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Abstract

For given finite graphs G and H, when can we assert the existence of a Ramsey
graph F with F −→ (G)Hr ? If there exists an ordering ≤ of G so that all H-subgraphs
of (G,≤) are order-isomorphic, then as an easy consequence of the Ramsey theorem
for ordered hypergraphs [e.g. Nešetřil, Rödl, 77,83], such an F exists. It is natural to
conjecture that this is not only a sufficient condition for the existence of such an F , but
also necessary. We show the situation to be more complicated than this and present
a small counterexample to this conjecture. An infinite family of such counterexamples
is then given. We also characterize those triples G, H and r for which a Ramsey F
exists.
KEYWORDS: Chromatic number, graph Ramsey theory, ordered hypergraph, proba-
bilistic method.

1 Notation

We sometimes use ordinal representation n = {0, 1, 2, . . . , n− 1} for the non-negative
integers, so the notation 0 ≤ m < n may be replaced by m ∈ n whenever clear. For a set S
and a given n ∈ ω we define [S]n = {T ⊆ S : |T | = n} to be the set of all subsets of S of size
n. Similarly we define [S]≤n.

We define a hypergraph (X, E) on the vertex set X by a collection of maps α0, . . . , αm−1,
αi : [X]ki → ni for integers ni ∈ ω and ki satisfying 1 ≤ ki ≤ |X|. The edge set E can be
interpreted as the collection of all subsets Y ⊂ X such that αi(Y ) > 0 for some i ∈ m. The
image αi(Y ) ∈ ni can be interpreted as the ‘type’ or ‘multiplicity’ of the edge Y . For example,
if ni = 2 = {0, 1} for each i, then there are only edges of one type. A k-uniform hypergraph
(with no loops or multiple edges) has m = 1, k0 = k and n = 2. For ordinary graphs (with
no loops or multiple edges) there is only one map α : [X]2 → 2.

Unless otherwise specified, graphs are meant to be finite, loopless, and without multiple
edges. We use G = (V (G), E(G)) to mean G is a hypergraph on the vertex set V (G)
with edges E(G) ⊆ 2[V (G)]. If H is a weak subhypergraph of G, i.e. V (H) ⊂ V (G) and
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E(H) ⊆ 2[V (H)] ∩ E(G) then we write H ⊆ G. If H ⊆ G and E(H) = 2[V (H)] ∩ E(G) then
we say H is an induced subhypergraph of G, denoted by H � G. Letting ∼= denote graph
isomorphism, we define (

G
H

)
= {H ′ � G : H ′ ∼= H}.

An ordered hypergraph (G,≤) is a hypergraph G together with a total order ≤ on V (G).
Two ordered hypergraphs are isomorphic just in case there is an order preserving graph
isomorphism between them. Definitions analagous to those given above hold for ordered
hypergraphs as well. For a hypergraph H we let

ORD(H) = {(H,≤0), (H,≤1), . . . , (H,≤k−1)},

be the set of (distinct) isomorphism types of orderings of H. It is often convenient to abuse
the notation and deliberately confuse an isomorphism type with a hypergraph of that given
type.

For this discussion we introduce some new notation. For a given (unordered) hypergraph
H and an ordered hypergraph (G,≤∗) we define

DO(H,G,≤∗) = {(H,≤i) ∈ ORD(H) :

(
G,≤∗
H,≤i

)
6= ∅}.

Set mdo(H,G) = min{|DO(H,G,≤j)| : (G,≤j) ∈ ORD(G)}, denoting the smallest number
of orderings of H in any one ordered G . For example, if an ordinary graph H is complete,
then mdo(H,G) ≤ 1 for any choice of G. The number mdo(H,G) will be of particular
interest throughout this paper.

For hypergraphs F , G and H, and a fixed r ∈ ω, we use the standard Ramsey arrow
notation F −→ (G)Hr to mean that for any coloring ∆ :

(
F
H

)
−→ n, there exists G′ ∈

(
F
G

)
so

that ∆ is constant on
(
G′
H

)
. We use the analagous notation for ordered graphs. We introduce

further the special notation

R[(G)Hr ] = {F : F −→ (G)Hr },

the Ramsey class for G in coloring of H’s with r colors. Observe that for these Ramsey type
statements to be non-trivial we usually only consider pairs G,H so that mdo(H,G) ≥ 1.

In ordinary graphs, we use Pn to refer to a path of length n on n+ 1 vertices. A cycle
on k vertices is denoted by Ck and a complete graph on n vertices by Kn.

2 Introduction

A familiar Ramsey statement is: 6 −→ (3, 3). This says that if we color the pairs of a six
element set with two colors then we are guaranteed the existence of a three element subset,
all of whose two element subsets are colored the same. Translated into the language of graph
theory, this statement reads: K6 −→ (K3)K2

2 .
The finite Ramsey’s theorem [16] can be stated as follows:



Theorem 2.1 For any m,k,r ∈ ω, there exists an n ∈ ω so that Kn −→ (Km)Kkr , i.e.,
R[(Km)Kkr ] 6= ∅.

In general, if we are given two graphs G and H and a number r ∈ ω , it is quite difficult
to ascertain whether or not there is a graph F ∈ R[(G)Hr ]. One of the earlier successes [8] is
the following

Theorem 2.2 For any ordinary graph G, R[(G)K1
2 ] 6= ∅.

Proof: Let the graph G be given and define the lexicographic product F = H ⊗H on
V (F ) = V (G)× V (G) by

((u0, v0), (u1, v1)) ∈ E(F ) iff

{
(u0, v0) ∈ E(G) or
u0 = u1 and (v0, v1) ∈ E(G)

It can be verified that F satisfies F −→ (G)K1
2 (since if there is no monochromatic copy of

G in any of the ‘coordinates’ of F , then there is certainly one straddling the coordinates).2

Theorem 2.3 ([2],[6] and [17]) For any ordinary graph G, R[(G)K2
2 ] 6= ∅.

A proof of this theorem is already quite difficult, and further questions of this nature
may be increasingly stubborn. (More recently, a very readable proof of Theorem 2.3 using a
partite construction is given in [11].) Could it be that for every triple G, H and r we have
a Ramsey F ∈ R[(G)Hr ]? This can be answered in the negative by the following well known
example (e.g. [14], p.192 ):

Example 2.4 R[(C4)P2
2 ] = ∅.

Proof: Let ≤∗ be any total order of V (C4). Then it is easy to see that (C4,≤∗) contains
at least two distinct orderings of P2, namely one with the middle vertex highest in the order,
and one with the middle vertex lowest in the order. (These two ‘middle’ vertices correspond
to the two vertices on the ‘ends’ of the order in (C4,≤∗).)

Now fix any (ordinary) graph F . Impose an arbitrary order ≤ on V (F ). We will produce

a coloring of
(
F
P2

)
which ensures that every copy of C4 in F is multicolored. Simply color

the copies of P2 according to their orientation; if one is ‘pointed’ upwards, color it red and
if one is pointed downwards, color it blue. We can color the other ordered P2’s arbitrarily.
Now since each ordered C4 contains one of each kind of P2 it recieves two colors. 2

It is not difficult to see that mdo(P2, C4) = 2. In subsequent sections we rely heavily on
this idea of ordering graphs so that we can find particular colorings. Pairs like C4 and P2

are not anomalous; there are ‘many’ such cases, as given in the following theorem [9].
We call a graph trivial if it is either complete or empty.

Theorem 2.5 For every non-trivial graph H there is a graph G so that R[(G)H2 ] = ∅.

The proof of this theorem uses an idea similar to the one used for Example 2.4, that is,
the idea of coloring ordered graphs.



3 The Question

For a fixed r ∈ ω and given graphs G and H, how can we tell if R[(G)Hr ] 6= ∅? Oddly
enough, this is completely answered in the case of ordered graphs. This might seem counter-
intuitive since ordered graphs are rigid and so any Ramsey structure would have to be
larger, in some sense, than in the unordered case so as to contain the necessary richness of
substructures required. Nevertheless . . .

Theorem 3.1 Given r ∈ ω and ordered hypergraphs (G,≤) and (H,≤),

R[(G,≤)(H,≤)
r ] 6= ∅.

This theorem is due to Nešetřil and Rödl [10],[12],[13] and independently, Abramson and
Harrington [1]. We omit the proof. An immediate application of this powerful theorem is
the following:

Corollary 3.2 Fix r ∈ ω. If H and G are (unordered) hypergraphs with mdo(H,G) = 1
then R[(G)Hr ] 6= ∅.

Proof: Let mdo(H,G) = 1 and fix an ordering ≤ of G so that every induced H-
subgraph of G is ≤-order-isomorphic to say (H,≤). Apply Theorem 3.1 to obtain (F,≤) ∈
R[(G,≤)(H,≤)

r ]. We claim the unordered F also satisfies F −→ (G)Hr .

Fix a coloring ∆ :
(
F
H

)
−→ r and order F according to ≤. Then ∆ induces a coloring

∆∗ :
(
F,≤
H,≤

)
−→ r and so there exists a (G′,≤) ∈

(
F,≤
G,≤
)

so that ∆∗ is constant on
(
G′,≤
H,≤

)
.

But since |DO(H,G,≤)| = 1, ∆∗ assigns a color to every copy of H in G′. Hence
(
G′
H

)
is

monochromatic with respect to ∆∗ and so also with respect to ∆. 2

Now another otherwise difficult result proven by Deuber [3] and Nešetřil and Rödl [9],
which is an extension of Theorems 2.2 and 2.3 of the previous section, is simply an obvious

Corollary 3.3 For any ordinary graph G and fixed r, n ∈ ω R[(G)Knr ] 6= ∅.

One might hope to find some necessary conditions on G, H and r so that R[(G)Hr ] 6= ∅,
however at least one straightforward restriction must be respected.

Lemma 3.4 Fix hypergraphs G and H where |ORD(H)| = r. If mdo(H,G) ≥ 2 then
R[(G)Hr ] = ∅.

Proof: In hope of a contradiction, suppose F is so that F −→ (G)Hr and impose an

arbitrary ordering ≤ on V (F ). Now define an r-coloring ∆ :
(
F
H

)
−→ r by ∆(H ′) = i if

(H ′,≤) ∼= (H,≤i) ∈ ORD(H). Since mdo(H,G) ≥ 2, every copy of G in F is two-colored.2



4 Counterexample

In a corollary ([15] p.54) Prömel and Voigt state that for all hypergraphs G and H,
mdo(H,G) = 1 if and only if R[(G)H2 ] 6= ∅.

After trying to prove this ‘corollary’ we discovered the following counterexample.

Lemma 4.1 There exist graphs G and H so that mdo(H,G) = 2 but R[(G)H2 ] = ∅.

Proof: Let T and P = P2 be the graphs given in Figure 1.
Label ORD(P ) = {(P,≤0), (P,≤1)(P,≤2)} as in Figure 2.

T P
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Figure 1: The graphs used for counterexample.
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Figure 2: The orderings of P

It is easy to verify that mdo(P, T ) = 2. Fix three orderings of T as shown in Figure 3.
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Figure 3: Three orderings of T.



We point out that for each i ∈ 3, (T,≤i) contains as induced P -subgraphs exactly
{(P,≤j) : j ∈ 3, j 6= i}. Let (B,≤) be the ordered (disjoint) sum of (T,≤0), (T,≤1), and
(T,≤2), taken in a fixed, but arbitrary order.

Using Theorem 3.1 successively choose ordered graphs (C,≤), (D,≤) and (F,≤) so that

(C,≤) −→ (B,≤)
(P,≤0)
2 , (1)

(D,≤) −→ (C,≤)
(P,≤1)
2 , (2)

and
(F,≤) −→ (D,≤)

(P,≤2)
2 . (3)

We claim that F , the unordered version of (F,≤), actually satisfies F −→ (T )P2 . Fix a 2-

coloring ∆ :
(
F
P

)
−→ 2. By (3), there is (D′,≤) ∈

(
F,≤
D,≤

)
so that ∆ is constant on

(
D′,≤
P,≤3

)
, say

∆[
(
D′,≤
P,≤2

)
] = s2 ∈ 2. Now by (2) there also exists (C ′,≤) ∈

(
D′,≤
C,≤

)
so that ∆ is constant on(

C′,≤
P,≤1

)
, say ∆[

(
C′,≤
P,≤1

)
] = s1 (while of course ∆ is still constant on

(
C′,≤
P,≤2

)
). Similarly, by (1)

we choose (B′,≤) ∈
(
C′,≤
B,≤

)
with ∆[

(
B′,≤
P,≤0

)
] = s0 ∈ 2 while still being constant on

(
B′,≤
P,≤2

)
and(

B′,≤
P,≤1

)
. So in (B′,≤) all copies of P are colored with two colors, only depending on their

orientation. Since {s0, s1, s2} ⊂ 2, at least two of s0, s1, s2 agree. If, say, s0 = s1 then the
(T,≤2) part of (B′,≤) has all its P -subgraphs colored the same. In any case, at least one
monochromatic copy of T will exist as an induced subgraph of F . 2

In general, the idea is easy to apply if we can find an H with |ORD(H)| = 3, and G so
that mdo(H,G) ≥ 2 and yet there are 3 orderings of G witnessing the fact, each containing
a different pair of (distinct) elements from ORD(H) as induced subgraphs. This recipe can
be generalized to reveal the essence of the method, as we see in the next section.

5 A characterization

Let K = (X,K) be a hypergraph and recall that the chromatic number, χ(K), of K is the
least integer n so that there is an n-coloring of the vertex set X yielding no monochromatic
edge E ∈ K. For a given pair of hypergraphs G and H, let us define a new hypergraph KH,G

on the vertex set ORD(H) with edge set E(KH,G) = {DO(H,G,≤j) : (G,≤j) ∈ ORD(G)}.
Since for each edge there corresponds an ordering of G we may, by abuse of notation, refer to
the edges as orderings of G, i.e., we could say E(KH,G) = ORD(G), and a vertex (H,≤i) is
contained by an edge (G,≤j) if and only if (H,≤i) � (G,≤j). We now give a characterization
of those triples H, G and r for which there exists a Ramsey graph.

Theorem 5.1 Given hypergraphs G and H, R[(G)Hr ] 6= ∅ if and only if χ(KH,G) > r.

The proof in one direction is based on the construction given in the proof of the coun-
terexample and the other direction is by simple contradiction. It might be helpful to keep
in mind that if χ(KH,G) > r this would mean that for every r-coloring χ : ORD(H) −→ r
there exists an order ≤∗ of G so that DO(H,G,≤∗) is monochromatic. This fact will be
used to show that the graph we construct in the first part of the proof is indeed in R[(G)Hr ].



Throughout the proof we fix r ∈ ω, hypergraphs G, H and K = KG,H .
Proof:(⇐) Assume χ(K) > r. Enumerate

ORD(H) = {(H,≤0), (H,≤1), . . . , (H,≤t−1)}
and

ORD(G) = {(G,≤0), (G,≤1), . . . , (G,≤s−1)}.
Construct the graph (B,≤) =

⋃̇
j∈s(G,≤j), the (disjoint) ordered sum of the orderings of G.

(It is not necessary that all the vertices of one ordering of G be entirely below all vertices of
another, – though it helps to imagine it this way – only that the order of each is preserved
and they remain disjoint, but yet form a new ordered graph.) By Theorem 3.1 choose (B0,≤)
satisfying (B0,≤) −→ (B,≤)(H,≤0)

r and for i = 1, . . . , t − 1 choose (again by Theorem 3.1)
successively (Bi,≤) so that (Bi,≤) −→ (Bi−1,≤)(H,≤i)

r .
We claim that Bt−1, the unordered version of (Bt−1,≤), satisfies Bt−1 −→ (G)Hr . Fix a

coloring ∆ :
(
Bt−1

H

)
−→ r. As in the proof of Lemma 4.1, construction guarantees the ex-

istence of (B′,≤) ∈
(
Bt−1,≤
B,≤

)
so that for any fixed i, all the induced (H,≤i)-subgraphs of

(B′,≤) are monochromatic. This coloring of ordered H’s in (B′,≤) induces a r-coloring χ of
the vertices of KH,G and hence (by the remark preceding the proof) there exists a (G,≤j) in
the edge set of KH,G which is monochromatic (since χ(KH,G) > r) with respect to χ. Thus,

there exists G∗ ∈
(
Bt−1

G

)
monochromatic with respect to ∆.

(⇒) Assume χ(KH,G) ≤ r. So choose a coloring χ : ORD(H) −→ r so that each element
in ORD(G) is multi-colored. Choose any F and impose an arbitrary (but fixed) ordering

≤∗ on V (F ).. This naturally imposes an order on each H ′ ∈
(
F
H

)
, so color

(
F
H

)
according

to χ. That is, define ∆ :
(
F
H

)
−→ r by ∆(H ′) = χ((H ′,≤∗)) for each H ′ ∈

(
F
H

)
, where

(H ′,≤∗) ∈ ORD(H) is the ≤∗-ordered H-subgraph. Then since each element in ORD(G) is

multi-colored with respect to χ, so also is each G′ ∈
(
F
G

)
with respect to ∆. 2

Theorem 5.1 now yields the following characterization which was also suggested to the
authors by Xuding Zhu (oral communication).

Corollary 5.2 For given hypergraphs G and H, mdo(H,G) = 1 if and only if for every
r ∈ ω R[(G)Hr ] 6= ∅.

Proof: One direction is simply Corollary 3.2, so assume that for some fixed G and H and
every r ∈ ω, R[(G)Hr ] 6= ∅. Then by Theorem 5.1 the chromatic number of the associated
KH,G is infinite. Since KH,G is finite, this means that there is a hyperedge consisting of
only one point. A single vertex edge would correspond to an ordering of G witnessing
mdo(H,G) = 1. 2

Additionally, one can now derive the following corollary of Theorem 5.1 by only examining
a particular KH,G with known chromatic number. This gives sufficient conditions (which can
be tested directly) on pairs of hypergraphs G and H for which R[(G)Hr ] 6= ∅ holds.

Corollary 5.3 Let G and H be hypergraphs with mdo(H,G) = l ≤ k = |ORD(H)| and
fix r ∈ ω. If there exists an s, (l ≤ s < k), so that both k ≥ rs−1 and for each J ⊆ ORD(H)
with |J | = s there exists (G,≤j) ∈ ORD(G) so that DO(H,G,≤j) = J , then R[(G)Hr ] 6= ∅.



6 A special hypergraph

We will, in the next section, give an infinite family of pairs of graphs H and G so that
mdo(H,G) ≥ 2 however R[(G)H2 ] is non-empty. To do this we must first find a (very large)
hypergraph with certain properties.

Let us recall the following definition of a hypergraph with no short cycles (cf. [5] p.94).
For the r-uniform hypergraph E = (X, E) has girth(E) > l if for every sequence of distinct
edges f0, f1, . . . , fj0−1 ∈ E with j0 ≤ l

| ⋃
j∈j0

fj| ≥ j0(r − 1) + 1 (4)

holds. If (4) fails to be true, then a cycle of length ≤ j0 exists among f0, f1, . . . , fj0−1.
For a hypergraph on a vertex set X partitioned by X = X0 ∪̇X1 ∪̇ . . . ∪̇Xn−1, we use

the notation ((Xi)i∈n, E), commonly used for n-partite graphs. We denote by dxe the least
integer z ≥ x and bxc is the greatest integer y ≤ x.

Theorem 6.1 For a given integers n ≥ 1 and l ≥ 2 there exists a 2n-uniform hypergraph
E = ((X)i∈n, E) with |X0| = |X1| = . . . = |Xn−1| , which enjoys the following properties:

1. For each edge e ∈ E , |e ∩Xi| = 2 for all i ∈ n.

2. Girth(E) > l

3. For each choice of X ′0, X
′
1, . . . , X

′
n−1 with X ′i ⊂ Xi and |X ′i| ≥ 1

n
|Xi| for all i ∈ n,

E ∩ [
⋃
i∈nX

′
i]

2n 6= ∅, i.e., there exists an edge in the hypergraph induced by
⋃
i∈nX

′
i.

For this proof we use the probabilistic method, due to P. Erdős [4], in a manner similar
to the that used in [5]. We use the notation f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0 for
functions f and g. Note that if f(n) = o(n) then so also f(n) = o(kn) for fixed k > 0.
Proof: The case n = 1 is trivial so consider only when n ≥ 2 (while of course l ≥ 2 as well).
We use elementary asymptotic formulae (see [7]) throughout; it will be tacitly assumed that
numbers used are large enough so these formulae hold. Let N = N(n, l) be a large positive
integer. Consider n pairwise disjoint sets X0, X1, . . . , Xn−1 of cardinality N .

Let U be the set of all 2n-element sets f with the property |f ∩Xi| = 2 for every i ∈ n.
Fix ε = 1

2l
and set M = dN/ne. Let E be random subset of U , where for f ∈ U

Prob[f ∈ E ] = p = M ε−2n+1.

Let X ′i ⊂ Xi, i = 0, 1, . . . , n− 1 be subsets so that |X ′i| ≥M . Then

Prob[|E ∩ [
⋃

i∈n
X ′i]

2n| ≤M ] =
M∑

j=0

((
M
2

)n

j

)
pj(1− p)(M2 )

n−j (5)

≤ M

((M
2

)n

M

)
pM(1− p)(M2 )

n−M (6)



∼ M(
e

2n
M2n−1)M(M ε−2n+1)M exp

(
−M ε−2n+1

((
M

2

)n
−M

))

< M εM exp(− 1

2n
M1+ε)

= o(1).

The first equality (5) merely sums probabilities according to the binomial distribution. In
such a distribution, it is well known that the occurrence with highest probability occurs close
to the expected value, which is, in this case,

(
M

2

)n
M ε−2n+1 =

N1+ε

2n
.

For large enough N , we see that this can be made larger than M , and so the inequality (6)
holds. These equations show us that for sufficiently large N the graph induced by

⋃
i∈nX

′
i

has more than N/n edges with probability close to 1.
Now we will examine short cycles; if (4) fails to be true (with r = 2n) for some j0 ≤ l, then

there exists an l-tuple of edges f0, f1, . . . , fl�1 ∈ E and a set Y ⊂ ⋃i∈nX i, |Y | = l(2n− 1)
so that

⋃
j∈l fj ⊂ Y . The number of choices for each set Y is bounded by

(
nN

l(2n− 1)

)
< c1N

l(2n−1)

and given Y , the number of choices for f0, f1, . . . , fl�1 is easily bounded by
(
l(2n− 1)

2n

)l
< c2

where c1 = c1(n, l), c2 = c2(n, l) are independent of the choice of N . Thus the expected
number of cycles of length at most l can be bounded from above by

c1c2N
l(2n−1)pl ≤ c1c2N

l(2n−1)
(

2N

n

)l(ε−2n+1)

= c3

√
N = o(N) = o(M),

where c3 = c3(n, l) is a constant independent of N .
Summarizing, with large probability ((Xi)i∈n,E) has the properties (i): |[⋃i∈nX ′i]2n∩E | >

M whenever X ′i ⊂ Xi and |X ′i| ≥ 1
n
|Xi| for all i ∈ n, and (ii): the number of cycles of length

at most l is o(M).
Let ((Xi)i∈n, E ′) be a hypergraph satisfying both (i) and (ii) (while still satisfying condi-

tion 1 in the statement of the theorem). Delete an edge from each cycle of length at most l
to obtain a hypergraph E = ((Xi)i∈n, E). We deleted at most o(M) edges, and thus due to
(i),

|[⋃
i∈n

X ′i]
2n ∩ E| > M − o(M) > 0

whenever X ′i ⊂ Xi and |X ′i| ≥ 1
n
|Xi|.2

The hypergraph constructed in the above theorem has a very special property; with the
help of this next useful lemma, we shall find it. For a given order ≤∗ on a set A, we use
C ≤∗ D to denote c ≤∗ d for all c ∈ C ⊂ A and d ∈ D ⊂ A, where no relations in C or D
are specified.



Lemma 6.2 For given n, N ∈ ω, let (X,≤∗) be a totally ordered set with |X| = nN .
Let X = X0 ∪̇X1 ∪̇ . . . ∪̇Xn−1 be a partition of X with |Xi| = N for each i ∈ n. Then there
exists a subfamily X ′0, X

′
1, . . . , X

′
n−1, where for each i X ′i ⊆ Xi and |X ′i| ≥ N/n, together

with a permutation σ : n→ n so that X ′σ(0) <
∗ X ′σ(1) <

∗ . . . <∗ X ′σ(n−1).

Proof: Since the case n = 1 is trivial, assume n ≥ 2 and let Xi (i ∈ n) and (X,≤∗)
be given with x0 ≤∗ x1 ≤∗ . . . ≤∗ xnN−1 an enumeration of X. First we select the
smallest k0 ∈ (nN − 1) so that for some i ∈ n, |{x0, . . . , xk0−1} ∩Xi| = dN/ne , and set
σ(0) = i. Note that k0 ≤ n(dN/ne − 1) + 1 ≤ N by the pigeon hole principle. Also ob-
serve that |{xk0 , . . . , xnN−1} ∩Xj| > N − dN/ne for each j 6= σ(0) since at most dN/ne − 1
elements of Xj (j 6= σ(0) ) ocurred in {x0, . . . , xk0−1} and k0 was chosen smallest. We
set X ′σ(0) = {x0, . . . , xk0−1} ∩Xσ(0). We repeat the procedure with {xk0 , . . . , xnN−1} and
{Xi : i 6= σ(0)}. In general, suppose we have found J = {σ(0), . . . , σ(t− 1)} and {X ′j : j ∈ J}
so that X ′σ(0) <

∗ . . . <∗ X ′σ(t−1) where max(X ′σ(t−1)) = xk(t−1)−1 with t < n. Then for ν 6∈ J ,

|{xkt−1 , . . . , xnN−1} ∩Xν | ≥ [N − t(dN/ne − 1)] > (n− t)(dN/ne − 1),

where the first inequality is because we could have ‘used’ only so many at each step and
the second inequality holds since N > n(dN/ne − 1). Thus we can continue, finding
σ(t) ∈ n\J and a minimal kt so that |Xσ(t) ∩ {xi : kt−1 ≤ i < kt}| ≥ dN/ne and so we set
X ′σ(t) = Xσ(t) ∩ {xi : kt−1 ≤ i < kt}. 2

Let E = ((Xi)i∈n, E) be the hypergraph guaranteed by Theorem 6.1. Since for each e ∈ E ,
|e ∩ Xi| = 2 for each i ∈ n, let us denote each edge by e = {x0, y0, x1, y1, . . . , xn−1, yn−1}
where xi, yi ∈ Xi for each i ∈ n.

Lemma 6.3 For E = ((Xi)i∈n, E) and <∗ a total order on
⋃
i∈nXi, then there exists

e = {x0, y0, x1, y1, . . . , xn−1, yn− 1} ∈ E and a permutation σ of n so that the vertices
of e satisfy xσ(0) <

∗ yσ(0) <
∗ xσ(1) <

∗ yσ(1) <
∗ . . . <∗ xσ(n−1) <

∗ yσ(n−1), where {xσ(i), yσ(i)} ⊂
Xσ(i) for each i ∈ n. That is, there remains at least one edge which keeps vertices from the
same coordinate Xi ‘together’ in the order <∗.

Proof: Let <∗ be a given order on
⋃
i∈nXi; then by Lemma6.2 there exists a subfamily

X ′0, X
′
1, . . . , X

′
n−1, where for each i X ′i ⊆ Xi and |X ′i| ≥ N/n, and a permutation σ : n→ n

so that X ′σ(0) <
∗ X ′σ(1) <

∗ . . . <∗ X ′σ(n−1). Now by condition 3 of Theorem 6.1, the desired
edge exists.

7 Infinite family of counterexamples

In this section, we produce infinitely many pairs H and G so that mdo(H,G) ≥ 2 and
yet R[(G)H2 ] 6= ∅. We do this by choosing H of a particular nature (of which there are
infinitely many) and, using the large hypergraph of Theorem 6.1, produce a corresponding
G satisfying the sought after conditions. We first give a simple observation.

Lemma 7.1 All connected non-trivial ordinary graphs contain a copy of P2 as an induced
subgraph.



Proof: LetH = (V (H), E(H)) be connected. Choose a, b ∈ V (H) so that {a, b} 6∈ E(H).
Since H is connected there exist x1, x2, . . . , xm ∈ V (H) determining a path ax1x2 . . . xmb. As-
sume that no copy of P2 occurs as an induced subgraph of the graph induced by {a, x1, x2, . . . , xm}.
Then we must have {a, x2} ∈ E(H) (otherwise a,x1 and x2 determine a copy of P2). Sim-
ilarly, {a, x3}, . . . , {a, xm} must also be edges. In this case a,xm and b determine a copy of
P2.2

Recall that an ordinary graph is n-connected if between any two vertices there are n
vertex-disjoint paths joining them. It is easy to see that a graph is 2-connected if and only
if the graph can not be made disconnected by the removal of any single vertex, that is, its
smallest cutset contains at least two elements. We also say, in this case, that the graph has
no cutpoints. (A cutpoint is a vertex whose removal disconnects the graph.)

Theorem 7.2 If H is a non-trivial 2-connected (ordinary) graph, then there exists a
graph G so that mdo(H,G) ≥ 2 and R[(G)H2 ] 6= ∅.

Proof: Let H = (V (H), E(H)) be given with |V (H)| = n. By Lemma 7.1 fix a copy
of P2 across {h0, h1, h2} ⊂ V (H) where we enumerate V (H) = {h0, h1, . . . , hn−1}. Form a
new graph K ∼= H, V (H) ∩ V (K) = ∅, with ψ : V (H) → V (K) = {ko, k1, . . . , kn−1}, the
isomorphism defined by ψ(hi) = ki+1( mod 3) for i = 0, 1 and 2 and ψ(hi) = ki otherwise. We
have simply relabeled H using a permutation of the first three vertices. Order each of V (H)
and V (K) in the natural way (i.e., hi < hj and ki < kj if and only if i < j) producing (H,≤)
and (K,≤). Note that (H,≤) 6∼= (K,≤).

Select a hypergraph E = ((Xi)i∈n, E) satisfying the conditions in Theorem 6.1 with
girth(E) > n. Construct a new (ordinary) graph G on the vertex set

⋃
i∈nXi by disjointly

embedding a copy of H∪̇K into each hyperedge of E in the following manner: For each
hyperedge e = {x0, y0, x1, y1, . . . , xn−1, yn−1} (where xi, yi ∈ Xi for each i ∈ n) in E define
embeddings fe : V (H)∪̇V (K) → e by fe(hi) = xi and fe(ki) = yi for each i ∈ n. So
{a, b} ∈ E(G) if and only if {f−1

e (a), f−1
e (b)} ∈ E(H) ∪ E(K) for some e ∈ E .

Since girth(E) > 2, hyperedges of E intersect in at most one point and so these embed-
dings are well defined. Essentially, G = ((Xi)i∈n, E(G)) is a graph formed by ‘stringing out’
copies of H across its coordinates; the H-subgraphs can sit in one of two ways. We claim
that mdo(H,G) ≥ 2.

Let ≤ be an order on V (G) = V (E). By Lemma 6.3, there exists a hyperedge e ∈ E
which respects grouping of vertices along coordinates, and hence we find a copy of H and a
copy of K which satisfy {fe(hi), fe(ki)} ⊂ Xσ(i) for each i and some permutation σ. We need
only notice that permuting the order of the vertices of both (H,≤) and (K,≤) in the same
way produces again two non-isomorphic orderings of H. So any ordering of G produces
two non-isomorphic ordered H’s, i.e., mdo(H,G) ≥ 2. We have yet to demonstrate that
R[(G)H2 ] 6= ∅.

Rename (H,≤) = (H,≤0) and (K,≤) = (H,≤1) and fix (H,≤2), a third ordering of H
defined by h2 ≤2 h0 ≤2 h1 ≤2 h3 ≤2 h4 ≤2 . . . ≤2 hn−1, agreeing with the first two except by
a cyclical permutation on h0, h1 and h2. Let ≤0, ≤1 and ≤2 be three total orders on V (G)
which preserve coordinates and agree except that the first three coordinates are permuted,
e.g.:

X0 ≤0 X1 ≤0 X2 ≤0 X3 ≤0 . . . ≤0 Xn−1,



X1 ≤1 X2 ≤1 X0 ≤1 X3 ≤1 . . . ≤1 Xn−1,

X2 ≤2 X0 ≤2 X1 ≤2 X3 ≤2 . . . ≤2 Xn−1.

Now each of (G,≤0), (G,≤1) and (G,≤2) can be seen to contain a different pair of (H,≤0),
(H,≤1) and (H,≤2) as induced subgraphs. We claim that these are the only induced H-
subgraphs of the given ordered G’s.

In the construction of G no edges were added between hyperedges of E. Since hyperedges
of E intersect in at most one point and H is 2-connected, no new copy of H is introduced by
two hyperedges intersecting. (If one was newly formed, the point of intersection would be a
cutpoint, contrary to being 2-connected.) The introduction of more hyperedges intersecting
the first two might help to construct a new copy of H except that the condition ‘girth(E) > n’
prevents any such occurrence. So no other copies of H exist in G other than those produced
explicitly in the construction. Recall now Theorem 5.1, and using the three orderings of G
and the three orderings of H, we see χ(KH,G) ≥ 3. Hence R[(G)H2 ] 6= ∅. 2

We denote the complement of an ordinary graph G by G. Given a collection G of graphs,
we define G = {G : G ∈ G}. Let M be the collection of all graphs G containing a cutpoint
which is connected to all other vertices except at most one. It is not difficult to derive the
following:

Lemma 7.3 H ∈M∪M if and only if neither H nor H is 2-connected.

This was proved in [18]. Using this terminology, we obtain an immediate corollary of
Theorem 7.2.

Corollary 7.4 Let H be a non-trivial ordinary graph. If H 6∈ M ∪M then there exists
a graph G so that mdo(H,G) ≥ 2 and R[(G)H2 ] 6= ∅.

Proof: If H 6∈ M ∪M then either H or H is 2-connected. If H is 2-connected, we are
done by Theorem 7.2. Suppose H is not 2-connected but H is. By Lemma 7.1, H contains
a copy of P2. So we duplicate the construction in Theorem 7.2 to produce G and F with

F −→ (G)H2 . We claim that F −→ (G)H2 . Fix a coloring ∆ :
(
F
H

)
−→ 2. This induces a

coloring ∆ :
(
F
H

)
−→ 2 by ∆(H) = ∆(H). Since F −→ (G)H2 there exists a G′ ∈

(
F
G

)
so that(

G′
H

)
is monochromatic with respect to ∆. Hence

(
G′
H

)
is monochromatic with respect to ∆.

So we only need show mdo(H,G) ≥ 2. Choose an ordering (G,≤) of G. If (H,≤0),
(H,≤1) ∈ DO(H,G,≤) are non-isomorphic, then certainly (H,≤0), (H,≤1) ∈ DO(H,G,≤)
are non-isomorphic as well.2

We conclude with some remarks. Many generalizations of these results to hypergraphs
are possible. The notions of connectivity and complement must extended however. One may
also choose a subhypergraph which plays the role of P2 in Theorem 7.2, but with cautionary
heed to extra assumptions. Are there ‘elegant’ extensions of this type?

We save for another discussion a partial classification of ordinary graphs for which the
statement “mdo(H,G) = 1 if and only if R[(G)H2 ] 6= ∅” is true. Alternately, how much can
the conditions on H be weakened so that this statement fails; Lemma 4.1 shows that H
need not be 2-connected. Numerous other interesting questions should suggest themselves



to the reader now. If one is to complete the classification of ordinary graphs with respect to
Ramsey properties, it is believed that pursuits in directions similar to those taken here may
be of assistance.
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