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Abstract

For each n and k, we examine bounds on the largest number m so
that for any k-coloring of the edges of Kn there exists a copy of Km

whose edges receive at most k − 1 colors. We show that for k ≥ √n+
Ω(n1/3), the largest value of m is asymptotically equal to the Turán
number t(n, b(n2

)
/kc), while for any constant ε > 0, if k ≤ (1 − ε)√n

then m can be asymptotically larger than that Turán number.

1 Introduction

For any finite set S and positive integer k, we use the notation [S]k =
{T ⊂ S : |T | = k}. A graph G is an ordered pair (V,E) = (V (G), E(G))
where V is a finite set and E ⊂ [V ]2. Elements of V are called vertices and
elements of E are called edges. If G is a graph with |V (G)| = n and E(G) =
[V ]2, then we say that G is a complete graph on n vertices, denoted by Kn.
It will be convenient to use V (Kn) = [n] = {1, . . . , n} and E(Kn) = [n]2.
The complement of G will be denoted by G = (V (G), [V (G)]2\E(G)); so,
for example, Kn is an independent set of n vertices.

The standard Ramsey arrow notation n → (m)2
k means that for every

k-coloring of the edges of Kn, there exists a copy of Km all of whose edges
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receive the same color. In two early papers on Ramsey theory ([3], [5]) it
was shown that

n→
(

log n
2 log 2

)2

2

and n 6→
(

2 logn
log 2

)2

2

.

When more than two colors are used, techniques from these two papers show
that there are universal constants c1 and c2, so that for each k ≥ 2,

n→
(
c1 log n
k log k

)2

k

and n 6→
(
c2 log n
log k

)2

k

.

Erdős, Hajnal, and Rado [4] introduced another Ramsey arrow notation,
n → [m]2k, meaning that for any k-coloring of E(Kn), there exists a copy
of Km whose edges receive at most k − 1 colors. (When k = 2, this is the
standard Ramsey arrow.) This concept was also examined in [8]. It was
shown in [6] that there exists a universal constant c1 so that for every n and
k ≤ n,

n→
[
c1k

log k
logn

]2

k

, (1)

and techniques from [3] give a universal constant c2 so that

n 6→ [c2k log n]2k. (2)

Rather than being given an m and k and finding bounds on n, we shall be
concerned with bounds on m given n and k.

Definition 1.1 Let f(n, k) be the largest integer so that n→ [f(n, k)]2k.

Thus for a given n, under any k-coloring of E(Kn), there is always a
clique of size at least f(n, k) which is not completely multi-colored. Restating
equations (1) and (2), there are universal constants c1 and c2 so that for
k ≤ n:

c1k

log k
log n ≤ f(n, k) < c2k log n. (3)

In particular, for k constant, f(n, k) = Θ(logn). In this paper, we are
interested in the asymptotic order of f(n, k) when k is a function of n.

2 Preliminaries

Lemma 2.1 If 2 ≤ k < n, then f(n, k) ≤ f(n + 1, k) and f(n, k) ≤
f(n, k + 1).
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Proof: That f(n, k) ≤ f(n + 1, k) follows immediately from the fact
that Kn+1 has Kn as a subgraph.

To prove that f(n, k) ≤ f(n, k + 1), let f(n, k) = m and let a (k + 1)-
coloring of E(Kn) be given. Examine an auxiliary k-coloring defined by
identifying two color classes. By the choice of m, there exist m vertices
which induce at most k−1 colors from the auxiliary coloring, hence at most
k colors of the original (k + 1)-coloring. Hence, f(n, k + 1) ≥ m. 2

It is not difficult to check that f(6, 3) < 4 (by giving a 3-coloring of
E(K6) under which every K4 is 3-colored—one such coloring uses three
paths of length 5). It easily follows that f(6, 3) = 3. Since f(6, 2) = 3 as
well, the inequality f(n, k) ≤ f(n, k + 1) is not always a strict inequality.

Let t(n,m) denote the maximum t so that every graph with n vertices
and m edges has an independent set of size at least t. This function is known
precisely for all n and m, by Turán’s Theorem. It is the number of cliques
in the appropriate Turán graph, which we denote here by T (n,m). This is
the disjoint union of the minimum possible number of nearly equal cliques
on n vertices whose total number of edges is at most m. We define

g(n, k) = t(n, b
(
n

2

)
/kc).

This yields an easy lower bound for f(n, k), which was also observed in [8]:

Lemma 2.2 f(n, k) ≥ g(n, k).

Proof: Fix any k-coloring E(Kn) = E1 ∪ · · · ∪ Ek. Some color class, say
E1, has at most b(n2

)
/kc edges. By Turán’s theorem the subgraph formed

by E1 contains an independent set of t vertices, and this independent set is
a t-clique in G that is at most (k − 1)-colored. 2

The main focus of this paper will be to determine for which values of n, k,
equality holds, or at least nearly holds, in Lemma 2.2. Note that if there is
a coloring of E(Kn) in which each color class is a copy of the appropriate
Turán graph, then equality holds. Similarly, for equality to nearly hold, we
must find a coloring in which each color class is very close to the Turán
graph.

Here we show that g(n, k) is the precise value of f(n, k) for all k ≥ n,
(as well as in several other cases), that for every k ≥ (1 + ε)

√
n

f(n, k) = (1 + o(1))g(n, k),

where the o(1) term tends to 0 as n (and hence k) tend to infinity, and that
for every ε > 0 there exist n0 and δ > 0 such that if k < (1− ε)√n, n > n0
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then
f(n, k) > (1 + δ)g(n, k).

It will be helpful to observe that if both k and n/k tend to infinity then
g(n, k) = (1 + o(1))k.

3 Case 1: k ≥ n

In Theorem 3.1 we shall employ a result about balanced edge-colorings.
A proper edge-coloring of a graph is one where no two incident edges have the
same color. An edge-coloring of a graph G using k colors is called balanced
if each color class has either b|E(G)|/kc or d|E(G)|/ke edges. The following
fact is well known:

Fact: If a graph G has a k-edge coloring, then it has a balanced proper
k-edge coloring.

Theorem 3.1 For each k ≥ n, f(n, k) = g(n, k).

Proof: We use a balanced proper k-coloring of E(Kn) and observe that
each color class contains the appropriate Turán graph, which in this case is
simply a matching of size b(n2

)
/kc or d(n2

)
/ke. 2

4 Case 2: k = n/α for a fixed real α ≥ 1

We need the following well known result of Wilson [12] on graph decom-
position. We say that a graph G has an H-decomposition if the set of its
edges can be colored such that each color class forms a copy of H. These
colored copies are called the members of the decomposition.

Theorem 4.1 (Wilson) Let H = (V,E) be a graph with q edges and
let g denote the greatest common divisor of the degrees of H. Then there is
an n0 = n0(H) such that for every n > n0 for which

(
n
2

)
is divisible by q

and n− 1 is divisible by g, Kn has an H-decomposition.

We need to show that we can find complete graphs which have H-
decompositions with additional regularity properties.

Lemma 4.2 For every graph H with h vertices and q edges, there is a
2q-regular graph H1 on h4 vertices which has an H-decomposition, such that
each vertex of H1 is incident with precisely h members of the decomposition.
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Proof: We begin with the following:
Claim There exist g1, ..., gh ∈ {0, ..., h4 − 1} such that the h2 − h differences
gi − gj (mod h4) are pairwise distinct.

To see this, we take a uniform random choice of g1, ..., gh. The probability
that (gi1 , gj1), (gi2 , gj2) with, say, j2 6= i1, j1, have the same difference is
at most 1

h4−3
since after fixing gi1 , gj1 , gi2 , there are still at least h4 − 3

choices for gj2 , at most one of which yields the same difference. The case
j1 = i2, j2 = i1 (for even h) has an even lower probability. Therefore,
the expected number of pairs which have the same difference is at most(
h2−h

2

)
1

h4−3
< 1 and so there is at least one choice for which this number is

zero.
Now we simply take the copy of H formed by mapping its vertex number

i to gi, and let H1 consist of this copy and all the h4 − 1 cyclic shifts of it.
2

Corollary 4.3 For every graph H there is a complete graph Km which
has an H-decomposition so that each vertex of Km is incident with the same
number of members of the decomposition.

Proof: This follows from applying Wilson’s Theorem toH1 from Lemma
4.2. 2

Corollary 4.4 For every graph H there are c = c(H) and n0 = n0(H)
such that for every n > n0(H) there is some n′ satisfying n ≤ n′ ≤ n + c
for which Kn′ has an H-decomposition in which each vertex is incident with
the same number of members of the decomposition, and any two vertices lie
in at most c common members of the decomposition.

Proof: First apply Wilson’s Theorem to Km from Corollary 4.3 to
decompose Kn′ to copies of Km, for an appropriate value of n ≤ n′ ≤
n+m(m− 1). Then decompose each such Km copy into copies of H. Note
that each pair of vertices can lie only in copies of H that lie in the same
Km. 2

This yields the main theorem of this section:

Theorem 4.5 If k = n/α and α ≥ 1 is a fixed real, then f(n, k) =
(1 + o(1))g(n, k).

Proof: It is useful to note that for this case, g(n, k) = Θ(n).
Consider any ε > 0. We will prove that f(n′, k′) ≤ (1 + ε)g(n, k) for a

suitable n′ ≥ n and k′ ≥ k. Our result then follows from Lemma 2.1. Our
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goal is to find a k′-colouring of E(Kn′) such that each colour class contains
a Turán graph on n′ vertices with independence number t ≤ (1 + ε

2)g(n, k).
Suppose that a < α+1 ≤ a+1 for an integer a. A straightforward calculation
shows that we can choose (1 + ε

4)g(n, k) ≤ t ≤ (1 + ε
2)g(n, k) so that the

corresponding Turán graph will contain rn′ disjoint a-cliques and sn′ disjoint
(a+ 1)-cliques, so long as rn′, sn′ are integers, where r, s are rationals with
denominators bounded by some constant function of α, ε.

Now we define H to be a collection of rh disjoint a-cliques and sh disjoint
(a+ 1)-cliques, where h is the LCM of the denominators of r, s. Take some
n′ as in Corollary 4.4 along with the corresponding decomposition of Kn′ .
DefineH to be the |H|-uniform hypergraph whose vertices are the vertices of
Kn′ , and whose edges are the vertex sets of the copies of H. This hypergraph
is κ-regular for some κ ≥ (1 + δ)k where δ = δ(ε), and any pair of vertices
lies in at most c = c(α) edges. Therefore, by the main theorem of [9], it has
a proper edge-colouring C using c = κ(1 + o(1)) colours.

We use C to find our edge coloring of Kn′ as follows. Since H is |H|-
uniform and κ-regular, |E(H)| = κn′

|H| and no colour class contains more than
n′
|H| hyperedges. We remove from C all color classes which contain fewer

than n′
|H|(1− γ) hyperedges (i.e., we uncolor all hyperedges belonging to one

of those classes), where γ is a positive constant such that γn′ < ε
4g(n, k).

A simple calculation yields that we remove o(κ) colour classes, and so the
number of remaining colour classes is k′ = κ − o(κ) > k. Furthermore, the
subgraph induced by any remaining colour class has independence number
at most t+γ n′

|H| ×|H| < t+ ε
4g(n, k) < (1+ ε)g(n, k). We complete our edge

colouring of Kn by assigning to any uncoloured edge, an arbitrary colour
from amongst the remaining colour classes of C. As this won’t increase the
independence number of a colour class, we obtain our desired colouring. 2

5 Case 3: k = o(n), k2 > (1 + o(1))n

For an integer q ≥ 2, Lemma 2.2 yields f(q2, q+1) ≥ q. The next lemma
shows that this bound is tight when q is a power of a prime.

Lemma 5.1 If q is a power of a prime, then f(q2, q+1) = g(q2, q+1) =
q.

Proof: The coloring is given by the affine plane. For completeness we
describe it in details. Let Fq denote the field of order q. The affine plane
of order q is the geometry on the q2 points {(x, y) : x, y ∈ Fq}, where lines
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are solutions to equations of the form ax + by = c, where a, b, and c are
constants from the field with a and b both not zero (so there are q2 +q lines,
each with q points). Let n = q2 and define a (q+1)-coloring of the complete
graph on the points of the affine plane of order q by assigning to each edge
the slope of the line containing its endpoints. Each line of the plane induces
a monochromatic clique of size q and every color class is determined by a
parallel class of lines, so is formed by a union of q cliques each of size q.
So each color class determines a subgraph of Kq2 with no independent set
of size q + 1. Thus every set of q + 1 points induces every color, that is,
f(q2, q + 1) < q + 1, and so, by the preceding discussion, f(q2, q + 1) = q.

2

This, together with Lemma 2.1 and well known results about the distribu-
tions of primes implies the following

Corollary 5.2 For every k ≥ √n + Ω(n1/3), f(n, k) ≤ (1 + o(1))k.
Therefore, if, in addition, k = o(n), then f(n, k) = (1 + o(1))g(n, k) =
(1 + o(1))k.

Remark: The assertion of Lemma 5.1 can be easily generalized. In fact, any
resolvable balanced incomplete block design supplies an example in which
f(n, k) = g(n, k) precisely. In particular, one can use the lines in an affine
geometry of dimension d to prove the following
Claim 1: For any prime power q and any integer d > 1

f(qd, qd−1 + qd−2 + . . .+ 1) = g(qd, qd−1 + qd−2 + . . .+ 1) = qd−1.

Similarly, the existence of Kirkman’s triple systems (c.f., e.g., [2]) gives the
following
Claim 2: For every n ≡ 3(mod 6),

f(n, (n− 1)/2) = g(n, (n− 1)/2) = n/3.

The existence of resolvable Steiner systems of the form S(2, 4, n) for all
n ≡ 4( mod 12) (c.f., e.g., [2]) implies
Claim 3: For every n ≡ 4(mod 12),

f(n, (n− 1)/3) = g(n, (n− 1)/3) = n/4.

6 Smaller values of k

We will need the following lemma:
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Lemma 6.1 Let d1, d2, . . . , dn be n non-negative reals whose average
value is d, and suppose that at least γn of them are at least (1 + γ)d. Then

n∑

i=1

1
di + 1

≥ n

(d+ 1)
(1 + Ω(γ3)).

Proof: By the convexity of f(z) = 1/z, the minimum of the above sum,
subject to

∑
di = dn, is obtained when di = d for all i. As long as there is

some di > (1+γ)d there is some other dj ≤ d, and replacing each of them by
their average decreases the sum by 1

di+1 + 1
dj+1 − 4

di+dj+2 = Ω(γ2/(d+ 1)).
Since we can perform at least γn steps of this form the desired estimate
follows. 2

Let α(G) denote the maximum size of an independent set in G.

Lemma 6.2 For every ε > 0 there is a δ > 0 and d0 such that for any
graph G = (V,E) on n vertices with average degree at most d, d > d0, and
maximum clique size at most (1− ε)d,

α(G) ≥ (1 + δ)
n

d+ 1
.

Proof: Let d1, . . . , dn be the degrees of the vertices of G. If there are
at least ε

4n degrees which exceed (1 + ε
4)d, then the result, with δ = Ω(ε3),

follows from Lemma 6.1 together with the well known fact that

α(G) ≥
n∑

i=1

1
di + 1

,

(see, e.g., [1], page 81, for a short proof.)
Otherwise, omit all vertices of degree that exceeds (1+ ε

4)d. The remain-
ing graph has at least (1− ε

4)n vertices, has maximum degree ∆ ≤ (1 + ε
4)d

and has maximum clique size ω ≤ (1− ε)d. Fajtlowicz[7] has shown that for
every graph G,

α(G) ≥ 2|V (G)|
ω(G) + ∆(G) + 1

,

(see also [10]). The result now follows with 1 + δ = (1− ε
4)/(1− 3ε

8 ). 2

Theorem 6.3 For every ε > 0 there is a δ > 0 and n0 such that for
every n > n0 and 2 ≤ k ≤ (1− ε)√n,

f(n, k) ≥ (1 + δ)g(n, k).
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Proof: In the above range g(n, k) = Θ(k). Since for every k ≥ 2,
f(n, k) = Ω(logn) the assertion is trivial for k = o(logn), and we thus may
and will assume that k ≥ Ω(log n). Thus g(n, k) = (1 + o(1))k. Consider a
coloring of E(Kn), n > n0, by k colors, and let G be the graph consisting of
all edges of the least popular color. Then the average degree of G is at most
(n − 1)/k < n/k. Fix a γ = γ(ε) > 0 such that (1 − γ)nk > (1 + γ)k. If G
contains a clique of size at least (1− γ)n/k, then the induced subgraph on
the vertices of this clique misses a color (in fact, misses all colors but one)
and is of size at least (1 + γ)k > (1 + γ/2)g(n, k) for n > n0. Otherwise, by
Lemma 6.2, α(G) ≥ (1 + δ)k for some δ = δ(γ) > 0, and so G has a large
independent set corresponding to a complete subgraph of size (1+δ)k which
does not contain the least popular color. 2

7 Concluding remarks

Turán’s theorem implies lower bounds on f(n, k), and we have found that
these lower bounds are tight (or nearly tight) whenever k is slightly bigger
than

√
n, and are not nearly tight whenever k is slightly smaller than

√
n.

The problem of finding an asymptotic formula for f(n, k) for smaller values
of k is more difficult (and in particular that of finding an asymptotic formula
for f(n, 2) is a well known, difficult open problem in Ramsey theory). It
would be interesting to find an estimate, up to a constant factor, for f(n, k),
for smaller values of k. Thus, for example, when k ∼ √n/ logn, f(n, k) is
at least

√
n

logn and at most O(
√
n), and it would be interesting to find a more

accurate estimate.

Acknowledgments: Thanks to A. Rosa for helpful discussions.

Remark: The research in this paper began with discussions between Erdős,
Gunderson and Molloy in the summer of 1997 at a workshop in Annecy,
France. It continued the following week with discussions between Alon and
Erdős at a conference in Balatonlelle, Hungary. By the end of those collab-
orations, we had obtained some significant results and so planned to write a
paper. A few months later, Erdos passed away, and due mostly to procras-
tination on the part of the remaining authors, the paper was not completed
until Mar 2000. During the intervening years, some results of the paper were
improved, and of course, Erdős did not contribute to those improvements.
Nevertheless, he clearly deserved co-authorship due to his contributions to
the crucial early collaborations.
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