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Abstract

We show that for any k,m, p, c, if G is a Kk-free graph on N then there is an independent
set of vertices in G that contains an (m, p, c)-set. Hence if G is a Kk-free graph on N, then
one can solve any partition regular system of equations in an independent set. This is a
common generalization of partition regularity theorems of Rado (who characterized systems
of linear equations Ax = 0 a solution of which can be found monochromatic under any finite
coloring of N) and Deuber (who provided another characterization in terms of (m, p, c)-sets
and a partition theorem for them), and of Ramsey’s theorem itself.

1 Introduction and statement of results

In this paper we are interested in graphs whose vertices are natural numbers, and in arith-
metic properties of independent sets in such graphs. We use N to denote the set of natural
numbers—not including 0—and ω = N ∪ {0}. We write [a, b] = {c ∈ Z : a ≤ c ≤ b} to denote
an interval of integers.

Let A be a finite matrix with integer entries. The system of linear equations Ax = 0 is
called partition regular (over N) if for every partition of N into finitely many classes there exists
a solution completely contained in one class.

Schur’s theorem [17] says that for any positive integer r, there exists n so that for every
coloring ρ : [1, n] → [1, r] there exist x, y ∈ [1, n] with ρ(x) = ρ(y) = ρ(x + y). The equation
x + y − z = 0 describes these Schur triples, and so is partition regular. Van der Waerden’s
theorem [19] states that for any positive integers r, `, there exists n so that for any coloring
ρ : [1, n]→ [1, r] there is a monochromatic `-term arithmetic progression. Solutions to equations
x − 2y + z = 0 are 3-term arithmetic progressions or are constant and so this system is also
partition regular. Similarly, systems of equations describing any longer arithmetic progressions
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form partition regular systems. An example of a simple system which is not partition regular
is x+ y = 3z. (See, e.g., [6] or [7] for more details.)

A characterization of partition regular systems of equations was first given by Rado [15]
in terms of something (which is not relevant to our use here) called the “columns property”.
Deuber [2] later gave another characterization of partition regular systems using structures
called “(m, p, c)-sets”, which we now define.

Definition 1.1 Let p, c ∈ N with c ≤ p, and let m ∈ ω. A set of integers S is an (m, p, c)-
set if S ⊂ N and there exist positive integers (generators) x0, x1, . . . , xm so that S = R0(S) ∪
R1(S) ∪ · · · ∪Rm(S), where

R0(S) = {cx0 + λ1x1 + λ2x2 + . . .+ λmxm : λ1, . . . , λm ∈ [−p, p]},
R1(S) = {cx1 + λ2x2 + . . .+ λmxm : λ2, . . . , λm ∈ [−p, p]},

...
...

Rm−1(S) = {cxm−1 + λmxm : λm ∈ [−p, p]},
Rm(S) = {cxm}.

In this case we write S = (x0, x1, . . . , xm)p,c and we say that Rk(S) is the (k + 1)-st row of S.

We note that the condition c ≤ p is for convenience only; nothing would be lost without
this condition because for any p′ > p, every (m, p′, c)-set trivially contains an (m, p, c)-set.

In honor of Deuber’s contributions to the field, if a set S is an (m, p, c)-set for some m, p, c,
then we might simply say that S is a Deuber set without specifying the parameters m, p, c.

Theorem 1.2 (Deuber [2]) A linear system Ax = 0 is partition regular if and only if
there exist positive integers m, p, c such that every (m, p, c)-set contains a solution of Ax = 0.

In proving a conjecture by Rado regarding partition regular systems, Deuber used the
following partition theorem.

Theorem 1.3 (Deuber [2]) For every m ∈ ω, every p, c ∈ N with c ≤ p and every k ∈ N,
there exists n, q, d ∈ N with d ≤ q so that for every (n, q, d)-set X and every coloring ρ : X →
[1, k], there exists a monochromatic (m, p, c)-set contained in X.

To state our results, we adopt standard notation. For a set S and n ∈ ω, let [S]n = {F ⊆
S : |F | = n}. Let G = (V,E) denote a (simple) graph on vertex set V = V (G) with edge set
E = E(G) ⊆ [V ]2. A set Y ⊂ V (G) is called independent in G if [Y ]2 ∩ E(G) = ∅. When
E(G) = [V (G)]2, we say that G is complete, and the complete graph on n vertices is denoted
by Kn. A graph G = (V,E) is k-partite if V can be partitioned into k sets, V = V1 ∪ · · · ∪ Vk,
each Vi containing no edges, and is a complete k-partite graph if for each i 6= j, whenever x ∈ Vi
and y ∈ Vj then {x, y} ∈ E. A complete bipartite graph on sets of size m and n will be denoted
by Km,n.

The main result in this paper is the following.

Theorem 1.4 Given k, p, c ∈ N with c ≤ p and m ∈ ω, there exist n, q, d ∈ N so that any
Kk-free graph on an (n, q, d)-set contains an independent (m, p, c)-set.
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Remarks: 1. Theorem 1.4 generalizes Theorem 1.3 by the following reasoning: Fix k,m, p, c,
let n, q, d be guaranteed by Theorem 1.4, and fix an (n, q, d)-set X. Color X with r = k−1 colors
and form the complete (k − 1)-partite graph G whose partite sets are color classes. Since G is
Kk-free, by Theorem 1.4 some (m, p, c)-set is independent in G, and hence must be contained
in one partite set, i.e., a single color class. Hence there is a monochromatic (m, p, c)-set. Since
(m, p, c)-sets contain sum-sets and arithmetic progressions, Theorem 1.4 also implies theorems
of van der Waerden, Schur, and others.

2. Theorem 1.4 also generalizes Ramsey’s theorem for graphs, because under any red-blue
coloring of the pairs of a large set, rather than guaranteeing either a red Kk or a large blue
clique, we guarantee either a red Kk, or a large blue clique on an (m, p, c)-set.

Since any (n, q, d)-set sits in some initial interval of the positive integers, Theorem 1.4
immediately implies the following statement:

Corollary 1.5 Given k, p, c ∈ N, m ∈ ω, and any Kk-free graph G with vertex set N, there
exists an (m, p, c)-set which is independent in G.

Corollary 1.5 can be formulated in terms of partition regular systems by using the m, p, c
guaranteed in Theorem 1.2:

Corollary 1.6 For any k ≥ 2 and any Kk-free graph on N, one can solve any partition
regular system in an independent set.

We do not know if there is a hypergraph version of Theorem 2.1. For example, is there an
analogous condition on a family of triples of N that would imply that there is an (m, p, c)-set
not containing any triple? If so, it is not so simple, as the following example indicates. Let H
be the 3-uniform hypergraph on N defined with hyperedges of the form {x, x+d, x+3d}. Then
H is K(3)

4 -free, yet every arithmetic progression of length 4 contains a hyperedge.

2 Earlier work

Ramsey’s theorem for graphs [16] says that for any positive integers r, and m, there exists
n so that for any coloring ρ : [1, n]2 → [1, r], there exists M ∈ [1, n]m so that [M ]2 is monochro-
matic. Erdős [4] asked whether the following natural generalization of both Ramsey’s theorem
and Schur’s theorem holds: If G is a triangle-free graph on vertex set N, does there always exist
an independent Schur triple, that is, do there exist x, y, x 6= y so that FS(x, y) = {x, y, x+ y}
is independent in G? The answer is yes, as proved in [13] where it was shown that in fact, for
fixed k and d, if G is a Kk-free graph on N, then there exist distinct integers a1, a2, ..., ad, so
that the finite sum set FS({a1, . . . , ad}) is an independent set in G. Harborth et al. (see, e.g.,
[1], [11]) have given some sharp lower bounds on n so that if G is a graph on [1, n], these results
hold (except the ai need not be distinct).

Related progress was also made for an infinite version of Erdős’ question. Given a set
{xi}i∈I of distinct positive integers, let FS({xi}i∈I) =

{∑
j∈J xj : ∅ 6= J ⊆ I, |J | <∞

}
denote

the finite sums (with no repetitions) from the set. When I is infinite, we say that FS({xi}i∈I)
is a Hindman set. In 1995, Hajnal asked the following (see [5]): If G is a triangle-free graph
on N, does there always exist a Hindman set independent in G? Hajnal’s question has been
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answered in the negative in [3]. Variants of Hajnal’s question have been shown to indeed have
a positive answer; for example, if the condition “triangle-free” is replaced by “Kk,k-free” (see
[3], [9], and [13]).

A common generalization of Ramsey’s theorem and van der Waerden’s theorem was also
found in [9]: For fixed k and `, if G is a Kk-free graph on N, then there exists an `-term
arithmetic progression which spans an independent set in G.

Coloring theorems for arithmetic progressions or finite sums have abstract analogues (the
Hales-Jewett theorem and the Graham-Rothschild theorem, respectively; see, e.g., [7] or [14]),
from which they can be deduced instantly. In contrast, Deuber’s theorem for partitioning
(m, p, c)-sets can not be accomplished by any one application of such a theorem; several iter-
ations are required. As with Deuber’s theorem, one would not expect to be able to prove our
main result for (m, p, c)-sets with any single application of an abstract theorem. Indeed, the
first situation where a single process does not seem to work is for an arithmetic progression
together with its difference—which is the simplest kind of subset of an (m, p, c)-set not nec-
essarily contained in any one row. In [9] it was proved that for any k, ` ≥ 3, in any Kk-free
graph, there exists an `-term arithmetic progression together with its difference, all contained
in an independent set. This proof used a form of the Gallai-Witt theorem applied iteratively;
it does not seem to follow from one application of any of the major abstract theorems (like the
Hales-Jewett or Graham-Rothschild theorems).

3 Preliminary results

We now briefly describe one of our main tools, the Hales-Jewett theorem.
Let A denote a finite alphabet; write As = {(x1, . . . , xs) : xi ∈ A}. Let [1, s] = F ∪M1∪· · ·∪

Mt be a partition with |Mj | > 0 for j = 1, 2, . . . , t and let (gi)i∈F ∈ AF be a fixed |F |-tuple. A
t-dimensional subcube of As (associated with (gj)j∈F and the partition F ∪M1 ∪ · · · ∪Mt) is a
set of the form

HJC(F,M1, . . . ,Mt, (gj)j∈F ) = {(x1, . . . , xs) : xj = gj for j ∈ F and
xj = xj′ if j, j′ ∈Mα for some α}.

We now state the central theorem regarding parameter sets.

Theorem 3.1 (Hales-Jewett) For every t, r ∈ N and every finite alphabet A, there exists
s = HJ(t, r, |A|) so that for every coloring ρ : As → [1, r], there exists a monochromatic t-
dimensional subcube of As.

The original version in [10] yields a 1-dimensional subcube. That version easily implies the
current version (see [7, p. 40]). See [14] for a survey of results, applications, and notation for
parameter words, another language to describe the Hales-Jewett theorem.

Definition 3.2 Let p, c, q, d ∈ N with c ≤ p and q ≤ d, let U = (x0, x1, . . . , xm)p,c be
an (m, p, c)-set, and let V = (y0, y1, . . . , yn)q,d be an (n, q, d)-set. We say that U is naturally
contained in V , written U � V if and only if there is a strictly increasing function

ψ : {0, 1, . . . ,m} → {0, 1, . . . , n}
such that for each i ∈ {0, 1, . . . ,m}, Ri(U) ⊆ Rψ(i)(V ).
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Notice that natural containment is trivially transitive.

Example 3.3 The (1, 3, 1)-set A = (10, 1)3,1 is contained in the (2, 2, 1)-set B = (20, 5, 1)2,1

but A is not naturally contained in B. In fact, R0(A) is not contained in any row of B.

We now present some simple results that guarantee that all inclusions with which we shall
be concerned are natural.

For any p,m ∈ N, we use

[a0, a1 . . . , am]p = {λ0a0 + λ1a1 + . . .+ λmam : λ0, λ1, . . . , λm ∈ [−p, p]},
to denote the span of a0, a1, . . . , anm.

Lemma 3.4 Let m, p, x0, x1, . . . , xm ∈ N. If for each i ∈ {0, 1, . . . ,m−1}, xi > 2p
∑m

j=i+1 xj,
then expressions in [x0, x1, . . . , xm]p are unique. That is, if

λ0, λ1, . . . , λm, µ0, µ1, . . . , µm ∈ [−p, p] and
m∑

i=1

λixi =
m∑

i=1

µixi ,

then for each i ∈ {0, 1, . . . ,m}, λi = µi.

Proof: Assume that λ0, λ1, . . . , λm, µ0, µ1, . . . , µm ∈ [−p, p] and
∑m

i=1 λixi =
∑m

i=1 µixi. Sup-
pose that there is some i ∈ {0, 1, . . . ,m} such that λi 6= µi and pick the first such i. Assume
without loss of generality that λi > µi. If λmxm = µmxm, then λm = µm, so we have that
i < m. Then

m∑

j=i+1

(µj − λj)xj = (λi − µi)xi ≥ xi > 2p
m∑

j=i+1

xj ≥
m∑

j=i+1

(µj − λj)xj ,

a contradiction. 2

With a little more work one can show that 6pc can be replaced by 5pc in the following
lemma. (Here and later, if i = m, then we set

∑m
j=i+1 xj = 0.)

Lemma 3.5 Let m, p, c ∈ N with c ≤ p and assume that x0, x1, . . . , xm ∈ N and
(x0, x1, . . . , xm)6pc,c ⊆ N. Let U = (x0, x1, . . . , xm)p,c. For each i ∈ {0, 1, . . . ,m − 1}, xi >
6p
∑m

j=i+1 xj and minRi(U) > maxRi+1(U). Also, any length 3 arithmetic progression in U is
contained in some row of U .

Proof: Let i ∈ {0, 1, . . . ,m− 1}. Then cxi −
∑m

j=i+1 6pcxj ∈ N so xi > 6p
∑m

j=i+1 xj . Thus

minRi(U) = cxi −
m∑

j=i+1

pxj ≥ xi −
m∑

j=i+1

pxj >

m∑

j=i+1

pxj ≥ cxi+1 +
m∑

j=i+2

pxj = maxRi+1(U).

Now assume we have d > 0 such that {a, a + d, a + 2d} ⊆ U . Pick i, k ∈ {0, 1, . . . ,m} and
λi+1, λi+2, . . . , λm, µk+1, µk+2, . . . , µm ∈ [−p, p] such that

a = cxi +
∑m

j=i+1 λjxj and
a+ d = cxk +

∑m
j=k+1 µjxj .
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Since a+ d > a, we have that k ≤ i. Suppose that k < i. Then

d = cxk +
∑i−1

j=k+1 µjxj + (µi − c)xi +
∑m

j=i+1(µj − λj)xj and so
a+ 2d = 2cxk +

∑i−1
j=k+1 2µjxj + (2µi − c)xi +

∑m
j=i+1(2µj − λj)xj .

Since the absolute value of each coefficient in the expansion of a+ 2d is at most 3p, we have by
Lemma 3.4 that a+ 2d /∈ U .

Thus k = i and
d =

∑m
j=i+1(µj − λj)xj and so

a+ 2d = cxi +
∑m

j=i+1(2µj − λj)xj .
Again by Lemma 3.4 we have that a+ 2d ∈ Ri(U). 2

Lemma 3.6 Let n, q, d ∈ N with d ≤ q and assume that x0, x1, . . . , xn ∈ N and
(x0, x1, . . . , xn)6qd,d ⊆ N. If m ∈ ω, p, c ∈ N with c ≤ p, y0, y1, . . . , ym ∈ N, and Y =
(y0, y1, . . . , ym)p,c ⊆ (x0, x1, . . . , xn)q,d = X, then for each i ∈ {0, 1, . . . ,m} there exists j ∈
{0, 1, . . . , n} such that Ri(Y ) ⊆ Rj(X).

Proof: We proceed by induction on m. The case m = 0 is trivial, so assume that m ∈ N and the
assertion is true for m−1. Let i ∈ {0, 1, . . . ,m}. If i > 0, then Ri(Y ) = Ri−1((y1, y2, . . . , ym)p,c)
so the conclusion holds by the induction hypothesis. So assume that i = 0. Let D =
R0((y0, y1, . . . , ym−1)p,c) and pick by the induction hypothesis some j ∈ {0, 1, . . . , n} such that
D ⊆ Rj(X). Now let λ1, λ2, . . . , λm ∈ [−p, p]. If λm = 0, then cy0 +

∑m
l=1 λlyl ∈ D ⊆ Rj(X), so

assume λm 6= 0. Then E = {cy0+
∑m−1

l=1 λlyl−λmym, cy0+
∑m−1

l=1 λlyl, cy0+
∑m−1

l=1 λlyl+λmym}
is a three term arithmetic progression in X so is contained Rk(X) for some k by Lemma 3.5.
Since D ∩ E 6= ∅, k = j. 2

Lemma 3.7 Let n, q, d ∈ N with d ≤ q and assume that x0, x1, . . . , xn ∈ N and
(x0, x1, . . . , xn)6qd,d ⊆ N. If m ∈ ω, p, c ∈ N with c ≤ p, y0, y1, . . . , ym ∈ N, and Y =
(y0, y1, . . . , ym)p,c ⊆ (x0, x1, . . . , xn)q,d = X, then Y � X.

Proof: Let i ∈ {0, 1, . . . ,m− 1} and pick by Lemma 3.6 j, k ∈ {0, 1, . . . , n} such that Ri(Y ) ⊆
Rj(X) and Ri+1(Y ) ⊆ Rk(X). We show that j < k. Pick λj+1, λj+2, . . . , λn, µj+1, µj+2, . . . , µn,
γk+1, γk+2, . . . , γn ∈ [−q, q] such that

cyi = dxj +
∑n

l=j+1 λlxl ,

cyi + cyi+1 = dxj +
∑n

l=j+1 µlxl, and
cyi+1 = dxk +

∑n
l=k+1 γlxl .

Then cyi+1 =
∑n

l=j+1(µl − λl)xl, so by Lemma 3.4 k ≥ j + 1. 2

We shall refer later to the conclusion of the following theorem by stating that “all inclusions
in (x0, x1, . . . , xn)q,d are natural”.

Theorem 3.8 Let n, q, d ∈ N with d ≤ q and assume that x0, x1, . . . , xn ∈ N and
(x0, x1, . . . , xn)6qd,d ⊆ N. If m,M ∈ ω, p, c, P, C ∈ N with c ≤ p and C ≤ P , y0, y1, . . . , ym, z0,
z1, . . . , zM ∈ N, Y = (y0, y1, . . . , ym)p,c ⊆ (x0, x1, . . . , xn)q,d = X, Z = (z0, z1, . . . , zM )P,C ⊆ X,
and Y ⊆ Z, then Y � Z.
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Proof: By Lemma 3.7 we have that Y � X and Z � X. We show first that for each i ∈ {0, 1,
. . . ,m} there exists j ∈ {0, 1, . . . ,M} such that Ri(Y ) ⊆ Rj(Z). Suppose instead that one has
i ∈ {0, 1, . . . ,m}, a, b ∈ Ri(Y ), and j < k in {0, 1, . . . ,M} such that a ∈ Rj(Z) and b ∈ Rk(Z).
Since Z � X, we have u < v in {0, 1, . . . , n} such that a ∈ Ru(X) and b ∈ Rv(X). By Lemma
3.5, Ru(X) ∩Rv(X) = ∅ and by Lemma 3.6, Ri(Y ) ⊆ Ru(X), a contradiction.

Now let i ∈ {0, 1, . . . ,m − 1} and pick j, k ∈ {0, 1, . . . ,M} such that Ri(Y ) ⊆ Rj(Z) and
Ri+1(Y ) ⊆ Rk(Z). Pick u < v in {0, 1, . . . , n} such that Ri(Y ) ⊆ Ru(X) and Ri+1(Y ) ⊆ Rv(X).
Then Rj(Z)∩Ru(X) 6= ∅ so Rj(Z) ⊆ Ru(X). Likewise Rk(Z) ⊆ Rv(X), and therefore j < k. 2

We shall need a slightly strengthened version of Deuber’s Theorem (Theorem 1.3).

Theorem 3.9 For every m ∈ ω, every p, c ∈ N with c ≤ p and every k ∈ N, there exists
n, q, d ∈ N with d ≤ q so that for every (n, q, d)-set X and every coloring ρ : X → [1, k], there
exists a monochromatic (m, p, c)-set naturally contained in X.

Proof: Pick n′, q′, d′ as guaranteed by Theorem 1.3. Let n = n′, q = 6q′d′, and d = d′. Let
X = (x0, x1, . . . , xn)q,d be k-colored. Then Y = (x0, x1, . . . , xn′)q′,d′ is naturally contained in X
and by Theorem 1.3 Y contains a monochromatic (m, p, c)-set. By Lemma 3.7, this inclusion
is natural. 2

The following technical lemma completes our preliminaries.

Lemma 3.10 Let m, p, c,M, P,C ∈ N with c ≤ p and C ≤ P . Let w1, w2, . . . , wm, v1, v2,
. . . , vM ∈ N. If (w1, w2, . . . , wm)p,c ⊆ (cv1, cv2, . . . , cvM )P,C , then [w1, w2, . . . , wm]p ⊆
[v1, v2, . . . , vM ](2c+p)P .

Proof: First consider any
∑m

j=2 λjwj with each λj ∈ [−p, p]. Then

cw1 +
m∑

j=2

λjwj ∈ (w1, w2, . . . , wm)p,c ⊆ (cv1, cv2, . . . , cvM )P,C ⊆ [cv1, cv2, . . . , cvM ]P

and cw1 ∈ [cv1, cv2, . . . , cvM ]P , so
∑m

j=2 λjwj ∈ [cv1, cv2, . . . , cvM ]2P ⊆ [v1, v2, . . . , vM ]2cP . Also
cw1 ∈ [cv1, cv2, . . . , cvM ]P so w1 ∈ [v1, v2, . . . , vM ]P , so for any λ1 ∈ [−p, p] one has λ1w1 ∈
[v1, v2, . . . , vM ]pP and thus

∑m
j=1 λjwj ∈ [v1, v2, . . . , vM ]pP+2cP . 2

4 Main proof: existence of independent (m, p, c)-sets

In the proof of Theorem 1.4, we use the following earlier result.

Theorem 4.1 For every k, n, q, d ∈ N there exist n′, q′, d′ ∈ N so that for any (n′, q′, d′)-set
X and any Kk-free graph G with vertex set X, there exists an (n, q, d)-set S naturally contained
in X, each of whose rows is an independent set in G.

The proof of Theorem 4.1 (see [8]) is accomplished by repeating the standard parameter
sets proof of Deuber’s partition theorem (see, e.g., [12]), once one knows that in a Kk-free
graph on a large-dimensional Hales-Jewett cube there is always a line (or, more generally, a
d-dimensional subspace) that is independent— this latter fact is proved in [9].
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In view of Theorem 4.1, it is sufficient to prove Theorem 1.4 under the assumption that the
graph G on an (n, q, d)-set S has all rows as independent sets. Rather than prove Theorem 1.4
with this additional assumption, we will prove a stronger statement, Theorem 4.3, below. Since
a large complete k-partite graph contains many copies of Kk, Theorem 1.4 will clearly follow.
This somewhat stronger theorem turns out to be easier to prove.

Definition 4.2 Let k, p, c, t ∈ N with c ≤ p and let m ∈ ω. Then ϕ(k,m, p, c, t) is the
statement “there exist n, q, d ∈ N such that whenever S is an (n, q, d)-set and G is a graph on
S such that the rows of S are independent, there exist either

(a) an independent (m, p, c)-set contained in S or

(b) z1, z2, . . . , zk, a0, a1, . . . , at ∈ N such that (a0, a1, . . . , at)p,c ⊆ S and the sets
〈czi + [a0, a1, . . . , at]p〉ki=1 form a complete k-partite subgraph of G.”

Theorem 4.3 For all k, p, c, t ∈ N with c ≤ p and all m ∈ ω, the statement ϕ(k,m, p, c, t)
holds.

Proof: The proof is by induction on m and k.
For the base cases, note that for all m′, p, c, t, part (b) of ϕ(1,m′, p, c, t) holds, and for all

k′, p, c, t, part (a) of ϕ(k′, 0, p, c, t) holds.
So assume that k ≥ 2 and m ≥ 1, and for the induction hypotheses, suppose that for all

m′, p, c, t, statement ϕ(k − 1,m′, p, c, t) holds, and for all p, c, t, statement ϕ(k,m − 1, p, c, t)
holds. We need to show that ϕ(k,m, p, c, t) holds for all p, c, t. Pick p, c, t such that part (a) of
ϕ(k,m, p, c, t) fails; we show that part (b) holds.

(1) Let (M,P,C) be the (n, q, d) guaranteed by ϕ(k,m− 1, p, c, t).

(2) Let (N,Q,D) be such that whenever an (N − 1, Q,D)-set is (k − 1)-colored, it naturally
contains a monochromatic (M, (p+2c)P, cC)-set. (Such (N,Q,D) exist by Theorem 3.9.)
We may assume that N > m.

(3) Set Q′ = (2cC + (2c+ p)P )Q, D′ = cCD, and let

T = HJ(t+ 1, (2Q′ + 1)Nk, (4pQ′ + 1)N+1) +N.

(4) Put Q′′ = 2cp(Q′)2(N+1), D′′ = c2(D′)2, and let (n′, q′, d′) satisfy ϕ(k−1, N,Q′′, D′′, T ).

(5) Pick (n, q, d) such that any (n, q, d)-set S′ naturally contains an (n′, q′, d′)-set for which
all inclusions are natural. (Such (n, q, d) exists by Theorem 3.8.)

Since part (a) of ϕ(k,m, p, c, t) fails, pick an (n, q, d)-set S′ and a graph G′ on S′ for which
the rows are independent but S′ does not contain an independent (m, p, c)-set.

Pick an (n′, q′, d′)-set S which is naturally contained in S′ and such that all inclusions within
S are natural. Let G be the subgraph of G′ induced on S. Note that S does not contain an
independent (m, p, c)-set.

Claim 1 If U = (v0, v1, . . . , vM+1)(p+2c)P,cC ⊆ S, then there is an edge of G between a point
in the first row of U and a point in some later row of U .

8



Proof: We have (cv1, cv2, . . . , cvM+1)P,C ⊆ U ⊆ S so by the choice of (M,P,C), pick an
independent (m − 1, p, c)-set (w1, w2, . . . , wm)p,c ⊆ (cv1, cv2, . . . , cvM+1)P,C . (If clause (b) of
the definition of ϕ(k,m− 1, p, c, t) applied, one would have ϕ(k,m, p, c, t).)

Let V = (Cv0, w1, w2, . . . , wm)p,c. One has immediately that
⋃m
i=1Ri(V ) = (w1, w2, . . . , wm)p,c ⊆ (cv1, cv2, . . . , cvM+1)P,C ⊆

⋃M+1
i=1 Ri(U) ⊆ S .

Also, R0(V ) = cCv0 + [w1, w2, . . . , wm]p ⊆ cCv0 + [v1, v2, . . . , vm](2c+p)P = R0(U), where the
inclusion holds by Lemma 3.10.

Now R0(V ) is contained in a row of S, so is independent, and
⋃m
i=1Ri(V ) = (w1, w2, . . . , wm)p,c ,

which is independent, so, since V is not independent, there must be an edge between a point
of R0(V ) and a later row of V and hence between a point of R0(U) and a later row of U . 2

Claim 2 Let w1, w2, . . . , wN ∈ N. Recall that Q′ = (2cC + (2c + p)P )Q and D′ = cCD.
Assume that for each i ∈ {1, 2, . . . , k − 1}, βi ∈ N and (βi, w1, w2, . . . , wN )Q′,D′ ⊆ S. Then
there is some x ∈ (cCw1, cCw2, . . . , cCwN )Q,D (and therefore some x ∈ (w1, w2, . . . , wN )Q′,D′)
such that for each i ∈ {1, 2, . . . , k − 1} there is an edge from x to a point in the first row of
(βi, w1, w2, . . . , wN )Q′,D′.

Proof: Suppose not and color x ∈ (cCw1, cCw2, . . . , cCwN )Q,D by the first i ∈ {1, 2, . . . , k−1}
such that there is no edge from x to a point in the first row of (βi, w1, w2, . . . , wN )Q′,D′ . By the
choice of (N,Q,D) pick i ∈ {1, 2, . . . , k−1} and v0, v1, . . . , vm such that (v0, v1, . . . , vM )(p+2c)P,cC

⊆ (cCw1, cCw2, . . . , cCwN )Q,D and for each x ∈ (v0, v1, . . . , vM )(p+2c)P,cC there is no edge from
x to any point in the first row of (βi, w1, w2, . . . , wN )Q′,D′ .

Let U = (Dβi, v0, v1, . . . , vM )(p+2c)P,cC . Now

(v0, v1, . . . , vM )(p+2c)P,cC ⊆ (w1, w2, . . . , wN )cCQ,cCD .

We claim that R0(U) ⊆ R0((βi, w1, w2, . . . , wN )Q′,D′). To see this, let y = cCDβi +
∑M

l=0 λlvl
where each λl ∈ [−(p+ 2c)P, (p+ 2c)P ]. By Lemma 3.10,

M∑

l=0

λlvl ∈ [w1, w2, . . . , wN ](2cC+(p+2c)P )Q ,

so y ∈ R0((βi, w1, w2, . . . , wN )Q′,D′) as claimed.
Thus by Claim 1, there is an edge between a point y ∈ R0(U) and some point x in a later

row of U . But then x ∈ (cCw1, cCw2, . . . , cCwN )Q,D and y ∈ R0((βi, w1, w2, . . . , wN )Q′,D′), a
contradiction. 2

We now observe that there is no independent (N,Q′′, D′′)-set in S. Indeed, assume one has
(x0, x1, . . . , xN )Q′′,D′′ ⊆ S. Then, since m < N and pc(D′)2 < Q′′, one has that

(c(D′)2x0, c(D′)2x1, . . . , c(D′)2xm)p,c ⊆ (x0, x1, . . . , xN )Q′′,D′′ .

Since (c(D′)2x0, c(D′)2x1, . . . , c(D′)2xm)p,c is not independent, neither is (x0, x1, . . . , xN )Q′′,D′′ .
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By the choice of (n′, q′, d′), since there is no independent (N,Q′′, D′′)-set in S, pick b0, b1, . . . ,
bT , z

′
1, z
′
2, . . . , z

′
k−1 in N such that (b0, b1, . . . , bT )Q′′,D′′ ⊆ S and the sets

〈D′′z′i + [b0, b1, . . . , bT ]Q′′〉k−1
i=1

form a complete (k − 1)-partite graph.
Now let y0, y1, . . . , yN ∈ [bN+1, bN+2, . . . , bT ]2pQ′ and i ∈ {1, 2, . . . , k − 1}, and for j ∈ {0, 1,

. . . , N}, pick λj,N+1, λj,N+2, . . . , λj,T ∈ [−2pQ′, 2pQ′] such that yj =
∑T

l=N+1 λj,lbl. We claim
that the first row of (c2D′z′i + c2D′b0 + cy0, c

2D′b1 + cy1, c
2D′b2 + cy2, . . . , c

2D′bN + cyN )Q′,D′
is contained in D′′z′i + [b0, b1, . . . , bT ]Q′′ . To see this, let µ1, µ2, . . . , µN ∈ [−Q′, Q′], so that

w = c2(D′)2z′i + c2(D′)2b0 + cD′y0 +
N∑

j=1

c2D′µjbj +
N∑

j=1

cµjyj

is a typical member of the first row of (c2D′z′i+c
2D′b0+cy0, c

2D′b1+cy1, c
2D′b2+cy2, . . . , c

2D′bN+
cyN )Q′,D′ . For each j ∈ {0, 1, . . . , N}, the absolute value of the coefficient of bj in the given
expansion of w is at most c2D′Q′ < Q′′. And for l ∈ {N + 1, N + 2, . . . , T}, the absolute value
of the coefficient of bl in the given expansion of w is

|cD′λ0,l +
N∑

j=1

cµjλj,l| ≤ cD′2pQ′ + 2pc(Q′)2N < Q′′.

Next we claim that (c2D′b1 + cy1, c
2D′b2 + cy2, . . . , c

2D′bN + cyN )Q′,D′ is contained in
(b0, b1, . . . , bT )Q′′,D′′ . To see this, let µ1, µ2, . . . , µN ∈ [−Q′, Q′] such that,

if r = min{j ∈ {1, 2, . . . , N} : µj 6= 0}, then µr = D′ ,

and let

w =
N∑

j=1

µj(c2D′bj + cyj) =
N∑

j=1

µjc
2D′bj +

T∑

l=N+1

N∑

j=1

cµjλj,lbl.

Then µrc2D′ = D′′, and for j ∈ {r+1, r+2, . . . , N}, if any, the absolute value of the coefficient
of bj in the given expansion of w is at most c2D′Q′ < Q′′. Also, for l ∈ {N+1, N+2, . . . , T}, the
absolute value of the coefficient of bl in the given expansion of w is at most

∑N
j=r c2p(Q

′)2 < Q′′.
In particular, we have established that

(c2D′z′i + c2D′b0 + cy0, c
2D′b1 + cy1, c

2D′b2 + cy2, . . . , c
2D′bN + cyN )Q′,D′ ⊆ S ,

so we may apply Claim 2.
We define τ : ([−2pQ′, 2pQ′]N+1)T−N → ([−Q′, Q′]N )k as follows: Let

λ = ((λ0,N+1, λ1,N+1, . . . , λN,N+1), (λ0,N+2, λ1,N+2, . . . , λN,N+2),

. . . , (λ0,T , λ1,T , . . . , λN,T )) ∈ ([−2pQ′, 2pQ′]N+1)T−N .

For j ∈ {0, 1, . . . , N}, let yj =
∑T

l=N+1 λj,lbl. Then by Claim 2 applied to

〈(c2D′z′i + c2D′b0 + cy0, c
2D′b1 + cy1, c

2D′b2 + cy2, . . . , c
2D′bN + cyN )Q′,D′〉k−1

i=1
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there is some point in (c2D′b1 +cy1, c
2D′b2 +cy2, . . . , c

2D′bN +cyN )Q′,D′ with an edge to a point
in the first row of each (c2D′z′i+c2D′b0 +cy0, c

2D′b1 +cy1, c
2D′b2 +cy2, . . . , c

2D′bN +cyN )Q′,D′ .
That is there is some

γ = ((γ1,1, γ1,2, . . . , γ1,N ), (γ2,1, γ2,2, . . . , γ2,N ), . . . , (γk,1, γk,2, . . . , γk,N )) ∈ ([−Q,Q]N )k

such that, if r = min{j ∈ {1, 2, . . . , n} : γk,j 6= 0}, then γk,r = D′ and for each i ∈ {1, 2, . . . ,
k − 1}, there is an edge between

∑N
j=1 γk,j(c

2D′bj +
∑T

l=N+1 cλj,lbl) and

c2(D′)2z′i + c2(D′)2b0 +
T∑

l=N+1

D′cλ0,lbl +
N∑

j=1

γi,j(c2D′bj +
T∑

l=N+1

cλj,lbl) .

Define τ(λ) = γ.
Now since T = HJ(t + 1, (2Q′ + 1)Nk, (4pQ′ + 1)N+1) + N , Pick F,M0,M1, . . . ,Mt,

〈(ν0,l, ν1,l, . . . , νN,l)〉l∈F ,

η = ((η1,1, η1,2, . . . , η1,N ), (η2,1, η2,2, . . . , η2,N ), . . . , (ηk,1, ηk,2, . . . , ηk,N )) ∈ ([−Q,Q]N )k ,

and r ∈ {1, 2, . . . , N} such that

(1) F,M0,M1, . . . ,Mt are pairwise disjoint;

(2) F ∪M0 ∪M1 ∪ . . . ∪Mt = {N + 1, N + 2, . . . , T};
(3) each Ms 6= ∅ and minM0 < minM1 < . . . < minMt;

(4) for each l ∈ F , (ν0,l, ν1,l, . . . , νN,l) ∈ [−2pQ′, 2pQ′]N+1;

(5) r = min{j ∈ {1, 2, . . . , N} : ηk,j 6= 0} and ηk,r = D′; and,

(6) whenever

λ = ((λ0,N+1, λ1,N+1, . . . , λN,N+1), (λ0,N+2, λ1,N+2, . . . , λN,N+2),

. . . , (λ0,T , λ1,T , . . . , λN,T )) ∈ ([−2pQ′, 2pQ′]N+1)T−N

satisfies

(a) for each l ∈ F , (λ0,l, λ1,l, . . . , λN,l) = (ν0,l, ν1,l, . . . , νN,l) and

(b) for each s ∈ {0, 1, . . . , t} and each l, v ∈Ms,
(λ0,l, λ1,l, . . . , λN,l) = (λ0,v, λ1,v, . . . , λN,v)

one has τ(λ) = η, and consequently, for each i ∈ {1, 2, . . . , k−1}, there is an edge between∑N
j=1 ηk,j(c

2D′bj +
∑T

l=N+1 cλj,lbl) and

c2(D′)2z′i + c2(D′)2b0 +
T∑

l=N+1

D′cλ0,lbl +
N∑

j=1

ηi,j(c2D′bj +
T∑

l=N+1

cλj,lbl).
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Now for each s ∈ {0, 1, . . . , t}, let as =
∑

l∈Ms
(D′)2cbl. For i ∈ {1, 2, . . . , k − 1}, let

zi = (D′)2cz′i + (D′)2cb0 +
∑

l∈F
D′ν0,lbl +

N∑

j=1

D′cηi,jbj +
∑

l∈F

N∑

j=1

ηi,jνj,lbl,

and let

zk =
N∑

j=1

D′cηk,jbj +
∑

l∈F

N∑

j=1

ηk,jνj,lbl.

We shall show that (a0, a1, . . . , at)p,c ⊆ S and that the sets 〈czi + [a0, a1, . . . , at]p〉ki=1 form a
complete k-partite subgraph of G, completing the proof that part (b) of ϕ(k,m, p, c, t) holds.

We show first that (a0, a1, . . . , at)p,c ⊆ (b0, b1, . . . , bT )Q′′,D′′ . So let x ∈ (a0, a1, . . . , at)p,c,
and pick β ∈ {0, 1, . . . , t} and µβ+1, µβ+2, . . . , µt ∈ [−p, p] such that

x = caβ +
t∑

s=β+1

µsas.

Then

x =
∑

l∈Mβ

c2(D′)2bl +
t∑

s=β+1

∑

l∈Ms

µsc(D′)2bl.

Since minMβ < min
⋃t
s=β+1Ms, we have that the leading coefficient in this expansion is D′′,

while all other coefficients are at most pc(D′)2 < Q′′.
Next we show that for each i ∈ {1, 2, . . . , k − 1},

czi + [a0, a1, . . . , at]p ⊆ D′′z′i + [b0, b1, . . . , bT ]Q′′ ,

and consequently the sets 〈czi + [a0, a1, . . . , at]p〉k−1
i=1 form a complete (k− 1)-partite graph. To

this end, let µ0, µ1, . . . , µt ∈ [−p, p]. Then

czi +
t∑

s=0

µsas =

(D′)2c2z′i + (D′)2c2b0 +
∑

l∈F
cDν0,lbl +

N∑

j=1

D′c2ηi,jbj +
∑

l∈F

N∑

j=1

cηi,jνj,lbl +
t∑

s=0

∑

l∈Ms

µs(D′)2cbl.

The coefficient on z′i in this expansion is D′′ while the coefficients on the bl’s have absolute
value at most 2pc(Q′)2 < Q′′.

Finally we let i ∈ {1, 2, . . . , k−1}, let w ∈ czi+[a0, a1, . . . , at]p, let x ∈ czk+[a0, a1, . . . , at]p,
and show that there is an edge between w and x. Pick α0, α1, . . . , αs, δ0, δ1, . . . , δs ∈ [−p, p]
such that w = czi +

∑t
s=0 αsas and x = czk +

∑t
s=0 δsas. Then

w = (D′)2c2z′i+(D′)2c2b0+
∑

l∈F
cD′ν0,lbl+

N∑

j=1

D′c2ηi,jbj+
∑

l∈F

N∑

j=1

cηi,jνj,lbl+
t∑

s=0

∑

l∈Ms

αs(D′)2cbl,
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and

x =
N∑

j=1

D′c2ηk,jbj +
∑

l∈F

N∑

j=1

cηk,jνj,lbl +
t∑

s=0

∑

l∈Ms

δs(D′)2cbl.

For l ∈ F and j ∈ {0, 1, . . . , N}, let λj,l = νj,l. For s ∈ {0, 1, . . . , t} and l ∈ Ms, let
λr,l = D′δs, let λ0,l = D′αs − ηi,rδs, and for j ∈ {1, 2, . . . , N} \ {r}, let λj,l = 0. Note that each
|λj,l| ≤ 2pQ′. Note also that for s ∈ {0, 1, . . . , t} and l ∈Ms,

N∑

j=1

ηk,jλj,l = (D′)2δs

and

D′cλ0,l +
N∑

j=1

ηi,jλj,lc = (D′)2cαs.

Then

λ = ((λ0,N+1, . . . , λN,N+1), (λ0,N+2, . . . , λN,N+2), . . . , (λ0,T , . . . , λN,T )) ∈ ([−2pQ′, 2pQ′]N+1)T−N

satisfies

(a) for each l ∈ F , (λ0,l, λ1,l, . . . , λN,l) = (ν0,l, ν1,l, . . . , νN,l) and

(b) for each s ∈ {0, 1, . . . , t} and each l, v ∈Ms, (λ0,l, λ1,l, . . . , λN,l) = (λ0,v, λ1,v, . . . , λN,v).

Consequently, there is an edge between
∑N

j=1 ηk,j(c
2D′bj +

∑T
l=N+1 cλj,lbl) and

c2(D′)2z′i + c2(D′)2b0 +
T∑

l=N+1

D′cλ0,lbl +
N∑

j=1

ηi,j(c2D′bj +
T∑

l=N+1

cλj,lbl).

Now

N∑

j=1

ηk,j(c2D′bj +
T∑

l=N+1

cλj,lbl)

=
N∑

j=1

ηk,jc
2D′bj +

∑

l∈F

N∑

j=1

ηk,jνj,lcbl +
t∑

s=0

∑

l∈Ms

N∑

j=1

ηk,jλj,lcbl

=
N∑

j=1

ηk,jc
2D′bj +

∑

l∈F

N∑

j=1

ηk,jνj,lcbl +
t∑

s=0

∑

l∈Ms

c(D′)2δsbl

= x.

Also,

c2(D′)2z′i + c2(D′)2b0 +
T∑

l=N+1

D′cλ0,lbl +
N∑

j=1

ηi,j(c2D′bj +
T∑

l=N+1

cλj,lbl)
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= c2(D′)2z′i + c2(D′)2b0 +
N∑

j=1

ηi,jc
2D′bj +

∑

l∈F
(D′cλ0,l +

N∑

j=1

ηi,jλj,lc)bl

+
t∑

s=0

∑

l∈Ms

(D′cλ0,l +
N∑

j=1

ηi,jλj,lc)bl

= c2(D′)2z′i + c2(D′)2b0 +
N∑

j=1

ηi,jc
2D′bj +

∑

l∈F
(D′cν0,l +

N∑

j=1

ηi,jνj,lc)bl +
t∑

s=0

∑

l∈Ms

(D′)2cαsbl

= w.

2

5 Independent arithmetic progressions, revisited

The following (in a more general form) was originally proved in [9] by application of the
Hales-Jewett theorem. To illustrate a different approach in a special case, we now give a different
proof, this time using Szemerédi’s density theorem for arithmetic progressions [18] (which says
that for any m and ε > 0 there exists an n so that any set of εn elements from [1, n] contains
an m-term arithmetic progression).

Theorem 5.1 ([9]) Fix k and `. If G is a Kk-free graph on N, then there exists an `-term
arithmetic progression which spans an independent set in G.

Proof: Denote by S(k, `) the following statement: There exists an integer n = n(k, `) such
that for every Kk-free graph G whose vertex set is an arithmetic progression of length n, there
exists an arithmetic progression of length ` which is an independent set in G.

If for every k and `, S(k, `) holds, then Theorem 5.1 follows. For each fixed ` we will prove
S(k, `) by induction on k.

Observe that S(2, `) is trivially true with n(2, `) = `. Suppose, therefore, that S(k − 1, `)
holds and set n∗ = n(k − 1, `). Let n = n(k, `) be very large and consider a Kk-free graph G
with vertex set {a, a+ d, . . . , a+ (n− 1)d}. Assume that G contains no independent set which
is an arithmetic progression of length `. Also, observe that V (G) contains

(n− (`− 1)) + (n− 2(`− 1)) + . . .+
(
n−

⌊
n− 1
`− 1

⌋
(`− 1)

)
≥ n2

3`

arithmetic progressions of length `. Since each of these arithmetic progressions contains an
edge and each edge is contained in at most

(
`
2

)
arithmetic progressions of length ` the graph G

contains at least
n2

3`

(
`

2

)−1

≥ 2n2

3`3

edges. This means that there exists a vertex x joined to at least 4n
3`3

other vertices. Now if n is
sufficiently large compared to n∗, we may infer by Szemerédi’s theorem that the neighborhood
of x contains an arithmetic progression Y of length n∗. Since {x, y} ∈ E(G) for every y ∈ Y the
subgraph G[Y ] of G induced by Y does not contain Kk−1. Thus, by the induction assumption
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S(k − 1, `), the set Y contains an arithmetic progression of length ` which is an independent
set in G[Y ] and hence also in G. 2

We note that since an early draft of this paper, J. Solymosi (personal communication) has
independently observed a similar proof of Theorem 5.1.

6 Concluding remarks
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[13] T.  Luczak, V. Rödl, and T. Schoen, Independent finite sums in graphs defined on the natural
numbers, Discrete Math. 181 (1998), 289–294.

15
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