i=1 e

2
i

with respect to b0 and b1, set those derivatives equal to zero, and solve for
b0 and b1. That is, we need to solve the two equations:

∂
(∑n

i=1 e
2
i

)
∂b0

= 0

∂
(∑n

i=1 e
2
i

)
∂b1

= 0

We leave the derivation for an exercise, and only write the solution here:

b1 =
∑n
i=1

[(
Yi − Ȳ

) (
Xi − X̄

)]
∑n
i=1

(
Xi − X̄

)2

b0 = Ȳ − b1X̄

(4.10)

These equations tell us how to pick a line (by picking an intercept and
slope) in order to minimize the sum of squared vertical distances between
the chosen line and each data point. The next question is, why should we
choose a line in such a way?

4.6 The Assumptions and Properties of OLS
So, what’s so great about OLS? There are many other ways that we could
fit a line through some data points:

• instead of vertical distances, we could minimize the sum of horizontal
or orthogonal distances

• instead of taking the sum of squared distances, we could take the sum
of absolute distances

• we could divide the sample into two parts, get the average Y and X
coordinates, and connect the dots
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• we could pick (randomly or not) any two different data points and
connect them

The main point here is that there are many ways that we could fit a line, so
we should wonder why OLS is so special. Some of these alternatives above
are obviously silly, but some lead to alternative estimators that have merit
in various situations.

Recall that estimators are random variables (see Chapter 3). The OLS
slope and intercept estimators have sampling distributions, with a mean and
a variance. The reason why we use OLS is because these random estimators
have good statistical properties (under certain assumptions). Here, we list
the assumptions, and return to them at various stages throughout the book.

4.6.1 The OLS assumptions

A1 The population model is linear in the βs.

A2 There is no perfect multicollinearity between the X variables.

A3 The random error term, ε, has mean zero.

A4 ε is identically and independently distributed.

A5 ε and X are independent.

A6 ε is Normally distributed.

4.6.2 The properties of OLS

Provided that the above six assumptions hold:

• The OLS estimator is unbiased.

• The OLS estimator is efficient.

• The OLS estimator is consistent.

• The OLS estimator is Normally distributed.

Note that not all assumptions are needed for each of the above four prop-
erties. Additionally, some of the assumptions A1 - A6 are often unrealistic.
Testing for the validity of these assumptions, re-evaluating the properties of
the OLS estimator in the absence of each assumption, and figuring out how
to recover unbiasedness, efficiencyand consistency, would lead to some dif-
ferent estimators, and would form the basis for future econometrics courses.
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4.7 Review Questions
1. Let the sample data be Y = {5, 2, 2, 3} and X = {5, 3, 5, 3}.

a) Write down the population model.
b) Calculate the OLS estimated slope and intercept, using equation

4.10.
c) Interpret these estimates.
d) Calculate the OLS predicted values and residuals.
e) Using R, verify your answer in part (b).

2. How are the formulas for b1 and b0 derived?

3. Explain why, even if assumption A.6 does not hold, the OLS estimator
may still be normally distributed.

4. Why is the ε term needed in equation 4.4?

5. Download the MPC data from: http://home.cc.umanitoba.ca/~godwinrt/
3040/data/mpc.csv. Use R to aid in the following exercises.

a) Write down the population model you are trying to estimate.
Describe the components of this model.

b) Plot the data.
c) Calculate the OLS estimated slope and intercept.
d) Interpret these estimates.
e) Add the estimated regression line to the plot of the data.

4.8 Answers
1. a) The assumed population model is Yi = β0 +β1 + ε. It is assumed

that the X variable “causes” the Y variable. The Y and X data
has been given to us. β0 and β1 are unknown parameters to be
estimated. ε represents all the other factors (or variables) that
cause Y but that are unobserved.

b)

Ȳ = 3, X̄ = 4

b1 = (5− 3)(5− 4) + (2− 3)(3− 4) + (2− 3)(5− 4) + (3− 3)(3− 4)
(5− 4)2 + (3− 4)2 + (5− 4)2 + (3− 4)2

= 0.5
b0 = 3− 0.5× 4 = 1

http://home.cc.umanitoba.ca/~godwinrt/3040/data/mpc.csv
http://home.cc.umanitoba.ca/~godwinrt/3040/data/mpc.csv
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c) b1 is the estimated slope, or marginal effect. Numerically, the
values b1 = 0.5 means that it is estimated that when X increases
by 1, Y will increase by 0.5. b0 is the estimated intercept. Nu-
merically, when X is 0, it is estimated that Y is 1.

d)

Ȳ1 = 1 + 0.5(5) = 3.5
Ȳ1 = 1 + 0.5(3) = 2.5
Ȳ1 = 1 + 0.5(5) = 3.5
Ȳ1 = 1 + 0.5(3) = 2.5
e1 = 5− 3.5 = 1.5
e2 = 2− 2.5 = −0.5
e3 = 2− 3.5 = −1.5
e4 = 3− 2.5 = −0.5

e) In R, enter the following three commands:
y <- c(5,2,2,3)
x <- c(5,3,5,3)
lm(y ~ x)

and you should see the following output:
Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

1.0 0.5

2. The formulas for the OLS estimator are derived by minimizing the
sum of squared OLS residuals. This involves solving an optimization
problem in calculus. The derivatives of the sum of squared residuals,
with respect to b0 and b1, are set equal to 0 and solved, providing the
formulas in equation 4.10.

3. If assumption A.6 holds, then the OLS estimators will be Normally
distributed. This is because, by the population model (equation 4.4),
Y is a linear function of ε, hence Y is also Normally distributed. Fur-
thermore, because b1 and b0 are linear functions of Y , they are also
Normally distributed.
However, even without A.6, the OLS estimator may still be Normally
distributed. This is again due to the central limit theorem. Look
again at the formula for the OLS estimator (equation 4.10) and note
the summation sign. Since the OLS estimator involves summing the
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random variable Y , as long as the sample size is large enough, the
resulting sum should be Normally distributed.

4. The error term is needed in order to represent all of the other factors
that influence Y , besides the X variable. Since these other factors
(or variables) are unobserved, we consider them to be random, and
add them all up into one term. ε represents the randomness in the
population model, without which there would be no need for statistics
or econometrics.

5. a) The population model that we are trying to estimate is the con-
sumption model from equation 4.3: C = β0 + β1 × Y + ε, where
C is the independent variable (the “Y ” variable), β1 is the MPC,
Y is the independent variable (the “X” variable), ε represents all
the other variables that determine C, and where β0 doesn’t have
much economic interest.

b) First, you must load the data into R using the following two
commands (in R, each command should be on a single line):
mpcdata <- read.csv("http :// home.cc.umanitoba.ca/

~godwinrt /3040/ data/mpc.csv")
attach(mpcdata)

Once the data has been loaded, enter the following command (on
a single line), in order to plot the data:
plot(income ,consumption , main=" Consumption and

Income in the U.K.")

c) In order to calculate the OLS estimates for the intercept and
slope, run the following command in R:
lm(consumption ~ income)

d) The estimated slope on income is the estimated marginal propen-
sity to consume. That is, when income increases by 1, it is esti-
mated that consumption will increase by 0.869. The estimated
intercept of 176.848 is the amount of consumption when income
(or GDP) is zero, and since GDP is never zero, the intercept
doesn’t hold much economic interest.

e) In order to add the estimated regression line to your plot of data,
use the following command (choose your own colour!):
abline(lm(consumption ~ income), col = "red")
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OLS Continued

In this chapter, we discuss three extensions of OLS. First, we introduce the
regression R-square, which is a way to evaluate how well the estimated OLS
regression line fits the data. Second, we discuss how to test a null hypothesis
involving the βs (usually β1). Third, we discuss the use of dummy variables
in econometric models.

5.1 R-squared
R-squared is a “measure of fit” of the regression line. It is a number between
0 and 1 (as long as the model contains an intercept) that indicates how close
the data points are to the estimated line. More accurately, the regression
R-squared (R2) is the portion of variance in the Y variable that can be
explained by variation in the X variable.

Look again at the assumed population model:

Yi = β0 + β1Xi + εi

The assumption is that changes in X lead to changes in Y . We are using
the observed changes in both variables to choose the regression line (via
OLS). But, changes in X aren’t the only reason that Y changes. There are
unobservable variables in the error term (ε) that lead to changes in Y . How
much of the changes in Y are coming from X (not ε)? R2 helps answers this
question.

The R2 can also be thought of as an overall measure of how well the
model explains the Y variable. That is, we are using information in X to
explain or predict Y by estimating a model. How well does the estimated
regression line “fit” the data? How well does the model explain the Y
variable? R2 provides a measure to address these questions. Let’s reiterate
the interpretations of R2 before we derive it. R2 measures:

• how well the estimated model explains the Y variable.

55
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Figure 5.1: Which estimated regression line fits better? Demand for spirits
(left) and demand for cigarettes (right). We might expect the regression on
the left to have a higher R2.
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• how well changes in X explain changes in Y .

• how well the estimated regression line “fits” the data.

• the portion of the variance in Y that can be explained using the esti-
mated model.

Figure 5.1 shows the estimated OLS regression line fitted to both the
demand for spirits and demand for cigarettes data. The estimated regression
line seems to fit the data better, or explain more of the variation in Q, for
spirits rather than for cigarettes. We will find that the R2 is indeed higher
for the spirits data. In some sense, the R2 can be used to compare OLS
regressions.

Figure 5.2 shows a hypothetical situation where, if all data moves ver-
tically further away from the estimated regression line, the regression line
stays the same, but the R2 decreases. That is, both the red (triangles) and
blue (circles) provide the same estimated b1, but the line fits the red data
better. Changes in X account for more of the changes in Y for the red data.
For the blue data, the unobserved factors (in ε) are accounting for more of
the changes (or variation) in Y .

5.1.1 The R2 formula

Now, we will derive the R2 statistic, beginning with the definition: “R-
squared is the portion of variance in Y that can be explained using the
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Figure 5.2: Two different data sets. The estimated regression line for both
data sets is the same. The blue data points (circles) are twice as far (ver-
tically) from the regression line as are the red data points (triangles). For
red data, R2 = 0.95. For blue data, R2 = 0.82.
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estimated model.” The population model is (equation 4.4):

Yi = β0 + β1Xi + εi

The estimated model is (equation 4.7):

Yi = b0 + b1Xi + ei

Recall that the OLS predicted value is (equation 4.5):

Ŷi = b0 + b1Xi

So:

Yi = Ŷi + ei (5.1)

Equation 5.1 shows that each Yi value has two parts: a part that can be
explained by OLS (Ŷi), and a part that cannot (ei). To get R2, we’ll start
by taking the sample variance of both sides of equation 5.1. This will break
the variance in Y up into two parts: variance the we can explain (variance
in Ŷi), and variance that we can’t explain (variance in ei).
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Recall that in Chapter 3, when we wanted to estimate the variance of y,
we used equation 3.17, which is the sample variance:

s2
y = 1

n− 1

n∑
i=1

(yi − ȳ)2

Taking the sample variance of both sides of equation 5.1 we get (there is no
sample covariance because Ŷi and ei are independent):

s2
Y = s2

Ŷ
+ s2

e

Or:

1
n− 1

n∑
i=1

(
Yi − Ȳ

)2
= 1
n− 1

n∑
i=1

(
Ŷi − ¯̂

Y
)2

+ 1
n− 1

n∑
i=1

(ei − ē)2 (5.2)

To simplify equation 5.2, we’ll make use of three algebraic properties:

• the (n− 1) cancel out

• ¯̂
Y = Ȳ

• ē = 0

Using these three properties, equation 5.2 becomes:∑(
Yi − Ȳ

)2
=
∑(

Ŷi − Ȳ
)2

+
∑

(ei)2 (5.3)

Notice that the terms in equation 5.3 are “sums of squares”, and equation
5.3 is often written as:

TSS = ESS +RSS (5.4)
where:

• TSS - total sum of squares

• ESS - explained sum of squares

• RSS - residual sum of squares

Now, we return to our definition of R2: “the portion of variance in Y that
can be explained using the estimated model.” This portion is written as:

R2 = ESS

TSS
(5.5)

We can also re-write the formula for R2 using equation 5.4:

R2 = 1− RSS

TSS
(5.6)
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Figure 5.3: The estimated regression line is essentially flat: b1 = 0. Observed
changes in X are not at all helpful in predicting changes in Y . There is “no
fit”, and R2 = 0.00.
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5.1.2 “No fit” and “perfect fit”

What is the worst possible situation, in terms of the “fit” of the estimated
regression line? If the X variable cannot explain any of the changes/varia-
tion in the Y variable, then the estimated model (the estimated regression
line) will be useless.

If the X observations are not useful in explaining changes in the Y
observations (that is, if the sample X and Y data are independent), then
b1 = 0. In this case, we have a situation of “no fit”, where R2 = 0. See
figure 5.3.

To see algebraically why R2 = 0 when b1 = 0, we start by looking at
equation 4.5 again:

Ŷi = b0 + b1Xi

So, if b1 = 0 then each predicted Ŷi value is equal to just b0 (all the predicted
values are the same). Additionally, when b1 = 0, by looking at the equation
for the OLS intercept estimator, we see that:

b0 = Ȳ − b1Xi = Ȳ

This mean that, if b1 = 0, each predicted value is equal to the sample average
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Figure 5.4: The estimated regression line exactly passes through each data
point. Observed changes in X perfectly predict changes in Y . There is
“perfect fit”, and R2 = 1.
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of Y : Ŷi = Ȳ . Hence, ESS = 0:

ESS =
∑(

Ŷi − Ȳ
)2

=
∑(

Ȳ − Ȳ
)2

= 0,

and R2 = 0.
Now, let’s consider the opposite extreme: a situation where we have a

“perfect fit”. Imagine that observed changes in X could perfectly predict a
change in Y . That is, if we knew the value of X, we would exactly know
the value of Y with certainty. What would our sample of data have to look
like in order for this to be the case? See figure 5.4.

In order for the estimated regression line to fit the data perfectly, all of
the observed data points must line up in a straight line. If this were so, the
estimated line would pass through each data point, the OLS predicted values
(Ŷi) would be exactly equal to the actual values (Yi), and there would be no
prediction error (ei = 0 ∀ i). Algebraically, Ŷi = Yi, so that ESS = TSS,
and R2 = 1.

The two cases that we have just considered, “no fit” and “perfect fit”,
are extremes. They should not actually occur in practice. In reality, the fit
of the line will be somewhere between these two extremes. If the worst that
can happen is “no fit” and the best is “ perfect fit”, then 0 ≤ R2 ≤ 1.
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5.2 Hypothesis testing
We’ll begin this section by looking at the variance of the OLS slope estimator
(Var [b1]). There are three reasons to get this formula:

1. Looking at it will provide insight into what determines the accuracy
(a smaller variance) of the estimator.

2. It is required to prove that OLS is an efficient estimator, and therefore
is BLUE.

3. It is needed for hypothesis testing.

5.2.1 The variance of b1

In chapter 3, we derived the variance of the estimator, ȳ. Similarly, b1 is a
random variable, since it is obtained from a formula involving the random
sample {Yi, Xi}, and it is common to consider the variance of a random
variable. However, deriving the variance of the OLS estimator is too difficult
for this course, and we simply write the result:

Var [b1] = σ2
ε∑

X2
i −

(
∑

Xi)2

n

, (5.7)

where σ2
ε is the variance of the error term ε, n is the sample size, and in

the denominator we see something that looks like the sample variance of Xi.
From equation 5.7, it can be seen that:

• Var [b1] decreases as n increases.

• Var [b1] decreases as the sample variation in X increases.

• Var [b1] decreases as variation in ε decreases.

We want our estimator to have as low a variance as possible! A lower
variance means that, on average, we have a higher probability of being close
to the “rights answer” (provided the estimator is unbiased). These factors
that lead to a lower Var [b1] make sense:

• If we have more information (larger n), it should be “easier” to pick
the right regression line.

• Since we are using changes inX to try to explain changes in Y , the big-
ger changes in X that we observe, the easier it is to pick the regression
line.

• The less unobservable changes there are (in ε that are causing changes
in Y , the easier it is to pick the regression line.
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We could discuss a similar formula for Var [b0] as well, however, there is
rarely any economic interest in the model’s intercept that we omit the dis-
cussion.

A final note. Var [b1] is required in order to prove that OLS is efficient
(the Gauss-Markov theorem). Proving that an estimator is efficient requires
that its variance is shown to be the smallest among all other possible candi-
date estimators (in the Gauss-Markov theorem other candidate estimators
are linear and unbiased ones). The Gauss-Markov theorem is very impor-
tant because it provides the reason for why OLS should be used: provided
(some of) assumptions A1-A6 hold, OLS is the best linear unbiased estima-
tor (BLUE) possible for estimating β1.

5.2.2 Test statistics and confidence intervals

Hypothesis testing in the context of OLS usually involves β1. That is, usually
we want to test if a marginal effect is equal to some value. For example, do
similarly qualified women earn less than men? Are the returns to education
the same for men and women? If we raise the taxes on cigarettes, will
consumption decrease? These are all questions that can be answered by
forming a null and alternative hypothesis, collecting data, estimating, and
rejecting or failing to reject the null. In the context of OLS, a two-sided null
and alternative hypothesis looks like:

H0 : β1 = β1,0

HA : β1 6= β1,0

A common hypothesis in economics is where the marginal effect is zero (X
does not cause Y ), so that the above null and alternative become:

H0 : β1 = 0
HA : β1 6= 0

As in chapter 3, we will begin with the z-test. In general, the z-statistic is
determined by:

z−statistic = estimate− value of H0√
Var [estimator]

(5.8)

This z-statistic is Normally distributed with mean 0 and variance 1 (z ∼
N(0, 1)), if H0 is true and Ȳ is Normal. In chapter 3, when our test involved
the population mean, equation 5.8 became:

z = ȳ − µY,0√
σ2

Y/n
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In OLS, when we are testing the slope (marginal effect) of the model, equa-
tion 5.8 becomes:

z = b1 − β1,0√
Var [b1]

,

where b1 is the estimate that we actually get from the sample, β1,0 is the
hypothesized value of the slope, and Var [b1] is given by equation 5.7.

As was the case in chapter 3, however, it is not realistic that we would
know the variance of b1. By looking again at equation 5.7, we see that the
unknown part is the variance of the error term, σ2

ε . If we could estimate σ2
ε ,

we would have an estimate for the variance of b1, and we could use a t-test
instead of a z-test.

Recall that the population model is:

Yi = β0 + β1Xi + εi,

and that the estimated model is:

Yi = b0 + b1Xi + ei

Each unobservable part in the population model (β0, β1, εi) has an observ-
able counter-part in the estimated model. So, if we want to know something
about ε we can use e. In fact, an estimator for the variance of ε is the sample
variance of the OLS residuals:

s2
ε = 1

n− 2

n∑
i=1

(ei − ē)2 = 1
n− 2

n∑
i=1

e2
i (5.9)

Why is the −2 in the denominator of equation 5.9? Recall that, in chapter
3, when we wanted to estimate σ2

y we used the sample variance of y:

s2
y = 1

n− 1

n∑
i=1

(yi − ȳ)2

and that the −1 in the denominator was a degrees-of-freedom correction, so
that the estimator is unbiased. We only had (n − 1) pieces of information
available to estimate σ2

y , after we had used up a piece of information to get
ȳ. The story is similar in equation 5.9. In order to get the OLS residuals,
we first have to estimate two things (b0 and b1):

ei = Yi − Ŷi = Yi − (b0 + b1Xi)

This uses up two pieces of information, leaving (n− 2) remaining when we
are using the ei. Now that we have an estimator for σ2

ε , we have an estimator
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for Var [b1] (we just replace the unknown σ2
ε with s2

ε ):

ˆVar [b1] = s2
ε∑

X2
i −

(
∑

Xi)2

n

And now, the t-statistic for testing β1 is obtained by substituting ˆVar [b1]
for Var [b1] in the z-statistic formula:

t = b1 − β1,0√
ˆVar [b1]

(5.10)

The denominator of 5.10 is often called the standard error of b1 (like a
standard deviation), and equation 5.10 is often written instead as:

t = b1 − β1,0
s.e. [b1] (5.11)

where s.e. [b1] stands for the estimated standard error of b1.
If the null hypothesis is true, the t-statistic in equation 5.11 follows

a t-distribution with degrees of freedom (n − k), where k is the number
of βs we have estimated (two). To obtain a p-value we should use the t-
distribution, however, if n is large, then the t-statistic follows the standard
Normal distribution. For the purposes of this course, we shall always assume
that n is large enough such that t ∼ N(0, 1). To obtain a p-value, we can
use the same table that we used at the end of chapter 3 (see Table 3.2).

5.2.3 Confidence intervals

Confidence intervals are obtained very similarly to how they were in chapter
3. The 95% confidence interval for b1 is:

b1 ± 1.96× s.e. [b1] (5.12)

The 95% confidence interval can be interpreted as follows: (i) if we were to
construct many such intervals (hypothetically), 95% of them would contain
the true value of β1; (ii) all of the values that we could choose for β1,0 that
we would fail to reject at the 5% significance level.

We can get the 90% confidence interval by changing the 1.96 in equation
5.12 to 1.65, and the 99% C.I. by changing it to 2.58, for example.

5.3 Dummy Variables
A dummy variable is a variable that takes on one of two values (usually
0 or 1). A dummy variable is also sometimes called a binary variable or
a dichotomous variable. We will consider that the independent variable
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(the regressor or “X” variable) in our population model (equation 4.4) is a
dummy variable, where:

Di =
{

0, if individual i belongs to group A
1, if individual i belongs to group B

Dummy variables are useful for estimating differences between groups,
where groups “A” and “B” can take on many definitions. For example, in
labour economics and many other areas of economics, it is common to use
a dummy variable to identify the gender of the individual.

5.3.1 A population model with a dummy variable

Now, let’s consider a population model with a dummy:

Yi = β0 + β1Di + εi, (5.13)

where Di = 0 if the individual is female, Di = 1 if the individual is male, and
Yi is the wage of the individual. How do we interpret β1 from equation 5.13?
Since Di is not a continuous variable, β1 is not a marginal effect, and we
cannot take the derivative of Y with respect to D when D is non-continuous.
Instead, let’s use conditional expectations to find the interpretation of β1.

Let’s consider the expected wage of a male worker:

E [Yi|Di = 1] = β0 + β1(1) + E [εi] = β0 + β1 (5.14)

We have simply substituted in the population model (equation 5.13) for Yi,
substituted in Di = 1, and made use of assumption A.3 (E [εi] = 0). Now,
let’s consider the expected wage of a female worker:

E [Yi|Di = 0] = β0 + β1(0) + E [εi] = β0 (5.15)

What is the difference between these two conditional expectations (equations
5.14 and 5.15)? β1! That is:

E [Yi|Di = 1]− E [Yi|Di = 0] = β1 (5.16)

So, when the “X” variable is a dummy variable, the attached β is interpreted
as the difference in population means between the two groups.

5.3.2 An estimated model with a dummy variable

OLS works just fine when the right-hand-side variable is a dummy variable.
The estimated model will be the same as it was before:

Yi = b0 + b1Di + ei, (5.17)
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where everything has the same interpretation as before, except that b1 is
the estimated difference in population mean of Y between the two groups
as defined by the dummy variable. In fact, it turns out that:

• b0 is the sample mean (Ȳ ) for Di = 0

• b0 + b1 is the sample mean for Di = 1

• b1 is the difference in sample means (be careful of the sign)

This means that, instead of using OLS, we could just divide the sam-
ple into two parts (using Di), and calculate two sample averages! So why
should we use OLS? At this stage, it looks like we are making things more
complicated than they need to be. However, in the next chapter, we will
add more X variables, so that we will not be able to get the same results
by dividing the sample into two.

5.3.3 Example: Gender and wages using the CPS

The current population survey (CPS) is a monthly detailed survey conducted
in the United States. It contains information on many labour market and
demographic characteristics. In this section, we will use a subset of data
from the 1985 CPS, to estimate the differences in wages between men and
women.

The data is available from the R package AER (Kleiber and Zeileis, 2008).
To load this package, and the CPS data into R, use the following commands:
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

You will see many variables in the dataset. For now, we look at only a few:

• wage - hourly wage

• education - number of years of education

• gender - dummy variable for gender

To run an OLS regression of wage on gender, use the following command:
summary(lm(wage ~ gender ))

You should see the following output:
Coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 9.9949 0.2961 33.75 < 2e -16 ***
genderfemale -2.1161 0.4372 -4.84 1.7e -06 ***
---



5. OLS CONTINUED 67

Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 5.034 on 532 degrees of freedom
Multiple R- squared : 0.04218 , Adjusted R- squared : 0.04038
F- statistic : 23.43 on 1 and 532 DF , p- value : 1.703e -06

From this output, you should be able to answer the following questions:

• What is the sample mean wage for males and for females?

• What is the interpretation of b1?

We stated earlier that the results we obtain from regressing on a dummy
variable are equivalent to what we would obtain by dividing the sample into
two parts (by gender). Let’s verify this using the CPS data. In R, take the
sample mean wage of males only:
mean(wage[gender ==" male "])

and the sample mean wage of female workers only:
mean(wage[gender ==" female "])

The difference is equal to b1, which is -2.1161.

5.4 Reporting regression results
We end this chapter with a concise and conventional way of reporting re-
gression results. If you were to see the results of an OLS regression in an
economics paper or report, you would not see the ugly R output above. If
there are many variables in the regression (see the next chapter), the results
may be displayed in a table. However, if there are only a few variables in the
regression, it is convenient to report results in an equation with two lines.

For example, when we regress wage on gender:
summary(lm(wage ~ gender ))

we could report the regression results as follows:

ˆwage =10.00− 2.12× gender, R2 = 0.042
(0.30) (0.44)

(5.18)

Equation 5.18 conveys the estimated βs, as well as the estimated standard
errors, and the R2. Verify that you know where all of these numbers are
coming from in the R output.
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5.5 Review Questions
1. Derive the following expression for R2:

R2 = ESS

TSS
,

and show that R2 can be rewritten as:

R2 = 1− RSS

TSS

2. Using diagrams, explain why 0 ≤ R2 ≤ 1.

3. Using equation 5.7, explain why having a larger sample is better.

4. Explain what s.e. [b1] is.

5. Using equation 5.13, explain how to interpret β0 and β1.

6. The following question refers to the regression of wage on gender using
the CPS data. The estimated results, equation 5.18, are repeated here:

ˆwage =10.00− 2.12× gender, R2 = 0.042
(0.30) (0.44)

a) What is the estimated wage-gender gap?
b) What is the sample mean wage for males and for females?
c) Test the hypothesis that there is no wage-gender gap.
d) Construct a 90% confidence interval for the wage-gender gap.
e) Interpret the value for R2.
f) Another researcher uses the same data, but defines the dummy

variable in the opposite way. What will be the estimated values
for b0 and b1?

7. This question uses the CPS data set, which can be loaded into R using
the following commands:
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

a) Estimate the returns (in hourly wages) of an additional year of
education. Summarize your results concisely in an equation.
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b) Test the hypothesis that the returns to education are zero.
c) Construct a 95% confidence interval for the returns to education.
d) Interpret the value of R2.
e) What does the estimated model predict the hourly wages will be

for high school graduates and for university graduates?
f) What is the estimated value, in terms of hourly wage, of obtaining

an undergraduate degree?

5.6 Answers
1. A definition for R2, in words, is: the portion of variance in Y that

can be explained by the estimated model. Each Y observation can be
written as a sum of two parts (a part that can be explained using the
X variable, and the left over unexplainable part):

Yi = Ŷi + ei

Taking the sample variance of both sides we get:

v̂ar[Yi] = v̂ar[Ŷi] + v̂ar[ei]

Note that there is no sample covariance between Ŷ and e because they
are independent. Using the formula for sample variance (from chapter
3, equation 3.17) into the above equation, we get:

∑
(Yi − Ȳ )2

n− 1 =
∑

(Ŷi − ¯̂
Y )2

n− 1 +
∑

(ei − ē)2

n− 1 (5.19)

Now, we make three simplifications to the above:

• the (n− 1) cancel

• ¯̂
Y = Ȳ (the sample mean of the OLS predicted values equals the
sample mean of the actual values)

• ē = 0 (the OLS residuals sum to 0)

Equation 5.19 becomes:

∑
(Yi − Ȳ )2 =

∑
(Ŷi − Ȳi)2 +

∑
e2
i

The terms in the above equation are “sums-of-squares”, so that:

TSS = ESS +RSS (5.20)
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Where TSS is the total sum-of-squares (from the total sample variance
of Y ), ESS is the explained sum-of-squares (from the sample variance
of the OLS predicted values), and RSS is the residual sum-of-squares
(from the sample variance of the OLS residuals).
Returning to our original definition of R2: “the portion of variance in
Y that can be explained by the estimated model”, we get:

R2 = ESS

TSS
. (5.21)

To get an alternate equation, we solve 5.20 for ESS:

ESS = TSS −RSS

and substitute into R2:

R2 = ESS

TSS
= TSS −RSS

TSS
= 1− RSS

TSS
(5.22)

2. This question is answered by considering two extreme cases: (i) the
X variable has no explanatory power, and (ii) the X variable can
perfectly explain Y . (i) is a situation of “no fit”, drawn in figure 5.3,
and would occur if b1 = 0. In this situation, each OLS predicted value
will be equal to Ȳ , so ESS will equal 0, and so R2 will also equal 0.
(ii) is a situation of “perfect fit”, drawn in figure 5.4. All data points
are on the estimated regression line. ESS = TSS, RSS = 0, and so
R2 = 1.

3. Using equation 5.7, we just need to see that as n increases, the variance
of the OLS estimator decreases.

4. In order to perform hypothesis testing, an estimate for the variance of
the OLS estimator is required. If equation 5.7 is to be used in prac-
tice, we must replace the unknown σ2

ε with the estimator s2
epsilon =∑

e2
i/n− 2. When we take the square-root of this quantity, it is called

the standard error of b1 (or s.e.[b1] for short). That is,

s.e.[b1] =
√√√√ s2

ε∑
X2
i −

(
∑

Xi)2

n

5. The interpretation of β1, when the independent variable is a dummy
variable, is obtained by taking the conditional expectation of Y for
each of the two possible values that the dummy variable can take. We
repeat equation 5.16:

E [Yi|Di = 1]− E [Yi|Di = 0] = β1
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6. a) The estimated wage-gender gap is the coefficient in front of the
gender dummy variable (where it is understood that gender =
1 if the worker is female). So, the estimated wage-gender gap is
-2.12, meaning that on average, women earn $2.12 less than men,
according to this sample data.

b) The sample mean wage for mean is b0 = 10.00, and for women is
b0 + b1 = 10.00− 2.12 = 7.78.

c) The null hypothesis is that the differences in wages between men
and women is zero. In terms of the population model, this would
mean that β1 = 0.

H0 : β1 = 0
HA : β1 6= 0

The t-test statistic for this null hypothesis is:

t = b1 − β1,0
s.e. [b1] = −2.12− 0

0.44 = −4.82

The associated p-value is 0.00. We reject the null hypothesis.
The estimated wage-gender gap is statistically significant.

d) The 90% confidence interval for the wage-gender gap is:

−2.12 ± 1.65× 0.44 = (−2.85,−1.39)

e) Gender explains 4.2% of the variation in wages.
f) b0 = 7.78 and b1 = 2.12.

7. a) Use the following command:
summary(lm(wage ~ education ))

and you should see the following output:
Coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -0.74598 1.04545 -0.714 0.476
education 0.75046 0.07873 9.532 <2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.754 on 532 degrees of freedom
Multiple R- squared : 0.1459 , Adjusted R- squared : 0.1443
F- statistic : 90.85 on 1 and 532 DF , p- value : < 2.2e -16

Some of this information is summarized as follows:

ˆwage =− 0.75 + 0.75× education, R2 = 0.146
(1.05) (0.08)
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The estimated returns to education are $0.75 in hourly wages per
year of education.

b) From the R output we can see that the education variable is
highly statistically significant. The p-value for the test is 0 (to
sixteen decimal places).

c) The 95% confidence interval is:

0.75 ± 1.96× 0.079 = (0.60, 0.91)

d) Years of education can explain 14.6% of the differences in wages.
e) Assuming that a high school graduate has 12 years of education,

the predicted wage is:

ˆwage = −0.75 + 0.75(12) = 8.25

and assuming that university graduates have 16 years of educa-
tion the predicted wage is:

ˆwage = −0.75 + 0.75(16) = 11.25

f) The predicted difference in wages between university and high
school graduates is $11.25 - $8.25 = $3.



6

Multiple Regression

Multiple regression refers to having more than one “X” variable (more than
one regressor). From now on, we will typically be dealing with population
models of the form:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + εi (6.1)

where k is the number of regressors in the model, and the total number of
βs to be estimated is (k + 1). This new model allows for Y to be explained
used multiple variables. That is, there can now be many Xs that are causal
determinants of Y .

6.1 House prices
Should I build a fireplace in my home before I sell it? To motivate the
need for a multiple regression model, we begin with an example. Let’s try
to determine the value of a fireplace using data on house prices. The data
are from the New York area, 2002-2003, and are from Richard De Veaux of
Williams College.

To load the data into R, use the following two commands:
houses <- read.csv("http :// home.cc.umanitoba.ca/

~godwinrt /3040/ data/houseprice.csv")
attach(houses)

The variables in the dataset are shown in table 6.1.
We are interested in the effect of the variable Fireplaces on Price.

Let’s get some summary statistics for Fireplaces. Enter the command:
summary(Fireplaces)

and you should see the output:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.6019 1.0000 4.0000

73
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Table 6.1: Description of the variables in the house price data set.
Price the price of the house in dollars

Lot.Size the size of the property in acres
Waterfront dummy variable equal to 1 if house is on the water

Age number of years since the house was built
Central.Air dummy variable equal to 1 if house has air conditioning
Living.Area the size of the house in square feet
Bedrooms number of bedrooms
Fireplaces number of fireplaces
Bathrooms number of bathrooms (half-bathrooms are 0.5)

Rooms total number of rooms in the house

The houses in the sample have anywhere from 0 to 4 fireplaces, with the
average being 0.6. For convenience, let’s instead measure Price in thousands
of dollars:
Price <- Price /1000

Next, let’s see the sample mean price, conditional on the number of fire-
places:
mean(Price[Fireplaces == 0])
[1] 174.6533
mean(Price[Fireplaces == 1])
[1] 235.1629
mean(Price[Fireplaces == 2])
[1] 318.8214
mean(Price[Fireplaces == 3])
[1] 360.5
mean(Price[Fireplaces == 4])
[1] 700

We see that the average house price increases quite dramatically as the
number of fireplaces increase. It’s looking like I should build that fireplace!
It should be no surprise that the two variables are correlated:
cor(Price , Fireplaces)
[1] 0.3767862

Now, let’s try estimating the population model:

Price = β0 + β1Fireplaces+ ε

where β0 would be the price of a house with 0 fireplaces, and β1 is the increase
in house price for an additional fireplace. The R command to estimate this
model via OLS in R, and the resulting output, are as follows:
summary(lm(Price ~ Fireplaces ))
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 171.824 3.234 53.13 <2e -16 ***
Fireplaces 66.699 3.947 16.90 <2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 91.21 on 1726 degrees of freedom
Multiple R- squared : 0.142 , Adjusted R- squared : 0.1415
F- statistic : 285.6 on 1 and 1726 DF , p- value : < 2.2e -16

What is the estimated marginal effect of Fireplaces on Price? Take
a minute to google the cost of fireplace installation. As an economist, this
should trouble you deeply. If the estimated value of an additional fireplace
is $66,700, and if it only costs $10,000 to install a fireplace, we should see
lots of houses with many fireplaces. Something is wrong here. To conclude
this section, think about what the main determinant of house price should
be.

6.2 Omitted variable bias
The above OLS estimator (b1 in the house prices example) is suffering from
omitted variable bias. Omitted variable bias (OVB) occurs when one or
more of the variables in the random error term (ε) are related to one or
more of the X variables. Recall that ε contains all of the variables that
determine Y , but that are unobserved (or omitted). Also, recall that one of
the assumptions required for OLS to be a “good” estimator is A.5: ε and X
are independent. If A.5 is not true, the OLS estimator can be biased (giving
the wrong answer on average).

Suppose that there are two variables that determine Y : X and Z. Also
suppose that X and Z are correlated (not independent). When X changes,
Y changes. But when X changes, Z changes too (because Z and X are
related), and this change in Z also causes a change in Y . If Z is omitted
so that we only observe X and Y , then we cannot attribute changes in X
directly to changes in Y . The changes in Z will “channel” through X. The
OLS estimator for the effect of X on Y will be biased, unless the Z variable
is included.

6.2.1 House prices revisited

What is the important omitted variable from the above house prices exam-
ple? It seems like the estimated effect of Fireplaces on Price is too large.
In fact, it may be that the number of fireplaces is just indicating the size of
the house, which is really important for price!

Let’s add the Living.Area variable to our population model:

Price = β0 + β1Fireplaces+ β2Living.Area+ ε
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The R command and associated output is:
summary(lm(Price ~ Fireplaces + Living.Area))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 68.98 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p- value : < 2.2e -16

Several results have changed with the addition of the Living.Area variable:

• The estimated value of an additional fireplace has dropped from $66,699
to $8,962.

• The R2 has increased from 0.142 to 0.5095.

• The estimated intercept has changed by a lot (but this is unimportant).

• There is a new estimated β: b2 = 0.11. This means that, it is estimated
that an additional square-foot of house size increases price by $110.

So, what is going on here? From the first regression, the results are:

ˆPrice =171.82 + 66.70× Fireplaces, R2 = 0.142
(3.23) (3.95)

and from the second regression:

ˆPrice =14.73 + 8.96× Fireplaces+ 0.11× Living.Area, R2 = 0.511
(5.01) (3.39) (0.003)

Why has the estimated effect of Fireplace on Price changed so much?
Living.Area is an important variable. Arguably, the most important factor
in determining house price is the size of the house. Houses that have more
fireplaces tend to be larger. (There usually aren’t two fireplaces in one room,
for example). So, Fireplaces and Living.Area are correlated:
cor(Fireplaces , Living.Area)
[1] 0.4737878
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When Living.Area is omitted from the regression, its effect on Price be-
comes mixed up in the effect of Fireplaces on Price. That is, when the
house has more fireplaces, that means it’s a larger house, so there are two
reasons for a higher price. Lots of fireplaces is just indicating the house is
large!

This is an example of omitted variable bias (OVB). When Living.Area
is omitted, the OLS estimator is biased (in this case the effect of more
fireplaces on house price is estimated to be way too large). OVB provides
an important motivation for the multiple regression model: even though we
may only be interested in estimating one marginal effect, we still should
include other variables that are correlated to X, otherwise our estimator is
biased. OVB is solved by adding the extra variables to the equation, thus
controlling for their effect.

6.3 OLS in multiple regression

6.3.1 Derivation

The OLS estimators, b0, b1, . . . , bk, are derived similarly to how they were in
chapter 4 (when we only had one X variable). The formulas are obtained
by choosing b0, b1, . . . , bk so that the sum of squared residuals is minimized:

min
b0,b1,...,bk

n∑
i=1

e2
i

This involves taking (k + 1) derivatives, setting them all equal to zero, and
solving the system of equations. The formulas become too complicated to
write, unless we use matrices (which we won’t do here).

Now that we have multiple X variables, many concepts that we have
already discussed become much more difficult to visualize. For example, the
estimated model:

Ŷi = b0 + b1X1i + b2X2i + · · ·+ bkXki (6.2)

can not be interpreted as a line! A line (with an intercept and slope) can
be drawn in two dimensional space. The estimated model in equation 6.2
has k dimensions (and is a k-dimensional hyperplane). However, if we have
only two X variables:

Ŷi = b0 + b1X1i + b2X2i

then we can still represent the estimated model in 3-dimensional space (see
figure 6.1).
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Figure 6.1: An OLS estimated regression plane (twoX variables). The plane
is chosen so as to minimize the sum of squared vertical distances indicated
in the figure. The figure was drawn using the scatter3d function from the
rgl package.
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6.3.2 Interpretation

Let’s look at a population model with two X variables:

Yi = β0 + β1X1i + β2X2i + εi (6.3)

• Y is still the dependent variable

• X1 and X2 are the independent variables (the regressors)

• i still denotes an observation number

• β0 is the population intercept

• β1 is the effect of X1 on Y , holding all else constant (X2)

• β2 is the effect of X2 on Y , holding all else constant (X1)

• ε is the regression error term (containing all the omitted factors that
effect Y )

Nothing substantial has changed. β1, for example, is the marginal effect
of X1 on Y , while holding X2 constant. In the fireplaces example, by inlcud-
ing Living.Area in the regression we are able to find the marginal effect of
fireplaces while holding house size constant. When we add more variables
to the model, the interpretation of the βs remains the same.

6.4 OLS assumption A2: no perfect multicollinear-
ity

In this section, we pay special attention to assumption A2, which has only
now become relevant in the context of the multiple regression model.

A2 There is no perfect multicollinearity between the X variables.

This assumptions means that no two X variables (or combinations of the
variables) can have an exact linear relationship. For example, exact linear
relationship between Xs are:

• X1 = X2

• X1 = 100X2

• X1 = 1 +X2 − 3X3
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In these examples, you can figure out what one of the Xs will be, if you
know the other Xs. This situation is usually called perfect multicollinearity.
The data contains redundant information. This shouldn’t be much of a
problem, except that the OLS formula doesn’t allow all of the estimators to
be calculated (the problem is similar to trying to divide by zero).

Using R, let’s see what happens when we try to include an X variable
that is a perfectly linear relationship with another X variable. We’ll use
the house price data again. The Living.Area variable measures the size of
the house in square feet. Suppose that there was another variable in the
data set that measured house size in square metres (1 square foot = 0.0929
square metre). We can create this variable in R using:
House.Size <- 0.0929 * Living.Area

and now let’s include it in our OLS estimation:
summary(lm(Price ~ Fireplaces + Living.Area + House.Size))

Coefficients : (1 not defined because of singularities )
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
House .Size NA NA NA NA
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 68980 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p- value : < 2.2e -16

Notice the error message “1 not defined because of singularities”, and the
row of “NA”s (not available). So, R recognized that there was a problem,
and dropped the redundant variable, but not all econometric software has
been this clever.

Some common examples of where the assumption of “no perfect multi-
collinearity” is violated in practice are when the same variable is measure in
different units (such as square feet and square metres, or dollars and cents),
and in the dummy variable trap.

6.4.1 The dummy variable trap

The dummy variable trap occurs when one too many dummy variables are
included in the equation. For example, suppose that we have a dummy
variable female that equals 1 if the worker is female. Suppose that we also
have a variable male that equals 1 if the worker is male. There is an exact
linear combination between the two variables:

female = 1−male
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If you know the value for the variable male, then you automatically know the
value for female. Including both male and female in the equation would
be a violation of assumption A2, and would be referred to as the dummy
variable trap for this example. That is, OLS would not be able to estimate
all of the βs in the equation:

wage = β0 + β1 ×male+ β2 × female+ ε

The male and female dummy variables is a simple example, in other
situations it is much easier to fall into the “trap”. For example, suppose
that you are provided data on a worker’s location by province or territory.
That is, each worker has a Location variable that takes on one of the values:
{AB,BC,MB,NB,NL,NS,NT,NU,ON,PE,QC, SK, Y T}. How should
this variable be used? Typically, a series of dummy variables would be
created from the Location variable:

Alberta = 1 if Location = AB; 0 otherwise
British.Columbia = 1 if Location = BC; 0 otherwise

Manitoba = 1 if Location = MB; 0 otherwise
...

Y ukon = 1 if Location = Y T ; 0 otherwise

So, we could create 13 dummy variables from the Location variable, but
if we included all of them in the regression, we would fall into the dummy
variable trap! Instead, one of the provinces/territories must be left out of
the equation. Whichever group is left out, it becomes the base group, to
which comparisons are made.

The solution to perfect multicollinearity, then, is to identify the redun-
dant variable(s), and simply drop it from the equation.

As a final note, it is not a violation of “no perfect multicollinearity” if we
take a non-linear transformation of a variable in the data set. For example,
if we create a new variable X2 where X2 = X2

1 , this is ok! In fact, we will
make use of non-linear transformations in chapter 8.

6.4.2 Imperfect multicollinearity

Imperfect multicollinearity is when two (or more) variables are almost per-
fectly related. That is, they are very highly correlated. Suppose that the
true population model is (remember, we don’t actually know this in prac-
tice):

Y = 2X1 + 2X2 + ε

and that the correlation between X1 and X2 is 0.99. Regress Y on X1:
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summary(lm(Y ~ X1))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4.4165 3.8954 -1.134 0.263
X1 4.0762 0.4698 8.676 2.13e -11 ***

The estimated standard error is small, so that the t-statistic is large, and
we are sure that X1 is statistically significant. However, the estimated β1 is
twice as big as it should be. This is because of omitted variable bias. So,
we add X2 to the equation:
summary(lm(Y ~ X1 + X2))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4.676 3.956 -1.182 0.243
X1 1.958 4.075 0.481 0.633
X2 2.128 4.066 0.523 0.603

Now, the estimated βs are closer to their true value of 2, but both appear
to be statistically insignificant! (Note the large standard errors and small
t-statistics.)

The problem here is that, because X1 and X2 are highly correlated, it
is difficult to attribute changes in one of the X variables to changes in Y ,
because both X1 and X2 are almost always changing together in a similar
fashion. That is, the ceteris paribus assumption (all else equal), is not
feasible when the variables are highly correlated. β1 is the effect of X1 on
Y , holding X2 constant. But, because of the correlation, the data can not
provide us such a ceteris paribus environment.

The problem of imperfect multicollinearity shows up in the large stan-
dard errors for the estimated βs of the affected variables. Adding and drop-
ping the affected variables may result in large swings in the estimated coeffi-
cients. Imperfect multicollinearity makes us unsure of our estimated results.
The problem is difficult to address. We cannot drop one of the correlated
variables, due to the problem of omitted variable bias. In fact, there is very
little to be done here. We need more information, but presumably the sam-
ple size n cannot be increased. As long as the variables we are interested
in studying are not part of the multicollinearity problem (and the ones that
are part of the problem are there to avoid OVB), then multicollinearity is
not an issue.

6.5 Adjusted R-squared
We should no longer use R2 in the multiple regression model. This is because
when we add a new variable to the model, R2 must always increase (or at
best stay the same). This means that we could keep adding “junk” variables
to the model to arbitrarily inflate the R2. This is not a good property for a
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“measure of fit” to have. Instead, we will use “adjusted R-squared”, denoted
by R̄2.

6.5.1 Why R2 must increase when a variable is added

To see why R2 must always increase when a variable is added, we begin by
looking again at the formula:

R2 = ESS

TSS
= 1− RSS

TSS
= 1−

∑
e2
i

TSS

and again at the minimization problem that defines the OLS estimators:

min
b0,b1,...,bk

n∑
i=1

e2
i

When we add another X variable, the minimized value of
∑n
i=1 e

2
i must get

smaller! OLS picks the values for the bs so that the sum of squared vertical
distances are minimized. If we give OLS another option for minimizing those
distances, the distances have to get smaller (or at the worst stay the same).
So, adding a variable means RSS decreases, so R2 increases. The only way
that R2 stays the same is if OLS chooses a value of 0 for the associated slope
coefficient, which never happens in practice.

As an example, let’s try adding a nonsense variable to the house price
model: random dice rolls. Using R, 1728 die rolls are simulated (to match
the house price sample size of n = 1728), are recorded as a variable Dice,
and added to the regression. Notice the difference in “Multiple R-squared”
(R2) and “Adjusted R-squared” (R̄2) between the two regressions:
summary(lm(Price ~ Fireplaces + Living.Area))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 14.730146 5.007563 2.942 0.00331 **
Fireplaces 8.962440 3.389656 2.644 0.00827 **
Living .Area 0.109313 0.003041 35.951 < 2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 68.98 on 1725 degrees of freedom
Multiple R- squared : 0.5095 , Adjusted R- squared : 0.5089
F- statistic : 895.9 on 2 and 1725 DF , p- value : < 2.2e -16

summary(lm(Price ~ Fireplaces + Living.Area + Dice))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 12.105383 6.072084 1.994 0.04635 *
Fireplaces 8.829436 3.394526 2.601 0.00937 **
Living .Area 0.109378 0.003042 35.954 < 2e -16 ***
Dice 0.743506 0.972575 0.764 0.44469
---
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Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 68.99 on 1724 degrees of freedom
Multiple R- squared : 0.5097 , Adjusted R- squared : 0.5088
F- statistic : 597.3 on 3 and 1724 DF , p- value : < 2.2e -16

The variable Dice has no business being in the regression of house prices,
and we fail to reject the null hypothesis that its effect is zero, yet the R2

increases. The adjusted R-squared (R̄2) decreases, however.

6.5.2 The R̄2 formula

Adjusted R-squared (R̄2) is a measure-of-fit that can either increase or de-
crease when a new variable is added. R̄2 is a slight alteration of the R2

formula. It introduces a penalty into R2 that depends on the number of X
variables in the model. (Remember that the number of Xs in the model is
denoted by k.)

R̄2 = 1− RSS / (n− k − 1)
TSS / (n− 1) (6.4)

The R̄2 formula is such that when a variable is added to the model,
k goes up, which tends to make R̄2 smaller. We know from the previous
discussion, however, that whenever a variable is added, RSS must decrease.
So, whether or not R̄2 increases or decreases depends on whether the new
variable improves the fit of the model enough to beat the penalty incurred
by k.

The justification for the (n− k− 1) and (n− 1) terms is from a degrees-
of-freedom correction. How many things do we have to estimate before we
can calculate RSS? k + 1 βs must first be estimated before we can get the
OLS residuals, and RSS. If you want to use RSS for something else (such
as a measure of fit), we recognize that we don’t have n pieces of information
left in the sample, we have (n− k− 1). A similar argument can be made for
the (n− 1) term in equation 6.4.

6.6 Review Questions
1. Explain why the estimated value for β1 changes so much between the

equations:

Price = β0 + β1Fireplaces+ ε

and

Price = β0 + β1Fireplaces+ β2Living.Area+ ε
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2. What are the two conditions that will make an omitted variable cause
OLS to be biased?

3. Explain how the OLS estimators, b0, b1, . . . , bk, are derived in the mul-
tiple regression model. (Explain how the equations for b0, b1, . . . , bk
are obtained.)

4. For the model:

Y = β0 + β1X1 + β2X2 + ε,

explain the interpretation of β1 and β2.

5. Why is perfect multicollinearity a problem for OLS estimation?

6. Explain how the “dummy variable trap” is a situation of perfect mul-
ticollinearity.

7. Explain what imperfect multicollinearity is, and how it poses a prob-
lem for OLS estimation.

8. Why does R2 always increase when a variable is added to the model?

9. Explain where the (n− k − 1) and (n− 1) terms in R̄2 come from.

10. An estimated model with two X variables, and from a sample size of
n = 27, yields R2 = 0.5882. Calculate R̄2.

11. This question again uses the CPS data set, which can be loaded into
R using the following commands:
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

a) Regress wage on education, age, and gender, and report your
results.

b) Why has the estimated returns to education changed from the
exercise in chapter 5?

c) Are the variables statistically significant?
d) Test the hypothesis that there is no wage-gender gap.
e) What is the predicted wage for a 40 year-old female worker with

12 years of education?
f) What is the predicted wage for a 40 year-old male worker with

12 years of education? What is the difference from the previous
question?
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g) Why are the R2 and R̄2 so similar for this regression?
h) Interpret the value of R̄2.
i) Try adding the variable experience to the regression. Are all the

variables still statistically significant? What is going on here?

6.7 Answers
1. The estimated value changes so much due to omitted variable bias.

Living.Area is an important determination of house price, and is
correlated with Fireplaces (larger houses have more fireplaces). The
effect of house size is “channeling” through the number of fireplaces.
The omission of Living.Area is causing the OLS estimator in the first
equation to be biased (and inconsistent).

2. If the omitted variable is (i) a determinant of the dependent (Y ) vari-
able; and (ii) is correlated with one or more of the included (X) vari-
ables.

3. The OLS estimators in the multiple regression model are derived sim-
ilarly to how they were in chapter 4. b0, b1, . . . , bk are chosen so as
to minimize the sum of squared residuals. Solving for b0, b1, . . . , bk
involves solving a calculus minimization problem.

4. β1 is the marginal effect of X1 on Y , holding X2 constant. Similar for
β2. To prove this, we can take the partial derivative of Y with respect
to (say) X1:

∂Y

∂X1
= 0 + β1 + 0 + 0 = β1

This tells us that the change in Y resulting from a change in X1, is
β1, and that these changes are independent from changes in X2.

5. Perfect multicollinearity is a problem because the OLS estimator is not
defined. That is, our computer software will be unable to calculate all
of the OLS estimators.

6. The “dummy variable trap” is when a redundant dummy variable is
included in the regression. This is a case of perfect multicollinearity:
there is an exact linear relationship between the dummy variables. For
example, suppose that I had a two dummy variables:

attended =
{

1, if the student attended class
0, if the student did not attend class
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and

skipped =
{

1, if the student skipped class
0, if the student did not skip class

Including both of these variables in the equation would result in perfect
multicollinearity because there is an exact linear relationship between
the two variables:

attended = 1− skipped

7. Imperfect multicollinearity is when two (or more) variables are highly
correlated. In this situation, OLS can be imprecise (have high vari-
ance) because it is difficult to tell which of the two correlated variables
is causing the change in Y . The problem of imperfect multicollinearity
shows up in large standard errors and confidence intervals, and large
swings in the estimated βs as the affected variables are added to and
dropped from the model.

8. The bs in OLS are chosen so as to minimize the sum of squared resid-
uals. When a variable is added to the model, a b is added to the min-
imization problem, giving one more way to minimize RSS. So, RSS
must increase (or possibly stay the same) when another b is added.
By the formula for R2, it can easily be seen that R2 must increase.

9. The justification for the (n − k − 1) and (n − 1) terms are due to
degrees-of-freedom. The amount of information in the RSS statistic
is (n − k − 1) since k + 1 βs must first be estimated by OLS. In the
TSS statistic, one thing must be estimated first (Ȳ ), so the amount
of information left over is (n− 1).

10.

R2 = 1− RSS

TSS
= 0.5882

RSS

TSS
= 1−R2 = 1− 0.5882 = 0.4118

R̄2 = 1− RSS / (n− k − 1)
TSS / (n− 1)

= 1− 0.4118 (n− 1)
(n− k − 1)

= 1− 0.4118
(26

24

)
= 0.5539

11. a) summary(lm(wage ~ education + age + gender ))
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Table 6.2: Regression results using the CPS data.
Dependent variable: wage
Regressor Estimate

(standard error)
education 0.827***

(0.075)
age 0.113***

(0.017)
female -2.335***

(0.388)
intercept -4.843***

(1.244)
n = 534
R̄2 = 0.249
*** denotes significance at the 0.1% level

b) The estimated returns to education have changed from 0.751 to
0.827. The formula for each OLS estimator (b) depends on all of
the variables in the regression. So, when the X variables change
the estimated results will change (unless the sample correlation
between the variables is exactly 0, which is never the case in
practice). The fact that the results change may indicate that
the regression from chapter 5 was suffering from omitted variable
bias.

c) Yes (see the p-values in R).
d) This hypothesis has already been tested for us. We reject at the

0.1% significance level.
e)

ˆwage = −4.843 + 0.827(12) + 0.113(40)− 2.335(1) = 7.266

f)

ˆwage = −4.843 + 0.827(12) + 0.113(40)− 2.335(0) = 9.601

The difference between the two predicted values (9.601−7.266 =
2.335) is equal to the estimated gender-wage gap.

g) R2 and R̄2 differ by the term:

(n− 1)
(n− k − 1

As n grows, the difference between R2 and R̄2 disappears. In the
CPS data, the sample size is reasonably large at n = 534, and k
is only equal to 3, making the two measures-of-fit quite similar.
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h) 24.9% of the variation in wages can be explained using the three
variables in the model.

i) When we add experience to the model:
summary(lm(wage ~ education + age + gender

+ experience ))

all variables except the female dummy variable lose statistical
significance. This is due to imperfect multicollinearity. Age, ed-
ucation, and experience, are all closely related.



7

Joint Hypothesis Tests

Now that we have multiple X variables and βs in our population model, we
might want to test hypotheses that involves two or more of the βs at once.
In these cases, we (typically) do not use t-tests. Instead, we will use the
F -test.

7.1 Joint hypotheses
The types of hypotheses we are now considering involve multiple coefficients
(βs). For example:

H0 : β1 = 0, β2 = 0
HA : β1 6= 0 and/or β2 6= 0

(7.1)

and

H0 : β1 = 1, β2 = 2, β4 = 5
HA : β1 6= 1 and/or β2 6= 2 and/or β4 6= 5

(7.2)

Note that the null hypothesis is wrong if any of the individual hypotheses
about the βs are wrong. In the latter example, if β2 6= 2, then the whole
thing is wrong. Hence the use of the “and/or” operator in HA. It is common
to omit all the “and/or” and simply write “not H0” for the alternative
hypothesis.

A joint hypothesis specifies a value (imposes a restriction) for two or
more coefficients. Use q to denote the number of restrictions (q = 2 for
hypothesis 7.1, and q = 3 for hypothesis 7.2).

7.1.1 Model selection

If we fail to reject hypothesis 7.1, this implies that we should drop X1 and
X2 from the model. That is, if variables are insignificant, we might want to
exclude them from the model. If we wish to drop multiple variables from the

90
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model at once, that means we are hypothesizing that all of the associated
βs are jointly equal to zero.

Why would we want to drop (or omit) variables from the model? There
are two main reasons:

• A simpler model is always better. The same reasons that we wish to
have simple models in economics also apply to econometrics. Simple
models are easier to understand, easier to work with. They focus on
the things we are trying to explain.

• The fewer βs that we try to estimate, the more information is available
for each. That is, the variance of the remaining OLS estimators will
be smaller after we drop X variables.

We have to be careful when we drop variables, however! The cost of
wrongly dropping a variable is high. We can end up with omitted variable
bias. So, we should be careful and err on the side of caution, since it is
generally held that the cost of wrongly omitting a variable (omitted vari-
able bias) is higher than the cost of wrongly including a variable (a loss of
efficiency).

7.2 Example: CPS data
Load the CPS data (you don’t need the first line of code if you have already
installed the AER package):
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

Regress wage on education, gender, age, and experience:
summary(lm(wage ~ education + gender + age + experience ))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -1.9574 6.8350 -0.286 0.775
education 1.3073 1.1201 1.167 0.244
genderfemale -2.3442 0.3889 -6.028 3.12e -09 ***
age -0.3675 1.1195 -0.328 0.743
experience 0.4811 1.1205 0.429 0.668
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.458 on 529 degrees of freedom
Multiple R- squared : 0.2533 , Adjusted R- squared : 0.2477
F- statistic : 44.86 on 4 and 529 DF , p- value : < 2.2e -16

In the above regression, both age and experience appear to be statistically
insignificant (the p-values in the table are 0.743 and 0.668, respectively).
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That is, the null hypothesis H0 : β3 = 0 cannot be rejected, and neither can
the null hypothesis H0 : β4 = 0. This suggests that age and experience
could be dropped from the model. However, to drop both of these variables
we actually need to test the joint hypothesis:

H0 : β3 = 0, β4 = 0
HA : β3 6= 0 and/or β4 6= 0

t-tests won’t work for this hypothesis. Instead we will use the F -test.

7.3 The failure of the t-test in joint hypotheses
A natural idea for testing H0 : β3 = 0, β4 = 0 (for example), is to reject H0
if either |t3| > 1.96 and/or |t4| > 1.96. There are two problems with this.
First, the type I error will not be 5%, unless we increase the critical value
(showing this is left as an exercise). A much bigger problem is that t3 and
t4 are likely not independent (they are correlated).

For example, in the population model:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε, (7.3)

if X3 and X4 are correlated, then the OLS estimators b3 and b4 will also be
correlated with each other (recall OVB and how adding a variable to the
model changes all the estimates - the formula for each b depends on all the
X variables). If b3 and b4 are correlated then t3 and t4 are correlated!

In population model 7.3, suppose that X3 and X4 are positively cor-
related. Consider the null H0 : β3 = 0, β4 = 0. Given the sign of the
correlation between X3 and X4 (positive), it is more likely that b3 and b4
have the same sign (both positive or both negative). It is less likely that one
of the coefficients would be estimated to be negative, and the other positive.
Seeing opposite signs in the estimated coefficients would be additional evi-
dence against the null hypothesis that is not taken into account by looking
at the individual t-statistics.

We need a test that will take into account the correlations between all
the variables that are involved in the test. Such a test is the F -test.

7.4 The F-test
The F -test takes into account the correlations between the OLS estimators.
Suppose the null hypothesis is still H0 : β3 = 0, β4 = 0. Since we are testing
exactly two βs, the F -statistic formula can be written as:

F = 1
2
t23 + t24 − 2rt3,t4t3t4

1− r2
t3,t4
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where rt3,t4 is the estimated correlation between t3 and t4. The larger the
F -statistic, the more likely we are to reject the null. The purpose of show-
ing this formula here is to highlight that the F -test takes into account the
correlation between t3 and t4. The formula becomes much too complicated
when we are testing more than two βs.

To obtain a more convenient formula for the F -test statistic, we need the
idea of a restricted and unrestricted model. The restricted model is obtained
by incorporating the values chosen for the βs in the null hypothesis into
the population model. That is, the null hypothesis chooses certain values
for some of the βs, and when those values are substituted into the full
population model, we get a restricted model. In the alternative hypothesis,
the population model is fully unrestricted. That is, none of the βs are chosen
beforehand, and all values can be chosen by OLS. To summarize:

• restricted model - the model under the null hypothesis. Some βs are
chosen in the null, and substituted into the population model.

• unrestricted model - the model under the alternative hypothesis. All
βs are free to be chosen by the estimation procedure (OLS).

The F -test can be implemented by estimating these two models, and
using some summary statistics from the regression. The intuition is that,
if the restrictions are true (if H0 is true), then the “fit” of the two models
should be similar. Alternatively, if the restrictions are false (the null is false),
then the unrestricted model should “fit” much better than the restricted
model. We can measure the fit of the two models using the residual sum-of-
squares, or the R2.

One version of the F -statistic formula is:

F = (RSSr −RSSu)/q
RSSu/(n− ku − 1) (7.4)

where:

• RSSr is the residual sum-of-squares from the restricted model

• RSSu is the residual sum-of-squares from the unrestricted model

• q is the number of restrictions being tested

• ku is the number of X variables in the unrestricted model, or the
number of βs (not counting the intercept)

Recall that the unrestricted model must fit better than the restricted
model (OLS has more options for minimizing RSS). Also, note that the
F -statistic must be a positive number, since RSS is a sum-of-squares.
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If the restrictions are true, then OLS should (approximately) choose
values for the βs that are already in the null hypothesis. The restricted and
unrestricted models will be similar, (RSSr − RSSu) will be small (close to
zero), the F -statistic will be close to zero, and we will tend to fail to reject
the null. Alternatively, if the null is false, (RSSr − RSSu) will be large,
leading to a large F -statistic, and a tendency to reject.

Another (possibly more convenient and intuitive) formulation of the F -
statistic involves the R2 (not the adjusted R2). We can solve R2 for RSS
using the formula:

R2 = 1− RSS

TSS

and re-write the F -statistics formula in equation 7.4 as:

F = (R2
u −R2

r)/q
(1−R2

u)/(n− ku − 1) (7.5)

where:

• R2
r is the (unadjusted) R2 from the restricted model

• R2
u is the (unadjusted) R2 from the unrestricted model

• q and ku are as before

Table 7.1: χ2 critical values for the F -test statistic.
q 5% critical value
1 3.84
2 3.00
3 2.60
4 2.37
5 2.21

Remember that whenever we add a β to the model that R2 has to in-
crease. This was the whole reason that we needed to use adjusted R-square
(R̄2) instead. However, if the fit of the model doesn’t change much when
the restrictions are imposed, the R2 will be similar between the two models,
leading to a small F -statistic, and a tendency to fail to reject H0. Alterna-
tively, if imposing the restrictions makes a big difference in terms of the fit
of the model, the F -statistic will be large and we will tend to reject H0.

The F -test statistic that we have been discussing follows an F distribu-
tion with q and (n − ku − 1) degrees of freedom. If the sample size n is
large, however, the F -statistic follows a χ2 (chi-square) distribution with q
degrees of freedom (similar to how the t-statistic follows a Normal distribu-
tion for large n). In this book we assume that n is large enough for this to
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be true. The F -statistic critical values for 5% significance, and for large n,
are given in table 7.1. If the F -statistic exceeds the 5% critical value, the
null hypothesis should be rejected at 5% significance.

7.5 Confidence sets
Confidence intervals may be used to test hypotheses that involve only one
β. If the value chosen for β by the null hypothesis is within the confidence
interval, we will fail to reject. In fact, one of the definitions for a confidence
interval is that it is the interval that contains all values that can be chosen
for a null hypothesis, that won’t be rejected.

If our null hypothesis involves two βs, as in H0 : β1 = 0, β2 = 0 for
example, then the idea of a confidence interval would be extended to a
confidence set. The confidence set would contain all the pairs of values for
β1 and β2 that could be jointly chosen under the null hypothesis, where the
null hypothesis would not be rejected.

7.5.1 Example: confidence intervals and a confidence set

Consider the model:

Y = β0 + β1X1 + β2X2 + β3X3 + ε

which has been estimated by OLS:
Coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -0.6246 0.4660 -1.340 0.182
X1 0.2161 0.1723 1.255 0.211
X2 -0.1092 0.1153 -0.946 0.345
X3 2.9384 0.1092 26.914 <2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The 95% confidence interval around b1 is 0.2161 ± 1.96 × 0.1723 =
[−0.12, 0.55]. The null hypothesis of H0 : β1 = 0 cannot be rejected at
the 5% significance level since the value 0 is contained in the interval. By
looking at the R output, we can tell that the 95% confidence interval con-
tains 0 given that the p-value of 0.211 is greater than 0.05. Similarly, the
confidence interval around b2 is −0.1092 ± 1.96 × 0.1153 = [−0.34, 0.12],
and contains 0. Both X1 and X2 appear to be statistically insignificant,
according to their individual confidence intervals.

Similar to why individual t-tests should not be used to test a joint hy-
pothesis, neither should individual confidence intervals be used. In order to
test the hypothesis:

H0 : β1 = 0, β2 = 0
HA : not H0
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Figure 7.1: Individual confidence intervals, and the confidence set.
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using a predetermined set of values, we should use a confidence set containing
all the pairs of β1 and β2 that won’t be rejected. For this example, it turns
out that the null hypothesis is not within the 95% confidence set, so that we
reject the null hypothesis that both variables are statistically insignificant.
We should not drop them from the model. This is a bit surprising considering
the individual confidence intervals. The individual confidence intervals, and
the confidence set for b1 and b2, are shown in figure 7.1.

The confidence set in figure 7.1 is a rotated ellipse. The angle of rotation
is determined by the correlation between X1 and X2. Calculating the confi-
dence intervals is easy, calculating the confidence set is not. Confidence sets
are not typically used in practice in econometrics. The purpose of discussing
them in this section was to reinforce the idea that the correlation between
the variables must be considered when performing a joint hypothesis test.

7.6 Calculating the F-test statistic
To implement an F -test, we can estimate the restricted and unrestricted
model, and compare the two. Using the previous data, we will test the
hypothesis:

H0 : β1 = 0, β2 = 0
HA : not H0
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The full unrestricted model (under the alternative hypothesis) is:

Y = β0 + β1X1 + β2X2 + β3X3 + ε

The restricted model (under the null hypothesis) is:

Y = β0 + β3X3 + ε

In R, we start by estimating these two models, and saving them:
unrestricted <- lm(Y ~ X1 + X2 + X3)
restricted <- lm(Y ~ X3)

Then, we can use the anova command to perform the F -test directly:
anova(restricted , unrestricted)

Analysis of Variance Table

Model 1: Y ~ X3
Model 2: Y ~ X1 + X2 + X3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 8805.1
2 196 8472.7 2 332.37 3.8444 0.02303 *
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F -statistic is 3.84, which is larger than the 5% critical value of 3.00 (see
table 7.1). The p-value is 0.02303. We reject the null hypothesis at the 5%
significance level.

To calculate the F -statistic using equation 7.5:

F = (R2
u −R2

r)/q
(1−R2

u)/(n− ku − 1)

we need the R2 from the two models. From the unrestricted model, the R2

is 0.7921:
summary(unrestricted)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.6246 0.4660 -1.340 0.182
X1 0.2161 0.1723 1.255 0.211
X2 -0.1092 0.1153 -0.946 0.345
X3 2.9384 0.1092 26.914 <2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 6.575 on 196 degrees of freedom
Multiple R- squared : 0.7921 , Adjusted R- squared : 0.7889
F- statistic : 248.9 on 3 and 196 DF , p- value : < 2.2e -16

and from the restricted model the R2 is 0.784:
summary(restricted)
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.5924 0.4719 -1.255 0.211
X3 2.9604 0.1104 26.804 <2e -16 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 6.669 on 198 degrees of freedom
Multiple R- squared : 0.784 , Adjusted R- squared : 0.7829
F- statistic : 718.5 on 1 and 198 DF , p- value : < 2.2e -16

We are testing two restrictions (q = 2), and n = 200, so that the F -statistic
is:

F = (R2
u −R2

r)/q
(1−R2

u)/(n− ku − 1) = (0.7921− 0.784)/2
(1− 0.7921)/(200− 3− 1) = 3.82

The number that we get by calculating the F -statistic using R2 is a little
different than from the anova command due to rounding.

7.7 The overall F-test
Regression software almost always reports the results of an “overall” F -test,
whenever a model is estimated. The null and alternative hypotheses for this
overall F -test is:

H0 : β1 = β2 = · · · = βk = 0
HA : at least one β 6= 0

(7.6)

Again, k denotes the number of X variables in the model. This null hypoth-
esis says that none of the X variable can explain the Y variable. It is a test
to see if the estimated model is garbage. The intercept (β0) is not included
in the null hypothesis, otherwise there would be nothing to estimate, and
if β0 = 0 then the mean of Y is also zero (a somewhat silly hypothesis in
most cases). The overall F -test statistic is reported in the bottom line of
R ouptut. In the previous two examples the overall F -test statistic is 248.9
and 718.5, with associated p-values of 0 (to 16 decimal places). There is
evidence that at least one X variable explains Y .

We also take this opportunity to point out that, when q = 1, the t-test
and F -test provide identical results. In fact, when q = 1, F = t2. This can
be verified from the previous R output. The t-statistic on X3 is 26.804, and
26.8042 = 718.5 (the overall F -statistic).

7.8 R output for OLS regression
We can now understand all of the R output from OLS estimation, except
for “residual standard error”. This is just the sample standard deviation of
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the OLS residuals. It is also used as a measure of fit, and is also sometimes
called the root mean-squared-error. The residual standard error is:√ ∑

e2
i

n− k − 1
We have not discussed this elsewhere in the book, but mention it here

as a matter of finality. We now know what everything is in the standard R
output for OLS estimation.

7.9 Review Questions
1. Explain what is meant by a joint hypothesis, and provide an example.

2. Explain what the restricted and unrestricted models are in a joint
hypothesis test.

3. Explain why t-tests can’t be used to test a joint hypothesis.

4. Calculate the type I error (which is also the significance) when testing:

H0 : β3 = 0, β4 = 0
HA : not H0

using two individual t-tests with critical value 1.96, and assuming that
the t-statistics are independent.

5. Use the CPS data. Let the full unrestricted population model be:

wage = β0 + β1education+ β2gender + β3age+ β4experience+ ε

a) Use t-tests to test the null hypothesis: H0 : β3 = 0, β4 = 0.
b) Use the anova command to test the null hypothesis from part

(a).
c) Use the R2 from the unrestricted and restricted models to calcu-

late the F -statistic for the null hypothesis in part (a). Use table
7.1 to decide whether to reject or fail to reject.

d) Roughly sketch the confidence set for b3 and b4.
e) Test the null hypothesis: H0 : β1 = 0, β2 = 0, β3 = 0, β4 = 0.
f) Using this data, and a null hypothesis of your choosing, verify

that t2 = F .
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7.10 Answers
1. A joint hypothesis is a null hypothesis that involves two or more pa-

rameters (βs). That is, the null hypothesis is jointly specifying the
values of two or more βs. See equations 7.1 and 7.2 for examples.

2. One way of conducting a joint hypothesis test is to estimate two sep-
arate models. The population model can be considered as the un-
restricted model under the alternative hypothesis. It is unrestricted
since none of the values are chosen (by H0), and all βs are free to be
estimated. The null hypothesis, H0, however, is choosing (restricting)
some of the values of the βs. When the restrictions under H0 are
incorporated into the population model, we get a restricted model.

3. t-tests are typically not used to test joint hypotheses for two reasons.
(i) The usual critical values (such as 1.96 for 5% significance) would
have to be adjusted. (ii) The estimators that are used in the hy-
pothesis test (the OLS estimators b) are likely not-independent (e.g.
correlated). This means that the individual t-statistics are also likely
to be correlated. Unless this correlation is taken into account,

4. We will calculate the type I error assuming that the t-statistics are
independent. Using two individual t-tests, the null hypothesis would
be rejected if either, or both, of the t-statistics exceed 1.96 in absolute
value. There are four possible outcomes: (i) both t-statistics are less
than 1.96 (in absolute value), (ii) both are greater than 1.96, (iii)
|t3| > 1.96 and |t4| ≤ 1.96, (iv) |t3| ≤ 1.96 and |t4| > 1.96. Only in
(i) do we fail to reject the null. The probability of (i) occurring is
0.95 × 0.95 = 0.9025. So the probability of rejecting H0 when it is
true (the type I error) is the probability of (ii), (iii) and (iv), which is
1 minus the probability of (i), or 0.0975 (not 0.05). We could get the
“right” type I error by increasing the critical value from 1.96. This,
however, does not solve the larger problem of the dependence between
the t-statistics.

5. Load the CPS data (you don’t need the first line of code if you have
already installed the AER package):
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

a) First we need to estimate the model. Regress wage on education,
gender, age, and experience (put the R code all on one line):
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summary(lm(wage ~ education + gender
+ age + experience ))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -1.9574 6.8350 -0.286 0.775
education 1.3073 1.1201 1.167 0.244
genderfemale -2.3442 0.3889 -6.028 3.12e -09 ***
age -0.3675 1.1195 -0.328 0.743
experience 0.4811 1.1205 0.429 0.668
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.458 on 529 degrees of freedom
Multiple R- squared : 0.2533 , Adjusted R- squared : 0.2477
F- statistic : 44.86 on 4 and 529 DF , p- value : < 2.2e -16

From the R output, we see that the individual t-statistics on age
and experience are small (-0.328 and 0.429, with p-values 0.743
and 0.668). This indicates that we should fail to reject the null
hypothesis.

b) We need to estimate a restricted model (under the null hypothe-
sis):
restricted <- lm(wage ~ education + gender)

and an unrestricted model (under the alternative hypothesis):
unrestricted <- lm(wage ~ education + gender

+ age + experience)

and use the anova command to get the relevant F -statistic:
anova(restricted , unrestricted)

Analysis of Variance Table

Model 1: wage ~ education + gender
Model 2: wage ~ education + gender + age + experience

Res.Df RSS Df Sum of Sq F Pr(>F)
1 531 11425
2 529 10511 2 914.27 23.007 2.625e -10 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The F -statistic is 23.007 with a p-value of 0.000. We reject the
null hypothesis. This is the opposite result of what the t-statistics
would indicate.

c) We can find the R2 from the restricted model using the command:
summary(restricted)

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.21783 1.03632 0.210 0.834
education 0.75128 0.07682 9.779 < 2e -16 ***
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genderfemale -2.12406 0.40283 -5.273 1.96e -07 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.639 on 531 degrees of freedom
Multiple R- squared : 0.1884 , Adjusted R- squared : 0.1853
F- statistic : 61.62 on 2 and 531 DF , p- value : < 2.2e -16

So, R2
r = 0.1884. The R2 from the unrestricted model is R2

u =
0.2533 (see the R output in part (a)). We are testing two restric-
tions, so that q = 2. The sample size is n = 534. The number of
X variables in the unrestricted model is 4, so that ku = 4. We
can now calculate the F -statistic using equation 7.5:

F = (R2
u −R2

r)/q
(1−R2

u)/(n− ku − 1) = (0.2533− 0.1884)/q
(1− 0.2533)/(534− 4− 1) = 22.989

This is very close to the F -statistic that was obtained using the
anova command in part (b). Using table 7.1, we see that the
relevant 5% critical value is 3.00. Since 22.989 > 3.00, we reject
the null hypothesis at the 5% significance level.

d) The main feature of the confidence ellipse is that it should be
rotated about the origin. See figure 7.1 for an example. The
rotation of the ellipse reflects the non-independence of the esti-
mators, b3 and b4.

e) The null hypothesis in this question is referring to the “overall
F -test”. This F -test statistic is calculated for us when we use the
summary command. From the output in part (a), this F -statistic
is 44.86 with p-value 0.000. We reject the null hypothesis.

f) The F -test and t-test are equivalent when q = 1. Specifically,
t2 = F . Note that the 5% critical value for q = 1 in the F -test
(3.84) is the square of the 5% critical value in the t-test (1.96).
To verify the equivalence of the F -test and t-test, we’ll calculate
the F -statistic for a null hypothesis where q = 1, and make sure
that it is the square of the corresponding t-statistic.
Note that, in the R output in part (a), the t-statistic on education
is 1.167. So, for the test:

H0 : β1 = 0
HA : β1 6= 0

The F -statistic should be F = 1.1672 = 1.362. Estimate the
restricted model under this null hypothesis, and use the anova
command:
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restricted2 <- lm(wage ~ gender + age + experience)
anova(restricted2 , unrestricted)

Analysis of Variance Table

Model 1: wage ~ gender + age + experience
Model 2: wage ~ education + gender + age + experience

Res.Df RSS Df Sum of Sq F Pr(>F)
1 530 10538
2 529 10511 1 27.063 1.362 0.2437



8

Non-Linear Effects

Many models in economics involve non-linear effects. A non-linear effect just
means that the effect of one variable on another is not constant. For exam-
ple, diminishing marginal utility says that as more is consumed, eventually
there is less of an increase to utility than previous. The effect of quantity
consumed on utility is not constant (there is a non-linear relationship be-
tween quantity and utility). Increasing and decreasing returns to scale is
another example of a non-linear effect that you may have encountered in
your first-year economics courses. Increasing returns to scale implies that
when the inputs of production are doubled, output would more than double.
The prevalence of the terms “marginal” and “increasing” or “decreasing” in
many of our economic models would suggest a need to handle non-linearity.

8.1 The linear model
The models we have seen so far have been linear. In the population model:

Y = β0 + β1X1 + · · ·+ βk + ε

the change in Y due to a change in X1 (for example) is: ∆Y/∆X1 = β1.
This effect ofX1 on Y is constant. For many relationships between variables,
this is unreasonable.

As an example of how the linear model does not work, we use the
Diamond data from the Ecdat R package (data originally from Chu, 2001).
A plot of the price and carats of diamonds are shown in figure 8.1, with
the OLS estimated line included in the plot. The relationship between price
and carats appears to be non-linear. The effect of carat on price appears
to be small when then diamond is small, and gets large as the size of the
diamond grows. The reason for this might be that large diamonds are more
rare. A larger diamond can always be cut into smaller diamonds, but two
diamonds cannot be combined to make a larger one. The linear model says

104
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Figure 8.1: Price of diamonds, and carats, with OLS estimated line.
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that the effect of carat on price is constant, no matter how large or small
the diamond is to begin with.

Ideally, we would like an estimated model that is capable of capturing the
half “U” shape that we see in the diamonds plot, and other such non-linear
shapes. If the true relationship between the two variables is non-linear,
then the linear model is misspecified. OLS is biased and inconsistent. For
situations like this, we need to specify a population model that allows for
the marginal effect of X on Y to change depending on the value of X.

8.2 Polynomial regression model
A non-linear relationship between two variables can be approximated using
a polynomial function. The validity of the approximation is based on a
Taylor series expansion. A population model with a polynomial is:

Y = β0 + β1X1 + β2X
2
1 + β3X

3
1 + · · ·+ βrX

r
1 + ε (8.1)

Equation 8.1 has a polynomial of degree r in X1. If r = 2 we get a quadratic
equation, and if r = 3 we get a cubic equation. Note that this is just the
linear model that we have been using all along, but some of the regressors
are powers of X1. Other variables (X2, X3, etc.) can be added as usual.
With the polynomial, estimation by OLS, and hypothesis testing, is the
same as usual. Including powers of X1 in the model as additional regressors
is not a violation of no perfect multicollinearity (assumption A.2), because
the relationship between the regressors is not linear.



8. NON-LINEAR EFFECTS 106

8.2.1 Interpreting the βs in a polynomial model

The βs in the polynomial model become much more difficult to interpret.
This is the point in including them. We are trying to model a (more com-
plicated) non-linear relationship. Let’s take a population model with a
quadratic term (usually squaring is sufficient to model the non-linear ef-
fect):

Y = β0 + β1X1 + β2X2 + β3X
2
2 + ε (8.2)

In equation 8.2, β1 is the marginal effect of X1 on Y , but the marginal
effect of X2 on Y depends on both β2 and β3. That is, β2 and β3 don’t
make much sense by themselves. If we take the partial derivative of Y with
respect to X2, we get:

∂Y

∂X2
= β2 + 2β3X2

This derivative tells us that the squared term (X2
2 ) allows the effect of X2

on Y to depend on the value of X2. A change in Y due to a change in X2
is not constant, but depends on the value of X2.

Including the squared term is just a mathematical “trick” for approx-
imating the non-linear relationship. For example, if β2 is positive, then a
negative β3 means there is a diminishing effect, and a positive β3 means
there is an increasing effect. OLS is free to choose values for β2 and β3 to
best capture any non-linear relationship.

In order to obtain an interpretation for our estimated polynomial model,
we can consider specific OLS predicted values. If we consider a lot of pre-
dicted values, we can plot them out in the data and see our estimated
equation. If we calculate at least two pairs of predicted values, and take the
differences between them, we can get an idea about how the estimated effect
depends on the value of the X variable. This is illustrated in a following
example.

8.2.2 Determining r

To determine the degree (r) of the polynomial, we can use a series of t-tests.
We can start with a polynomial of degree r, and test the null hypothesis
H0 : βr = 0. If we fail to reject (implying that Xr is not needed) then
we re-estimate the model with a polynomial of degree r − 1. The process
repeats until the null hypothesis is rejected. However, in most econometrics
models only squared terms are used if needed; very rarely are there cubed
(or higher) terms. Testing for the degree of r is illustrated in the following
example.
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8.2.3 Modelling the non-linear relationship in the Diamond
data

We start by loading up the Diamond data:
install.packages (" Ecdat")
library(Ecdat)
data(Diamond)
attach(Diamond)

and estimating the linear model, price = β0 + β1carat+ ε:
summary(lm(price ~ carat))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -2298.4 158.5 -14.50 <2e -16 ***
carat 11598.9 230.1 50.41 <2e -16 ***

It is estimated that an increase in carat of 1 is associated with an increase
in the price of a diamond by $11598.9. It might be more sensible to consider
the smaller increase of 0.1 carats: an increase of 0.1 carats is associated with
an increase in price of $1160. This effect is the same whether the diamond
is small or large to begin with.

In order to allow for the effect of carat on price to depend on the size of
the diamond, we can include a quadratic term, and estimate the population
model price = β0 + β1carat+ β2carat

2 + ε. The first thing we need to do is
to create the new variable carat2. We can do this in R using:
carat2 <- carat^2

where ˆ is the power operator (shift-6 on most keyboards). The above
line of R code creates a new variable by squaring the old variable. I called
the new variable carat2, but you can call it whatever you want. We can
now estimate a quadratic population model simply by including this new
variable in our estimation command:
summary(lm(price ~ carat + carat2 ))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -42.51 316.37 -0.134 0.8932
carat 2786.10 1119.61 2.488 0.0134 *
carat2 6961.71 868.83 8.013 2.4e -14 ***

Notice that carat2 is highly statistically significant. There is evidence that
the effect is non-linear.

The positive sign on carat2 means that we have estimated an increasing
marginal effect. How do we interpret our estimated βs further? That is,
what is the estimated effect of carats on price? The key is to calculate some
OLS predicted values, to consider some specific scenarios. In figure 8.2, I
calculate 50 OLS predicted values by choosing values for carat at regular
intervals, and plot them over the Diamond data. Notice that our estimated
equation captures the half “U” shape, and seems to fit the data well.
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Figure 8.2: Diamond data, with estimated quadratic model.
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The predicted values used in figure 8.2 were obtained by substituting
different values for carat into the estimated equation:

ˆprice = −42.51 + 2786.10carat+ 6967.71carat2 (8.3)

Now, let’s focus on two specific scenarios: the effect of an increase in
carats when (i) the diamond is small, and (ii) the diamond is large. Let’s
consider an increase of 0.1 in carats when the diamond is (i) 0.2 carats in
size, and (ii) 1 carat in size. We need two predicted values for each scenario.
For (i), we get the predicted values for carat = 0.2 and for carat = 0.3:

ˆprice|carat=0.2 = −42.51 + 2786.10(0.2) + 6967.71(0.2)2 = 793
ˆprice|carat=0.3 = −42.51 + 2786.10(0.3) + 6967.71(0.3)2 = 1420

and take the difference between these two predicted values:

ˆprice|carat=0.3 − ˆprice|carat=0.2 = 1419.88− 793.18 = 627

So, the predicted effect of an increase in carats of 0.1, when the diamond is
0.2 carats, is $627.

Now we consider the effect of a 0.1 increase in carats for (ii) a large
diamond:

ˆprice|carat=1 = −42.51 + 2786.10(1) + 6967.71(1)2 = 9705
ˆprice|carat=1.1 = −42.51 + 2786.10(1.1) + 6967.71(1.1)2 = 11446
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and again take the difference between the two predicted values:

ˆprice|carat=1.1 − ˆprice|carat=1 = 11446− 9705 = 1741

The predicted effect of an increase in carats is larger, when the diamond is
larger. That is, the estimated effect of a 0.1 increase in carats is $1741.

The important point of this exercise is the following. The estimated
effect of carats on price is much different depending on whether the diamond
is large or small ($627 when carats = 0.2 vs. $1741 when carats = 1.
The linear model estimates a constant effect of $1160, which misses out on
important non-linearities.

Finally, we determine the appropriate degree of the polynomial in carat
(we probably should have begun with this). Let’s estimate a cubic model:
price = β0 + β1carat+ β2carat

2 + β3carat
3 + ε. We’ll need a new variable:

carat3 <- carat^3

and to add it to the regression:
summary(lm(price ~ carat + carat2 + carat3 ))

( Intercept ) 786.3 765.4 1.027 0.3051
carat -2564.2 4636.9 -0.553 0.5807
carat2 16638.9 8185.3 2.033 0.0429 *
carat3 -5162.5 4341.9 -1.189 0.2354

The cubed variable, carat3, is insignificant (with p-value 0.2354). The
quadratic specification is sufficient for capturing the non-linear relationship
between carat and price. It is often the case that a quadratic specification
is good enough.

8.3 Logarithms
Another way to approximate the non-linear relationship between Y and X
is by using logarithms. Logarithms can be used to approximate a percentage
change. If one or more percentage changes are involved in the relationship
between two variables, it is a type of non-linear effect. To see this, consider
a 1% increase in 100 (which is 1), and a 1% increase in 200 (which is 2).
The same 1% increase has a different effect depending on the starting value.

8.3.1 Percentage change

Let’s be explicit about what is meant by a percentage change. A percentage
change in X is:

∆X
X
× 100 = X2 −X1

X1
× 100

where X1 is the starting value of X, and X2 is the final value.
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8.3.2 Logarithm approximation to percentage change

The approximation to percentage changes using logarithms is:

log (X + ∆X)− log (X)× 100 ≈ ∆X
X
× 100

or

log (X2 −X1)× 100 ≈ X2 −X1
X1

× 100

So, when X changes, the change in log(X) is approximately equal to a
percentage change in X. The approximation is more accurate the smaller
the change in X. Table 8.1 shows variation percentage changes in X, and
the approximate change using the log function. The approximation does not
work well for changes above 10%.

Table 8.1: Percentage change, and approximate percentage change using the
log function.

Change in X
Percentage change:

X2−X1
X1

× 100
Approximated percentage change:

(log X2 − log X1) × 100

X1 = 1, X2 = 2 100% 69.32%
X1 = 1, X2 = 1.1 10% 9.53%
X1 = 1, X2 = 1.01 1% 0.995%
X1 = 5, X2 = 6 20% 18.23%
X1 = 11, X2 = 12 9.09% 8.70%
X1 = 11, X2 = 11.1 0.91% 0.91%

8.3.3 Logs in the population model

The log function can be used in our population model so that the βs have
various percentage changes interpretations. There are three ways we can
introduce the log function into our models. The three different possibilities
arise from taking logs of the left-hand-side variable, one or more of the
right-hand-side variables, or both. Table 8.2 shows these three cases.

Table 8.2: Three population models using the log function.
Population model Population regression function

I. linear-log Y = β0 + β1 logX + ε
II. log-linear log Y = β0 + β1X + ε
III. log-log log Y = β0 + β1 logX + ε

For each of the three different population models in table 8.2, β1 has
a different percentage change interpretation. We don’t derive the interpre-
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tations of β1, but instead list them for the three different cases in table
8.2:

• linear-log: a 1% change in X is associated with a 0.01β1 change in Y .

• log-linear: a change in X of 1 is associated with a 100 × β1% change
in Y .

• log-log: a 1% change in X is associated with a β1% change in Y . β1
can be interpreted as an elasticity.

8.3.4 A note on R2

R2 and R̄2 measure the proportion of variation in the dependent variable
(Y ) that can be explained using the X variables. When we take the log
of Y in the log-linear or log-log model, the variance of Y changes. That
is, Var[log Y ] 6= Var[Y ]. We cannot use R2 or R̄2 to compare models with
different dependent variables. That is, we should not use R2 to decide
between two models, where the dependent variable is Y in one, and log Y
in the other.

8.3.5 Log-linear model for the CPS data

It is common to use the log of wage as the dependent variable, instead of
just wage. This allows for the factors that determine differences in wages be
associated with approximate percentage changes in wage. In the following,
we’ll see an example of a log-linear model estimated using the CPS data.
Start by loading the data:
library(AER)
data(" CPS1985 ")
attach(CPS1985)

and estimate a log-linear model log(wage) = β0 +β1education+β2gender+
β3age+ β4experience+ ε:
summary(lm(log(wage) ~ education + gender + age

+ experience ))

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 1.15357 0.69387 1.663 0.097 .
education 0.17746 0.11371 1.561 0.119
genderfemale -0.25736 0.03948 -6.519 1.66e -10 ***
age -0.07961 0.11365 -0.700 0.484
experience 0.09234 0.11375 0.812 0.417

The interpretation of the estimated coefficient on education, for exam-
ple, is that a 1 year increase in education is associated with a 17.8% in-
crease in wage. The interpretation of the coefficient on the dummy vari-
able genderfemale is a bit more tricky. It is estimated that women make
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(100 × (exp(−0.257) − 1) = −22.7%) 22.7% less than men. For simplicity,
however, we can say that women make approximately 25.7% less than men,
but you should know that this interpretation is actually wrong.

The advantage of using log wage as the dependent variable is that it al-
lows the estimated model to capture non-linear effects. The 25.7% decrease
in wages for women means that the dollar difference in wages between fe-
males and males in high-paying jobs (such as medicine) is larger than the
dollar difference in wages between females and males in lower-paying jobs.

8.4 Interaction terms
Interaction terms can model a type of non-linear effect between variables.
They are useful when the effect of X on Y may depend on a different X
variable. Typically, one of the variables in the interaction term is a dummy
variable (denote the dummy variable D). When the other variable is con-
tinuous (call it X), the interaction term (D×X) allows for a different linear
effect between the two groups (the groups defined by D). When both of
the variables in the interaction term are dummy variables (D1×D2), we get
something called a “difference-in-difference”. Finally, both of the variables in
the interaction can be continuous (X1×X2), but this situation is somewhat
rare and we do not discuss it here.

8.4.1 Motivating example

To motivate the usefulness of interaction terms, we use a hypothetical data
set. This data was created, and should not be taken seriously, or to inform
policy.

Suppose that 500 marijuana users are surveyed in different locations,
and the variables in the data are:

• Q - the quantity of marijuana consumed, in grams, per month

• P - the average price per gram in the individual’s location

• adult= 1 if the individual is an adult, = 0 if the individual is a teenager

A plot of price versus quantity is shown in figure 8.3. Do you notice any-
thing? Perhaps this data may be better explained using two separate re-
gression lines. For now, however, let’s ignore the adult variable. Estimate a
regression of Q on P :
summary(lm(Q ~ P))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 44.2152 1.0776 41.03 <2e -16 ***
P -2.1634 0.1041 -20.78 <2e -16 ***
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Figure 8.3: Plot of the hypothetical demand for marijuana data.
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It is estimated that an increase in price of $1/gram reduces consumption by
2.16 grams/month. This estimated regression line is added to the plot of
the data in figure 8.4. We see that we are get an “average” regression line
for the two groups.

Ideally, we would like a separate regression line for the two groups (adults
and teenagers), since the effect of price on consumption may differ for the
two. To highlight this idea, the data is plotted, making note of which group
each data point belongs to. In figure 8.5, we clearly see that the two groups
should be treated separately.

Let’s try to separate the groups by adding the dummy variable to our
regression:
summary(lm(Q ~ P + adult))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 46.21319 1.02971 44.880 <2e -16 ***
P -2.12242 0.09712 -21.854 <2e -16 ***
adult -4.81124 0.54975 -8.752 <2e -16 ***

The estimated coefficent on P means that an increase in price of $1/gram
decreases consumption by 2.12 grams/month (similar to before). The co-
efficient on adult is interpreted to mean that, on average, adults consume
4.81 grams/month less than teenagers. Graphically, we have two different
regression lines that have the same slope, but different intercepts (46.21 for
teenagers, and 46.21 - 4.81 for adults). The two different regression lines are
plotted in figure 8.6.
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Figure 8.4: Marijuana data, with estimated regression line from Q = β0 +
β1P + ε added to the plot.
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Figure 8.5: Marijuana data plotted by age group.
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Figure 8.6: With the addition of the dummy variable, each group has a
different intercept, but the same slope.
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This still doesn’t get us what we want. We need something new: an
interaction term. This will allow for two separate marginal effects (slopes)
for the two groups. The estimation is discussed later, but the results are
shown graphically in figure 8.7.

8.4.2 Dummy-continuous interaction

So how do we allow for two different marginal effects for the two different
groups, and attain the type of estimated equation shown in figure 8.7? By us-
ing an interaction term. Specifically, this example uses a dummy-continuous
interaction term. The population model that we want to estimate is:

Q = β0 + β1P + β2adult+ β3(adult× P ) + ε (8.4)

where adult×P is the interaction term, and is a new variable that is created
by multiplying the other two variables together. To see how model 8.4 allows
for two separate lines, consider what the population model is for teenagers
(adult = 0), and for adults (adult = 1).
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Figure 8.7: Two separate regression lines for the two different groups.
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Population model for teenagers

Let’s substitute in the value adult = 0 into equation 8.4 and get the popu-
lation model for teenagers:

Q = β0 + β1P + β2(0) + β3(0× P ) + ε

= β0 + β1P + ε
(8.5)

From equation 8.5, we can see that the intercept is β0 and the slope is β1.

Population model for adults

Substituting in the value adult = 1 into equation 8.4, we get the population
model for adults:

Q = β0 + β1P + β2(1) + β3(1× P ) + ε

= (β0 + β2) + (β1 + β3)P + ε
(8.6)

For adults, the intercept is β0 + β2 and the slope is β1 + β3. The marginal
effect of price on consumption differs by β3 between the two groups.

Estimation with an interaction term

To include a dummy-continuous interaction term in our regression, we sim-
ply create a new variable by multiplying the dummy variable (adult) and
the continuous variable P together:
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adult_P <- adult*P

and include the new variable in the regression:
summary(lm(Q ~ P + adult + adult_P ))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 63.48944 0.85166 74.55 <2e -16 ***
P -3.88168 0.08339 -46.55 <2e -16 ***
adult -39.25222 1.21030 -32.43 <2e -16 ***
adult_P 3.45993 0.11695 29.58 <2e -16 ***

The estimated value of 3.46 (on the adult_P dummy-continuous inter-
action term) means that the decrease in consumption due to an increase in
price of $1 is 3.46 grams/month less for adults than it is for teenagers. That
is, the effect of price on quantity is -3.88 for teenagers, and (-3.88 + 3.46 =
-0.42) for adults. The demand curve is much steeper for teenagers.

8.4.3 Dummy-dummy interaction: differences-in-differences

A dummy-dummy interaction is when two different dummy variables are
multiplied together, creating a new variable. This new variable allows for
an overlap of two differences. The two dummy variables give two different
means, and the interaction term gives a “difference-in-difference”.

As an example, consider the CPS data again. Instead of using the
education variable which was continuous, we’ll use a dummy variable bach
which equals to 1 if the individual has a university (BA) degree, and 0 oth-
erwise. First, we estimate the standard model without the interaction term,
with log(wage) as the dependent variable:
summary(lm(log(wage) ~ female + bach))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 2.07175 0.03108 66.657 < 2e -16 ***
female -0.22886 0.04240 -5.397 1.02e -07 ***
bach 0.39177 0.04976 7.873 1.97e -14 ***

The interpretation of these results is that women make 23% less than men,
and that individuals with a bachelors degree make 39% more than those
without. However, this model does not allow for the possibility that ed-
ucation has a different effect for women than it does for men. There is a
difference between men and women, and there is a difference between uni-
versity degrees and high school degrees, but there is no difference within the
difference.

To allow for education to have a different effect for men than for women
(a difference-in-difference), we estimate the model:

log(wage) = β0 + β1female+ β2bach+ β3(female× bach) + ε
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where β3 is the additional percentage increase in wages for women with
an education, versus men with an education. In R, we create the dummy-
dummy interaction term by:
fem_bach <- female*bach

and include it in our regression:
summary(lm(log(wage) ~ female + bach + fem_bach ))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 2.08291 0.03292 63.280 < 2e -16 ***
female -0.25309 0.04849 -5.219 2.58e -07 ***
bach 0.34500 0.06736 5.122 4.25e -07 ***
fem_bach 0.10292 0.09994 1.030 0.304

It is estimated that women make 25% less than men, that men with a BA
degree make 35% more than men without a degree, and that women with
a degree make (35% + 10% = 45%) more than women without a degree.
There is a difference for men, a difference for women, and the difference
between these two differences is β3 (10%).

8.4.4 Hypothesis tests involving dummy interactions

An important use of dummy interaction terms is to test whether there is a
different effect between two groups. In the marijuana example, the interac-
tion term measures the difference in the slope of the demand curve between
the two groups. To test the hypothesis that the sensitivity of marijuana
consumption to changes in price is the same for teenagers as it is for adults,
we could test the hypothesis:

H0 : β3 = 0
HA : β3 6= 0

in the model:

Q = β0 + β1P + β2adult+ β3(adult× P ) + ε

From the regression output from before, we see that the interaction term is
highly significant, and we reject the null hypothesis. There is evidence that
there is a different marginal effect for the two groups.

Similarly, testing β3 = 0 in the model:

log(wage) = β0 + β1female+ β2bach+ β3(female× bach) + ε

is a test of whether there is a different effect of education for women than
for men. From the regression output in the previous section, we see that the
p-value for the estimated coefficient on fem_bach is 0.304. We fail to reject
the null that there is no difference in the effect of education between men
and women.
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8.4.5 Some additional points

The third possibility, a continuous-continuous interaction term, was left out
of the discussion. For example, the returns to education (measured in years
as a continuous variable) may diminish as the worker ages (also a continuous
variable). To capture this idea, we could multiply these two continuous
variables together, and include the product in our regression.

The models presented in this section had dummy variable interaction
terms that resulted in completely separate regression functions for the dif-
ferent groups. This complete separation was due to the simplicity of the
models. That is, no other variables were included. We can include other
variables in the regression as usual. For example, for the CPS data, we would
probably want to include age and experience and possibly other variables
as well. The interaction terms then have the interpretation of a difference
between groups, while controlling for other factors (ceteris paribus).

Finally, the dummy interaction may involve multiple variables. This
is particularly important when the polynomial regression model is used to
capture a non-linear effect. For example, we might have used education2

as a variable to capture a non-linear effect. Using a dummy interaction
with education should then involve both of the variables (education and
education2). A test for no differences between groups would then require
the F -test.

8.5 Review Questions
1. What is a polynomial regression model?

2. Why is it important to have a population model that can capture
non-linear effects?

3. Use the following commands in R to load the data necessary for this
question (there are only two commands that should be on two separate
lines):
mydata <- read.csv("http :// home.cc.umanitoba.ca/

~godwinrt /3040/ data/chap8.csv")
attach(mydata)

a) Plot the data. Which variable might have a non-linear relation-
ship with Y ?

b) Estimate the population model: Y = β0 +β1X1 +β2X
2
1 +β3X

3
1 +

β4X
4
1 + β5X2 + ε.

c) Determine the appropriate degree of the polynomial in X1 (de-
termine the right r).
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d) What is the estimated effect of X1 on Y ?

4. Other than polynomials, what is another way to capture a non-linear
effect in an OLS regression model?

5. What are the interpretations of the βs in population models that use
logarithms?

6. Using the diamond data, estimate a linear-log, log-linear, and log-log
model. Interpret your results in each case.

7. Describe the usefulness of interaction terms.

8. Using the CPS data, determine if there is a different effect of education
on wage, between men and women.

8.6 Answers
1. A polynomial regression model is one that includes powers of one or

more of the X variables as additional regressors (e.g. X2
3 , X3

3 ). This
is done in order to approximate a non-linear relationship between the
X and Y variables.

2. Many models in economics specify non-linear relationships between the
variables. We want our econometric models to represent the features
of the economic model. If non-linear relationships are ignored, the
OLS estimator may be biased.

3. a) A plot of the data reveals that there is a possible non-linear re-
lationship between X1 and Y :
plot(X1 ,Y)

See figure 8.8. There is no apparent non-linear relationship be-
tween X2 and Y .

b) We will need to create some new variables using X1:
X12 <- X1^2
X13 <- X1^3
X14 <- X1^4

and include them in the model:
summary(lm(Y ~ X1 + X12 + X13 + X14 + X2))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.901 e+02 1.809 e+01 10.509 < 2e -16 ***
X1 -1.059e+01 3.135 e+00 -3.380 0.000878 ***
X12 5.076e -01 1.807e -01 2.810 0.005468 **
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Figure 8.8: Question 3, part (a).
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X13 -3.431e -03 4.132e -03 -0.831 0.407262
X14 3.141e -05 3.229e -05 0.973 0.331872
X2 -2.015e+00 6.118e -02 -32.944 < 2e -16 ***

c) In part (b), X2
1 , X3

1 , and X4
1 were included in the regression, so

that r = 4. We may not need to go as high as X4
1 in order to

adequately model the non-linear relationship between X1 and Y .
To determine the appropriate r, we can see if the highest power of
X1 is statistically significant. If not, we drop it from the model,
and try again, stopping when the highest power is significant.
From the R output in part (b), we see that X4

1 is “insignificant”
(we fail to reject the null hypothesis that β4 = 0). This indicates
that X4

1 is not needed in the polynomial, so we drop it from the
model:
summary(lm(Y ~ X1 + X12 + X13 + X2))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.775 e+02 1.260 e+01 14.081 < 2e -16 ***
X1 -7.870e+00 1.409 e+00 -5.586 7.71e -08 ***
X12 3.382e -01 4.818e -02 7.020 3.60e -11 ***
X13 5.584e -04 4.985e -04 1.120 0.264
X2 -2.023e+00 6.070e -02 -33.326 < 2e -16 ***

Now, we test to see if X3
1 is insignificant (from the output above,

it is). Dropping it from the model we get:
summary(lm(Y ~ X1 + X12 + X2))
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Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 188.355857 8.024835 23.47 <2e -16 ***
X1 -9.337920 0.517857 -18.03 <2e -16 ***
X12 0.391436 0.007933 49.34 <2e -16 ***
X2 -2.015532 0.060387 -33.38 <2e -16 ***

Finally, we see that the highest power of X1 (now X2
1 ) is sta-

tistically significant. We cannot drop it from the model. The
appropriate degree of the polynomial in X1 is r = 2.

d) In the estimated model

Ŷ = b0 + b1X1 + b2X
2
1 + b3X2

one way to interpret the estimated effect of X1 on Y is to consider
specific OLS predicted values. The difficulty in interpretation
arises because the effect of X1 on Y now also depends on X2

1 , so
that both b1 and b2 must be considered together.
The whole point of using the squared term (X2

1 ) is to allow the
change in Y due to a change in X1 to depend on the value of X1
itself. So, let’s consider a change in X1 of 1 unit, for two different
starting values of X1: 20 and 40.

Ŷ |X1=21 − Ŷ |X1=20 = (−9.338× 21 + 0.391× 212)
− (−9.338× 20 + 0.391× 202) = 6.693

When X1 = 20, the effect of a 1 unit increase in X1 is to increase
Y by 6.693. Let’s try for a larger value of X1:

Ŷ |X1=41 − Ŷ |X1=40 = (−9.338× 41 + 0.391× 412)
− (−9.338× 40 + 0.391× 402) = 22.333

The estimated effect of X1 on Y is much larger, for larger values
of X1.

4. Besides polynomials, we can also take the logarithms of the X and/or
Y variables. Exploiting a property of logarithms that small changes
in logX (or log Y ) are approximately equal to percentage changes in
X (or Y . This leads the βs in the population regression model to
have approximate percentage change interpretations of one variable
on another. A percentage change is a non-linear change, since the
actual amount of the change depends on the starting value.
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5. See table 8.2 for the different population models using logs, and see the
following discussion for the interpretations of the βs in the different
models.

6. Load the diamond data (the first line of code is not needed if you have
already installed the Ecdat package):
install.packages (" Ecdat")
library(Ecdat)
data(Diamond)
attach(Diamond)

The linear-log model:
summary(lm(price ~ log(carat )))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 8397.4 133.7 62.78 <2e -16 ***
log( carat ) 5833.8 172.2 33.87 <2e -16 ***

The interpretation is that a 1% increase in carats is associated with
an increase in price of $58.34.
The log-linear model:
summary(lm(log(price) ~ carat))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 6.44488 0.02938 219.40 <2e -16 ***
carat 2.84155 0.04264 66.64 <2e -16 ***

The interpretation is that an increase in carats of 1 is associated with
an increase in price of 284% (it may be more sensible to instead say
that a 0.1 increase in carats is associated with a 28.4% increase in
price).
Finally, the log-log model:
summary(lm(log(price) ~ log(carat )))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 9.12775 0.01440 633.99 <2e -16 ***
log( carat ) 1.53726 0.01854 82.92 <2e -16 ***

The interpretation is that a 1% increase in carats is associated with a
1.53% increase in price.

7. Interaction terms are useful when we want to allow the effect of X
on Y to depend on a different X variable. When one variable in the
interaction term is a continuous variable, and the other is a dummy,
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the interaction term allows for a different marginal effect for the two
different groups (as defined by the dummy).
When both variables in the interaction term are dummies, we are
able to estimate a “difference-in-difference”. In both cases, interaction
terms allow us to estimate, and test for, differences between groups.

8. Load the CPS data (you don’t need the first line of code if you have
already installed the AER package):
install.packages ("AER")
library(AER)
data(" CPS1985 ")
attach(CPS1985)

We’ll introduce an interaction term into our population model:

logwage = β0 + β1education+ β2female+ β3age+ β4experience

+ β5education× female+ ε

To estimate this model in R, we can use the command (all on one line):
summary(lm(log(wage) ~ education + gender + age

+ experience + gender * education ))

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.23263 0.69231 1.780 0.075576 .
education 0.14950 0.11402 1.311 0.190364
genderfemale -0.69499 0.20315 -3.421 0.000672 ***
age -0.06472 0.11345 -0.570 0.568616
experience 0.07754 0.11355 0.683 0.494959
education : genderfemale 0.03362 0.01531 2.196 0.028545 *

The estimated difference is that an additional year of education in-
creases wages by 3.36% more for women than for men (note that the
dependent variable is logwage. To test to see if this difference is
insignificant we test the null hypothesis that the coefficient on the in-
teraction term is equal to zero (H0 : β5 = 0). R has already performed
this test for us: the associated p-value is 0.0286. We reject the null
hypothesis that there are no differences in the effect of education on
wages between men and women, at the 5% significance level.



9

Heteroskedasticity

The estimators that we have used so far have good statistical properties
provided that the following assumptions hold:

A1 The population model is linear in the βs.

A2 There is no perfect multicollinearity between the X variables.

A3 The random error term, ε, has mean zero.

A4 ε is identically and independently distributed.

A5 ε and X are independent.

A6 ε is Normally distributed.

These assumptions assure that OLS is unbiased, efficient, and consistent,
and that hypothesis testing is valid. A violation of one or more of these
assumptions might lead us to estimators beyond OLS. OLS is simple, and
easy to use, but is often thought of a starting point in econometric modelling
since the above assumptions are often unreasonable.

In this section, we will consider that assumption A4 is violated in a
particular way. Specifically, we consider what happens where the error term,
ε, is not identically distributed.

9.1 Homoskedasticity
If assumption A4 is satisfied, then ε is identically distributed. This means
that all of the εi have the same variance. That is, all of the random ef-
fects that determine Y , outside of X, have the same dispersion. The term
homoskedasticity (same dispersion) refers to this situation of identically dis-
tributed error terms.

125
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Figure 9.1: Homoskedasticity. The average squared vertical distance from
the data points to the OLS estimated line is the same, regardless of the
value of X.
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Stated mathematically, homoskedasticity means:

Var[εi|Xi] = σ2 , ∀i
The variance of ε is constant, even conditional on knowing the value of X.

Homoskedasticity means that the squared vertical distance of each data
point from the (population or estimated) line is, on average, the same. The
values of the X variables do not influence this distance (the variance of the
random unobservable effects are not determined by any of the values of X).
See figure 9.1.

9.2 Heteroskedasticity
Heteroskedasticity refers to the situation where the variance of the error
term ε is not equal for all observations. The term heteroskedasticity means
differing dispersion. Mathematically:

Var[εi|Xi] 6= σ2 , ∀i
or

Var[εi|Xi] = σ2
i

Each observation can have its own variance, and the value ofX may influence
this variance.
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Figure 9.2: Heteroskedasticity. The squared vertical distance of a data point
from the OLS estimated line is influenced by X.
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Heteroskedasticity means that the squared vertical distance of each data
point from the estimated regression line is not the same on average, and
may be influenced by one or more of the X variables. See figure 9.2, where
the larger the value of X is, the larger the variance of ε.

9.2.1 The implications of heteroskedasticity

Heteroskedasticity is a violation of A.4, since each εi is not identically dis-
tributed. Heteroskedasticity has two main implications for the estimation
procedures we have been using in this book:

(i) The OLS estimator is no longer efficient.

(ii) The estimator for the variance of the OLS estimator is inconsistent.

The inefficency of OLS is arguably a smaller problem than the incon-
sistency of the variance estimator. (ii) means that the estimated standard
errors in our regression output are wrong, leading to the incorrect t-statistics
and confidence intervals. Hypothesis testing, in general, is invalid. The prob-
lem arises because the formula that is the basis for estimating the standard
errors in OLS (equation 5.7):

Var [b1] = σ2
ε∑

X2
i −

(
∑

Xi)2

n

,
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Figure 9.3: Heteroskedasticity in the CPS data. The variance in wage may
be increasing as education increases.
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is only correct under homoskedasticity.
To fix problem (i), the inefficiency of OLS, we must use a different esti-

mator, such as Generalized Least Squares (GLS). GLS is not discussed here.
To fix (ii), the more important problem of the inconsistency of the standard
errors, the formula for Var [b1] must be updated to take into account the
possibility of heteroskedasticity.

Updating the formula to allow for heteroskedasticity in the estimation
of the standard errors gives what is typically referred to as robust standard
errors.

9.2.2 Heteroskedasticity in the CPS data

It may be the case that the variance in wages depends on education. The
reasoning is that individuals who have not completed highschool (or uni-
versity) are precluded from many high-paying jobs (doctors, lawyers, etc.).
However, having many years of education does not preclude individuals from
low-paying jobs. The spread in wages is higher for highly educated individ-
uals. Figure 9.3 illustrates this point.

If heteroskedasticity is present in the CPS data, it means that all the
hypothesis testing that we have done so far used the wrong standard errors,
and our conclusions may have been incorrect. For example, in the regression:
summary(lm(wage ~ education + gender + age + experience ))

Coefficients :
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Estimate Std. Error t value Pr(>|t|)
( Intercept ) -1.9574 6.8350 -0.286 0.775
education 1.3073 1.1201 1.167 0.244
genderfemale -2.3442 0.3889 -6.028 3.12e -09 ***
age -0.3675 1.1195 -0.328 0.743
experience 0.4811 1.1205 0.429 0.668
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error : 4.458 on 529 degrees of freedom
Multiple R- squared : 0.2533 , Adjusted R- squared : 0.2477
F- statistic : 44.86 on 4 and 529 DF , p- value : < 2.2e -16

the standard errors, t-statistics, and associated p-values are all wrong un-
der heteroskedasticity. To estimate the robust standard errors (which will
update the t-statistics and p-values as well), we can use the following com-
mands in R:
results <- lm(wage ~ age + education + gender + experience)
coeftest(results , vcov = vcovHC(results , "HC1 "))

t test of coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) -1.95744 1.53006 -1.2793 0.201345
age -0.36749 0.12384 -2.9675 0.003138 **
education 1.30727 0.12452 10.4983 < 2.2e -16 ***
genderfemale -2.34416 0.39543 -5.9282 5.53e -09 ***
experience 0.48107 0.13502 3.5629 0.000400 ***
---
Signif . codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that the estimated βs have not changed, but that the standard errors
have changed quite dramatically, leading to very different conclusions about
the statistical significance of the X variables.

Heteroskedastic errors have a pretty severe consequence; hypothesis test-
ing may be invalid. The prevalence of heteroskedasticity in many economics
data has led to the common practice of erring on the side of caution. Het-
eroskedastic robust standard errors are often used, if heteroskedasticity is
suspected. Note that homoskedasticity is a special case of heteroskedastic-
ity, so the downside of using the robust estimator when it is not needed, is
small.

9.3 Review Questions
1. Explain the difference between homoskedasticity and heteroskedastic-

ity.

2. Provide an example of heteroskedasticity using data from another
chapter.

3. Describe the problem that heteroskedasticity brings to OLS estima-
tion.
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4. Briefly explain how to fix the inconsistency of the standard errors in
OLS estimation, in the presence of heteroskedasticity.
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