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Abstract

We consider cyclic d-polytopes P that are realizable with vertices on the moment
curve Md : t −→ (t, t2, . . . , td) of order d ≥ 3. A hyperplane H bisects a j-face of P if H
meets its relative interior. For ` ≥ 1, we investigate the maximum number of vertices
that P can have so that for some ` hyperplanes, each j-face of P is bisected by one of
the hyperplanes. For ` > 1, the problem translates to the existence of certain codes, or
equivalently, certain paths on the cube {0, 1}`.

1 Preliminaries

We assume familiarity with basic properties of convex polytopes and refer the reader to
[7] for definitions and terminology.

For a set X ⊂ Rd, the convex hull of X is denoted by [X]. Recall that a (convex)
d-polytope is the convex hull of some finite subset of Rd of affine dimension d. Recall also
that a hyperplane in Rd is a (d − 1)-dimensional affine subspace of Rd. For any polytope
P ⊂ Rd a face of P is either the empty set, P itself, or the intersection of P with a
supporting hyperplane. A j-face is a face with affine dimension j. The 0-faces are vertices,
and (d− 1)-faces are facets. Let V (P ) denote the set of vertices of P .

For each j = −1, 0, 1, . . . , d−2, each j-face of a d-polytope is contained in a (j+1)-face,
and hence the faces of a polytope P are ordered by inclusion, yielding the face lattice of P .
Two polytopes are called combinatorially equivalent if, and only if, they have isomorphic
face lattices. A polytope is simplicial if each of its faces is a simplex. A d-polytope is
neighbourly if every set of at most bd/2c vertices determines a face.

For a positive integer d, the set

Md = {(t, t2, . . . , td) : t ∈ R} ⊂ Rd

is called the standard moment curve (of order d).
Denote points on Md by x(t) = (t, t2, . . . , td). If n ≥ d + 1, and t1 < t2 < · · · < tn are

real numbers, then define the d-polytope

Cd(t1, t2, . . . , tn) = [x(t1), x(t2), . . . , x(tn)].
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If P is such a polytope for some choice of t1 < t2 < · · · < tn, whenever we write the vertex
set of P in a list, say V (P ) = {x1, x2, . . . , xn}, we will always understand that the labelling
of the xi’s respects the ordering of the ti’s; that is, if for each i, xi = x(ti), then ti < tj
if, and only if, i < j. It is well known that for any choice of t1 < t2 < · · · < tn and
s1 < s2 < · · · < sn, the two moment curve polytopes Cd(t1, t2, . . . , tn) and Cd(s1, s2, . . . , sn)
are combinatorially equivalent. Hence, the notation C(n, d) will denote any element of the
equivalence class of moment curve d-polytopes with n vertices.

Definition 1.1 A d-polytope P with n vertices is cyclic if P is combinatorially equiva-
lent to C(n, d).

So every cyclic polytope has a natural linear ordering of its vertices given by some
C(n, d).

We now review some properties of cyclic polytopes (see [7]). Cyclic polytopes are sim-
plicial and neighbourly. McMullen [9] proved that among all d-polytopes with n vertices,
for each j = 1, . . . , d− 1, neighbourly d-polytopes have the maximum number of j-faces.

A polytope P is said to satisfy Gale’s Evenness Condition (GEC) with respect to a
linear ordering of vertices v1 < v2 < · · · < vn if for any X ⊂ V (P ), [X] is a facet of P if,
and only if, |X| = d and any two vertices in V (P )\X have an even number of vertices in X
between them.

Theorem 1.2 (Gale [4]) Any cyclic polytope satisfies GEC with respect to the natural
linear ordering of vertices.

Theorem 1.3 (Shemer [10]) If d is even, any d-subpolytope of a cyclic d-polytope is
also cyclic.

In odd dimensions, however, subpolytopes of a cyclic d-polytope need not be cyclic (for
example, see [3]). Two polytopes are geometrically equivalent if all respective subpolytopes
are combinatorially equivalent.

Theorem 1.4 (Sturmfels [12]) A d-polytope P and each of its d-subpolytopes is cyclic
if, and only if, P is geometrically equivalent to some moment curve polytope.

So, the moment curve can be used to thoroughly analyze any cyclic polytope whose
every subpolytope is cyclic.

Theorem 1.2 characterizes when d vertices of a cyclic polytope form a facet; we now
prepare to give a condition for faces in general. Given an ordered set of vertices V =
{x1, x2, . . . , xn}, we say Y ⊂ V is contiguous if Y = {xi, xi+1, . . . , xj} for some i and j
satisfying 1 < i ≤ j < n and Y ∩{xi−1, xj+1} = ∅. A set Z ⊂ V is called an end set if either
for some i, Z = {x1, . . . , xi} and xi+1 6∈ Z, or for some j, Z = {xj , . . . , xn} and xj−1 6∈ Z.
Any V ′ ⊂ V has a unique decomposition

V ′ = Z1 ∪ Y1 ∪ · · · ∪ Ya ∪ Z2,

where each Zi is an end set or is empty, and each Yi is contiguous. We say that a contiguous
set Yi ⊂ V is even [odd] if |Yi| is even [resp. odd].
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Theorem 1.5 (Shephard [11]) Let P be a cyclic d-polytope with linearly ordered ver-
tex set V (P ) and let 0 ≤ j ≤ d − 1. Let V ′ ⊂ V (P ), |V ′| = j + 1, and write V ′ as the
disjoint union of end sets and contiguous sets

V ′ = Z1 ∪ Y1 ∪ Y2 ∪ · · · ∪ Yn ∪ Z2.

Then [V ′] is a j-face of P if, and only if, at most d − j − 1 of the contiguous sets Yi are
odd.

Note that in the case j = d− 1, Shephard’s theorem implies Gale’s Evenness Condition.

2 j-bisectors

For a d-polytope P , a hyperplane H is called a j-bisector of P if H intersects the relative
interior of every j-face of P . For fixed d and j, what is the maximum number of vertices
f(d, j) so that a d-polytope with f(d, j) vertices has a j-bisector? We answer this question
precisely for those cyclic polytopes with vertices on a moment curve.

Bezdek et al. (see, e.g., [1], p.40) noted the following:

Theorem 2.1 For each j satisfying 0 ≤ j ≤ bd2c, a d-polytope does not have a j-
bisector.

Hence, in the search for j-bisectors, we restrict ourselves to the cases bd2c < j < d.

Theorem 2.2 Let P = [V ] be a cyclic d-polytope whose every subpolytope is cyclic, and
let d ∈ {2m, 2m+ 1} and m < j < 2m. If |V | ≤ 4j − 2m, then P has a j-bisector.

Proof: Since all subpolytopes of P are cyclic, it suffices to prove the assertion P = [V ]
with |V | = 4j − 2m = 2(2j −m), and by Theorem 1.4, we may assume that V ⊂Md.

We need to exhibit a hyperplane H which cuts every j-face of P . There are two ap-
proaches one could take here; we could first identify vertices of P which are on Md, and
then specify the relative position of points h1, h2, . . . , hd on Md\V , which determine H, or,
we could fix the points h1, h2, . . . , hd first, and then show the position of the vertices of
P relative to these hi’s. We adopt the latter approach here, since it is easier to see the
patterns and to perform the counting.

Remark: We show later in Lemma 4.4 that the pattern used in this proof is just one of
many that provide the same bound; the pattern here is particularly easy to describe and
proving that it works is straightforward.

Fix points h1 = x(s1), h2 = x(s2), . . . , hd = x(sd), where s1 < s2 < · · · < sd. Let H
be the unique hyperplane containing these hi’s. Then H ∩Md = {h1, h2, . . . , hd} and we
note that Md passes through H at each point of contact. To make this concept precise,
let H+ and H− be the open half-spaces determined by H. Then Md\H is the union of
d+ 1 disjoint open arcs. If r < t and (r, t) ∩ {s1, . . . , sd} = {sj}, then x(r) and x(t) are in
opposite half-spaces. Let d = 2m and refer to Figure 1 for the decomposition of Md\H into
arcs. Without loss, the Ai’s are the arcs in Md ∩H+.
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We place the vertices of P as follows: for each i = 1, 2, . . . , 2m− j, |Ai ∩ V (P )| = 1, for
each i = 2m− j + 1, . . . ,m, |Ai ∩ V (P )| = 3, for i = 1, 2, . . . , j −m, |Bi ∩ V (P )| = 3, and
for i = j −m+ 1, . . . ,m, |Bi ∩ V (P )| = 1, and finally, leave B0 empty. (Figure 1 indicates
vertices of P in H+.)

H

H+

H−

t t t t . . . t t t t t t . . . t t
h1 h2 h2m


B0

� �A1r � 
B1

r r r� �
A2r � �A2m−jr � �A2m−j+1rr r � �rr r � �Amrr r�

Bm

r
Figure 1: The m arcs of the moment curve in H+, d = 2m.

Now let V ′ be a set of j + 1 points in V ∩H+; we show that V ′ is not the vertex set of
any j-face. Since any contiguous set in V ′ must be contained in some arc Ai, it has 1,2 or
3 vertices.

Let n1 be the number of (odd) contiguous sets in V ′ which are singletons, n2 the number
of even contiguous sets, and n3 the number of (odd) contiguous sets with 3 points. If there
are any end sets, there can only be one, namely the singleton in A1 (because Bm is non-
empty).

Since contiguous sets with pairs or triples come from A2m−j+1, . . . , Am, we know that
n2 + n3 ≤ m− (2m− j) = j −m. Also, j + 1 = n1 + 2n2 + 3n3 + ε, where ε is 1 if V ′ has a
non-empty end set and 0 otherwise. Then the number of odd contiguous sets is

n1 + n3 = j + 1− ε− 2n2 − 2n3

= j + 1− ε− 2(n2 + n3)
≥ j + 1− ε− 2(j −m)
= 2m− j + 1− ε
> 2m− j − 1,

and by Shephard’s theorem, [V ′] is not be the vertex set of a j-face of P .
Let V ′ be a set of j + 1 vertices in H−, and note that the only possible end set is the

singleton in Bm. Using the notation analogous for H+, we again have n2 +n3 ≤ j−m, and
j + 1 = n1 + 2n2 + 3n3 + ε. The same calculation as above shows that [V ′] is not a j-face
of P .

Since no j-face of P can lie entirely on one side of H, H is a j-bisector. There are 2j−m
vertices of P in H+, and 2j −m in H−.

Now let d = 2m + 1, and refer to Figure 2 for the decomposition of Md\H into arcs.
Distribute the vertices of P as follows: two vertices in each of A0 and Bm+1, one vertex
in each of A1, A2, . . . , A2m−j+1, B1, . . . , B2m−j+1, and three in each of A2m−j+2, . . . , Am,
B2m−j+2, . . . , Bm.

The calculations are just as in the even case. First note that there are 2m− j vertices
in each open half-space. Let V ′ be j + 1 vertices in H+ ∩Md. Using the same notation as
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Figure 2: The m+ 1 arcs of Md in H+, d = 2m+ 1.

in the even case, n2 + n3 ≤ m− (2m− j + 1) = j −m− 1 and j + 1 = n1 + 2n2 + 3n3 + ε,
where ε ∈ {0, 1, 2} is the number of vertices in an end set. These equations imply that the
number of odd components is n1 + n3 > d− j − 1, and so [V ′] is not a j-face in P .

An argument identical to that for H+ shows there is no j-face in H− ∩Md. 2

We shall soon see that the value 4j− 2m is optimal in every case but one, so let us take
care of that rogue case first.

Theorem 2.3 Let d = 2m + 1 and let P be a cyclic d-polytope. Then P has a 2m-
bisector.

Proof: Let V (P ) = {x1, x2, . . . , xn} be given with the natural ordering. First we claim
that every facet of P contains at least one of x1 or xn. To this end, suppose that S ⊂
V (P )\{x1, xn} and |S| = d = 2m+ 1. Then S can not contain any end sets, and therefore
must contain at least one odd contiguous set. But d − j − 1 = 0 for j = d − 1, and so by
Shephard’s theorem, S is not the vertex set of a facet.

Since [x1, xn] is an edge of P (by Shephard’s theorem, for example), there is a hyperplane
supporting this edge, that is, there is a hyperplane H which contains both x1 and xn, with
all other points of P on the same side of H. Translate H slightly toward the rest of these
points, thereby cutting every facet. 2

In the remaining cases, the value 4j − 2m is optimal:

Theorem 2.4 Let P be a cyclic d-polytope whose every subpolytope is cyclic, d ∈
{2m, 2m+ 1}, and m < j < 2m. If |V (P )| > 4j − 2m vertices, then P has no j-bisector.

Instead of proving Theorem 2.4, we prove a slightly stronger theorem.

Theorem 2.5 Let P be a cyclic d-polytope with vertex set V (P ) ⊂Md, d ∈ {2m, 2m+1}
and m < j < 2m. Let H be a hyperplane such that H ∩ V (P ) = ∅. If one of the open half
spaces H+ or H− contains more than 2j −m vertices of P , then that half space contains a
j-face of P .

Proof: Let |H+ ∩ V (P )| ≥ 2j −m+ 1. Since Md is of order d, |H ∩Md| ≤ d. If d is even,
either one of H+ ∩Md or H− ∩Md has at most m arcs and the other has at most m + 1
arcs. If d is odd, then both half spaces contain at most m+ 1 arcs of Md. So, assume that
H+ ∩Md consists of at most m+ 1 disjoint arcs.
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Let W = H+ ∩ V (P ), and for some k ≤ m+ 1, write W = ∪ki=1Wi where the Wi’s are
ordered by the natural order induced by Md, and each Wi is either a contiguous set or an
end set. Since 2j−m+ 1 = j+ 1 + (j−m) ≥ j+ 2, we have that |W | ≥ j+ 2 and so W is a
candidate for containing the vertex set of a j-face. Let γ be the number of odd contiguous
sets in W .

Case 1. γ ≤ d − j − 1. We need only to find W ′ ⊂ W with |W ′| = j + 1 which has no
more contiguous odd sets than does W . To do this, we delete vertices from odd contiguous
sets, or (in pairs) from even contiguous sets.

Case 1a. Suppose that γ ≥ |W | − (j + 1). From each of |W | − (j + 1) odd contiguous
Wi’s, delete an endpoint (so as not to produce two odd contiguous sets from one). The
resulting set W ′ has j + 1 points and at most γ ≤ d− j − 1 odd contiguous sets, and so by
Shephard’s theorem, [W ′] is a j-face of P .

Case 1b. Now suppose that γ < |W | − (j + 1). Reduce each of the γ odd contiguous
sets by one, leaving W ′, a set with |W ′| = |W | − γ > j + 1 vertices and no odd contiguous
sets.

If |W ′| − (j + 1) is even, then delete as many pairs from the ends of contiguous sets so
as to be left with a (j+ 1)-set W ′′ with no odd contiguous sets. In this case, by Shephard’s
theorem, [W ′′] is a j-face of P .

Examine now the case when |W ′|−(j+1) is odd. The above deletion technique produces
a (j + 2)-set W ′′ with no odd contiguous sets. If j + 2 ≤ d, then by Shephard’s theorem,
[W ′′] is a (j + 1)-face of P , and since every (j + 1)-face contains a j-face, W ′′ contains the
vertex set of a j-face. If j+ 2 ≥ d+ 1, then j = d− 1 is even, implying that d = 2m+ 1 and
j = 2m, precisely the case not covered in the statement of the theorem (cf. Theorem 2.3).

Case 2. γ > d− j−1. Pick any γ− (d− j−1) odd contiguous sets and reduce each by a
single vertex, leaving W ′ with d−j−1 odd contiguous sets and |W ′| = |W |−γ+d−j−1 ≥
(2j −m+ 1)− γ + d− j − 1 = j −m+ d− γ vertices. We now consider a number of cases
depending on the size of γ and the parity of d. Note that γ ≤ k ≤ m+ 1.

Case 2a. If γ = m + 1, then each Wi is contiguous, that is, k = m + 1, which is an
impossibility since this requires at least 2(m+ 1) > d points in H ∩Md.

Case 2b. If γ = m and d = 2m+ 1, then |W ′| ≥ j −m+ 2m+ 1−m = j + 1, in which
case we proceed as in Case 1.

Case 2c. If γ = m and d = 2m, then k = m, (because when d = 2m, k ≤ m always
holds) and so each Wi is an odd contiguous set. Thus, |W | and m have the same parity.
Hence |W | = 2j −m + 1 is not possible, and so by assumption, |W | ≥ 2j −m + 2. Thus
|W ′| = |W | − γ+ d− j− 1 ≥ (2j−m+ 2)− γ+ d− j− 1 = j+ 1, in which case we proceed
as in Case 1.

Case 2d. If γ ≤ m−1, then |W ′| ≥ j−m+d−γ ≥ j−m+d−(m−1) = j+d−2m+1 ≥ j+1,
in which case we proceed as in Case 1. 2

Theorem 2.4 now easily follows from Theorem 2.5.
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3 Many hyperplanes bisecting every j-face

3.1 The problem and outline for solution

We again assume that d ∈ {2m, 2m+ 1}, d ≥ 3, and for now, assume that

0 ≤ j ≤ 2m− 1. (1)

Definition 3.1 Let f(Md, j, `) be the maximum number (if it exists) so that for any
n ≤ f(Md, j, `) if P is a cyclic d-polytope satisfying V (P ) ⊂ Md and |V (P )| = n ≥ d + 1,
then there exist hyperplanes H1, . . . , H` so that every j-face of P is bisected by some Hi.

For m < j < 2m, Theorems 2.2 and 2.4 respectively give f(Md, j, 1) ≥ 4j − 2m, and
f(Md, j, 1) ≤ 4j−2m, and hence f(Md, j, 1) = 4j−2m. Theorem 2.1 shows that f(Md, j, 1)
does not exist when j ≤ m and Theorem 2.3 shows that f(Md, j, 1) does not exist when
j = 2m and d = 2m + 1 (because 2m-bisectors exist no matter how many vertices there
are).

To find bounds on f(Md, j, `) for general `, we begin (in Section 4) by fixing an arbitrary,
family H` of ` hyperplanes. These hyperplanes determine open regions in d-space. We first
consider a fixed region R, and the arcs (if any) of Md which are contained in R. We then
calculate precisely (in terms of the numbers of arcs in R) how many vertices of a cyclic
d-polytope can appear on these arcs, without having a j-face contained in R. We then sum
over all regions, getting an expression G(Md, j,H`) for the maximum number of vertices
in a d-polytope which has no j-face in any region, that is, which has every j-face bisected
by some member of H`. In Section 5 we maximize this expression in various ways over all
possible (and perhaps some not possible) hyperplane arrangements giving upper bounds for
f(Md, j, `). In Section 7, lower bounds for f(Md, j, `) are given by constructing hyperplane
arrangements where each hyperplane intersects Md in precisely d points.

3.2 Hyperplanes and regions

For a collection H` = {H1, . . . , H`} of ` hyperplanes in Rd, a maximal connected open
set (or component) of Rd\(H1∪· · ·∪H`) is called a region (or cell). For each hyperplane Hi,
fix a labelling of each of the open half-spaces determined by Hi; call them H+

i and H−i . To
any point x ∈ Rd\(H1∪· · ·∪H`), assign a type rx = (rx(1), rx(2), . . . , rx(`)) ∈ {0, 1}` defined
by rx(i) = 1 if x ∈ H+

i and rx(i) = 0 if x ∈ H−i . Hence any point in Rd\(H1 ∪ · · · ∪H`),
has one of 2` types indicating its relative position to each hyperplane and two points from
the same region have the same type.

It is well known (for example, see [8]) that for ` hyperplanes in general position, there are∑d
i=0

(
`
i

) ≤ 2` such regions; when d ≥ `, this number is precisely 2`. If ` > d,
∑d

i=0

(
`
i

)
< 2`

and so not all 2` types of regions are possible with one arrangement of ` hyperplanes.
For a region R in Rd determined by some H` = {H1, . . . , Hd} and some V ⊂ Md,

|V | ≥ d+ 1, we say that R ∩ V is j-empty if R∩ V does not contain the vertices of a j-face
of the polytope [V ]. For any such region R, define

g(Md, j, R) = max
V⊂Md

{|R ∩ V | : R ∩ V is j-empty}.
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Since the definition of g(Md, j, R) makes sense only when j ≥ 1, this will be henceforth
assumed.

4 A fixed family of hyperplanes

4.1 Vertices in a single region

Fix a family of hyperplanes H` = {H1, . . . , H`} and let R be a region in Rd\(H1 ∪ · · · ∪
H`).

Put A = R ∩Md and note that A is a disjoint union of arcs, say A = A1 ∪ · · · ∪ Ak̄,
where k̄ ≤ m+ 1. We now insist that the hyperplanes have no points of tangency with Md,
that is, if Md touches some Hi, then it passes through Hi. We make this assumption so that
consecutive arcs of A have at least one arc between them contained in some other region
(and there will be vertices of the polytope in every such region). This assumption comes
without loss of generality, because one can perturb any given family of hyperplanes with
tangencies to give a family which meets this assumption and bisects precisely the same set
of j-faces of the polytope we create on Md. Also, assume that each hyperplane intersects
Md at least once, since otherwise, a hyperplane will not bisect any j-faces.

We now compute g(Md, j, R) by putting as many vertices as possible on these Ai’s while
not creating a j-face, and we do this by progressively identifying properties (Lemmas 4.1–
4.4) of a set V ⊂ Md so that [V ] is a d-polytope and A ∩ V is j-empty. Note that if
g(Md, j, R) exists, then g(Md, j, R) ≥ j, so we may first assume that |A ∩ V | ≥ j. For each
arc Ai which is not an end arc (that is, Ai is bounded), assume that Ai ∩ V 6= ∅. Hence,
each Ai ∩ V is either an end set (possibly empty) of V , or a (non-empty) contiguous set of
V . Let k be the number of Ai ∩ V ’s that are contiguous in V . Then

k̄ − 2 ≤ k ≤ k̄.

Also note that because any hyperplane intersects Md in at most d points, k ≤ m. Further
observe that if d = 2m, either k = k̄ or k = k̄ − 2, the latter occurring for only the region
containing both unbounded arcs; if d = 2m + 1, either k = k̄ or k = k̄ − 1, the latter
occurring for precisely two regions (since the hyperplanes indeed cut Md).

Lemma 4.1 If k ≤ d− j − 1, then g(Md, j, R) = j.

Proof: Let k ≤ d − j − 1. If |A ∩ V | ≥ j + 1, pick K ⊂ A ∩ V with |K| = j + 1 vertices
so that each Ai ∩K is contiguous. Then K has at most k contiguous sets and so at most
d− j − 1 odd contiguous sets. By Shephard’s theorem, [K] is a j-face. 2

Now assume that k ≥ d − j. Since k ≤ m, d − j ≤ m and so j ≥ d −m. When ` = 1,
Theorem 2.1 says that j-bisectors exist only if j > bd/2c = m; here we have only restricted
j so that when d is even, j ≥ m, and when d is odd, j ≥ m+ 1. Thus we now assume

⌈
d

2

⌉
≤ j ≤ 2m− 1.

Lemma 4.2 g(M3, 1, R) = k, and for any d ≥ 4, g(Md, 1, R) = 1.

8



Proof: In C(n, 3), the edges are of the form [x1, xi], [xi, xn], and [xi, xi+1], and the best
one can do is to pick one point from each contiguous Ai ∩ V . Since for every d ≥ 4, every
cyclic d-polytope is 2-neighbourly, every pair is an edge, and we can only pick one point
from all of A. 2

We now consider the remaining possibilities d ≥ 4 and j ≥ 2, and derive a key property
in our evaluation of g(Md, j, R).

Lemma 4.3 Let A∩ V be j-empty with the maximum number of vertices, that is, |A∩
V | = |R ∩ V | = g(Md, j, R), and assume |A ∩ V | > j. Then for each contiguous Ai ∩ V ,
|Ai ∩ V | ≤ j, and |Ai ∩ V | is odd.

Proof: Recall that by Theorem 2.3, when d = 2m + 1 and j = 2m, there is always a
j-bisector, that is, g(M2m+1, 2m, `) does not exist for any `, so assume that j < 2m. (We
have already made this assumption in (1) and this is the reason.)

If for some i, |Ai ∩ V | ≥ j + 1 and j + 1 is even, then by Shephard’s theorem, any j + 1
consecutive vertices in Ai ∩ V form a j-face, a contradiction. If |Ai ∩ V | ≥ j + 1 and j + 1
is odd, any j+ 1 consecutive vertices forms a j-face unless d− j− 1 = 0. However, for j+ 1
odd, j = d − 1 occurs only when j = 2m, which we have precluded. We conclude that for
every Ai, |Ai ∩ V | ≤ j.

Now suppose that, for some i, |Ai ∩ V | is even; we derive a contradiction by showing
A ∩ V is not maximal.

Let x′ ∈ (Ai ∩Md)\V , put V ′ = V ∪ {x′}, and let X ⊂ (A ∩ V ′) have j + 1 vertices.
If x′ 6∈ X, then X ⊂ (A ∩ V ) and A ∩ V is j-empty, so [X] is not a j-face.
Let x′ ∈ X, and consider the decomposition of X into contiguous sets and end sets.

Then x′ belongs to a contiguous subset of X. In hopes of a contradiction, suppose that [X]
is a j-face. Then at most d− j − 1 contiguous subsets of X are odd.

Case 1: x′ is in an even contiguous subset Y of X.
Then Y = (Y ∩ V ) ∪ {x′} and |Y ∩ V | is odd. Since |Ai ∩ V | is even, there is a x̄ 6= x′ such
that x̄ ∈ (Ai ∩ Y )\Y . Then Ȳ = (Y \{x′}) ∪ {x̄} is an even contiguous set. So replacing Y
with Ȳ yields a (j + 1)-element subset X̄ of A ∩ V such that [X̄] is a j-face, contradicting
that A ∩ V is j-empty.

Case 2: x′ is in an odd contiguous subset U of X.
If U 6= Ai ∩ V ′, then argue as in Case 1, deleting x′ and adding an x̄. So now suppose
that U = Ai ∩ V ′. If one of the other contiguous subsets of X is a proper subset of some
Ap ∩ V , then exchange as in Claim 1 and get a contradiction (since there will still be the
same numbers of odd and even contiguous sets). If X∩V = (A∩V )∪{x′}, then |A∩V | = j,
contradicting |A ∩ V | > j.

We conclude that if, for some i, |Ai ∩ V | is even, then for any x′ ∈ (Ai ∩Md)\V and
V ′ = V ∪ {x′}, A ∩ V ′ is also j-empty, contradicting the maximality of |A ∩ V |. Therefore,
every Ai ∩ V is an odd contiguous set. 2

Lemma 4.4 Let d ≥ 4 and R be a region containing k ≥ d − j bounded arcs. When
d = 2m and R contains the unbounded arcs then

g(Md, j, R) = k + 2(j −m) + 1.
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In all other situations,
g(Md, j, R) = k + 2(j −m)

Proof: To prove that g(Md, j, R) ≥ k + 2(j − m) (or in the case when R contains the
unbounded arcs, g(Md, j, R) ≥ k+ 2(j−m) + 1), construct A∩V as follows: in each of the
k bounded Ai’s put a vertex yi ∈ Ai. Add 2(j −m) vertices to the Ai’s, (bounded or not)
so that each Ai receives an additional even number of vertices. Finally, in the case when
d = 2m and R is the region containing the unbounded arcs of Md, add one vertex to an end
set. We claim that the resulting A ∩ V is j-empty.

Fix K ⊂ (A∩V ). Let e be the maximum number of mutually disjoint consecutive pairs
of vertices {xp, xp+1} in K where each such pair is contained in some Ai (contiguous or
end set). By construction, e ≤ j −m. Suppose that K contains exactly r odd contiguous
sets. Then either |K| = 2e+ r, or in the case d = 2m, one could have |K| = 2e+ r + 1. If
r ≥ d− j, then by Shephard’s theorem, [K] is not a j-face. If r ≤ d− j − 1, the equalities

j + 1 = d− j + (2j + 1− d) =
{
d− j + 2(j −m) + 1 if d = 2m;
d− j + 2(j −m) if d = 2m+ 1,

(2)

yield 2e+r ≤ 2(j−m)+d−j−1 < j+1, and when d = 2m, 2e+r+1 ≤ 2(j−m)+d−j−1+1 <
j + 1. In any case |K| < j + 1; that is, [K] is not a j-face.

Now we prove that g(Md, j, R) ≤ k + 2(j − m) (or in the case when R contains the
unbounded arcs, g(Md, j, R) ≤ k + 2(j −m) + 1). Let A ∩ V be j-empty, and |A ∩ V | =
g(Md, j, R). First observe that k + 2(j − m) ≥ d − j + 2(j − m) and so by (2), and the
construction above, we may assume that |A∩V | > j. Hence, by Lemma 4.3, all contiguous
Ai ∩ V ’s are odd.

Since A∩V is j-empty, any subset of A∩V with at most d−j−1 odd contiguous sets has
at most j vertices. In each contiguous Ai, fix yi so that (Ai∩V )\{yi} is an even contiguous
set. Let b ≤ d− j−1 and consider a set X ⊂ (A∩V ) containing elements y1, . . . , yb, (which
is possible since k ≥ d− j) and e other disjoint consecutive pairs from (A∩V )\{y1, . . . , yk}.
Then either |X| = b + 2e or |X| = b + 2e + 1, depending whether or not X contains a
odd number of vertices from an end set. First suppose that |X| = b + 2e. Since |X| ≤ j,
b+2e ≤ j implies that 2e ≤ j−b ≤ j− (d−j−1) = 2j−d+1 ≤ 2j−2m+1 = 2(j−m)+1,
and so X\{y1, . . . , yb} contains e ≤ j − m remaining pairs. Thus (A ∩ V )\{y1, . . . , yk}
contains at most j −m remaining pairs, and |A∩ V | ≤ k+ 2(j −m) + 1. Since each Ai ∩ V
is odd, the only way to achieve |A ∩ V | = k + 2(j −m) + 1 is to then have an odd number
of vertices in an end set. This can only be done when d = 2m, because if d = 2m + 1, by
(2), one can create a (j + 1)-set with d− j − 1 odd contiguous sets by using an end set. 2

Note that the general pattern described in Lemma 4.4 includes the patterns used in the
proof of Theorem 2.2.

Theorem 4.5 Let d ≥ 4 and R∩Md contain k bounded arcs. When d = 2m, if k ≥ d−j
and R ∩Md contains the unbounded arcs, then

g(Md, j, R) = k + 2(j −m) + 1.

In all other situations,
g(Md, j, R) = max{j, k + 2(j −m)}.
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Proof: If k < d− j then k+ 2(j−m) ≤ j and if k ≥ d− j then k+ 2(j−m) ≥ j. Lemmas
4.1 and 4.4 finish the proof. 2

4.2 Vertices in all regions

If j = m and ` = 1, there are t = 2 regions, and at most j vertices on each side of the
hyperplane; 2j = 2m ≤ d vertices are not enough for a d-polytope, so for ` = 1, we assume
m < j < 2m. If ` ≥ 2, we don’t have this argument available to insist that j > m since
there are more than 2 regions, so when ` > 1 we could have j = m.

For a fixed H`, define

G(Md, j,H`) =
∑

gj(Md, j, R),

where the sum is taken over all regions determined by H`. By summing the equalities in
Lemmas 4.1 and 4.4, we have the following result which gives the maximum number of
vertices in V so that no j-face of [V ] occurs in any one region.

Theorem 4.6 Let d ≥ 4, dd/2e ≤ j < 2m and if ` = 1, let m < j < 2m. Let H`
determine t regions, R1, R2, . . . , Rt, which contain some arc (unbounded or not) of Md. For
each Ri, let ki denote the number of bounded arcs in Ri ∩Md and put s = |{i : ki < d− j}|.
If d = 2m and the region containing both unbounded arcs also contains at least d−j bounded
arcs, then

G(Md, j,H`) = sj +


 ∑

ki≥d−j
ki


+ 2(t− s)(j −m) + 1. (3)

If d = 2m and no such region exists, or when d = 2m+ 1, then

G(Md, j,H`) = sj +


 ∑

ki≥d−j
ki


+ 2(t− s)(j −m). (4)

There are a number of ways that Theorem 4.6 can be interpreted; we give a few that
are useful. In the following corollaries, for brevity we assume: d ≥ 4; dd/2e ≤ j < 2m and
if ` = 1, m < j < 2m; H` determines t regions, R1, R2, . . . , Rt, each containing some arc of
Md; the number of bounded arcs in Ri ∩Md is ki.

Corollary 4.7 Let each ki ≥ d− j. Then

G(Md, j,H`) =
{

(
∑t

i=1 ki) + 2t(j −m) + 1 if d = 2m
(
∑t

i=1 ki) + 2t(j −m) if d = 2m+ 1,
(5)

and if each hyperplane in H` cuts Md in d points, then

G(Md, j,H`) =
{
`d+ 2t(j −m) if d = 2m
`d− 1 + 2t(j −m) if d = 2m+ 1.

(6)
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Proof: The proof of (5) is a direct application of Theorem 4.6 with s = 0. For (6), we note
that `d points on Md decompose Md into `d+ 1 arcs, `d− 1 of which are bounded. 2

This last corollary yields insight as to how one might maximize the number of vertices
in a polytope with vertices on Md so that every j-face is bisected—find an H` so that each
hyperplane intersects Md precisely d times while t is as large as possible.

We apply (6) in the case ` = 1 (hence t = 2) and j > m. If d = 2m + 1, then s = 0
because for each i = 1, 2, ki = m = 2m+ 1− (m+ 1) ≥ d− j. When d = 2m, either ki = m
or ki = m− 1, and so for i = 1, 2, ki ≥ m− 1 = 2m− (m+ 1) ≥ d− j again giving s = 0. If
d = 2m, then d`− 1 + 2t(j −m) + 1 = 2m+ 4(j −m) = 4j − 2m, and if d = 2m+ 1, then
d`− 1 + 2(j −m) = (2m+ 1)− 1 + 4(j −m) = 4j − 2m, (cf. Theorems 2.2 and 2.4).

Corollary 4.8 G(Md, j,H`) ≥ tj, with equality if each ki < d− j.

Proof: If some ki ≥ d− j, then ki+ 2(j−m) ≥ j, and the inequality follows from Theorem
4.6. When each ki < d− j, apply Theorem 4.6 with s = t, in which case only (4) applies. 2

In applying Corollary 4.8, one might note that t ≤ min{`d+ 1, 2`}.
We conclude this section by mentioning that finding other bounds for G(Md, j,H`) can

be obtained by applying the following inequalities in Theorem 4.6:
∑t

i=1 ki ≤ `d − 1;
t ≤ min{`d+ 1, 2`}; if k ≥ d− j, then k+ 2(j −m) ≥ j; if k < d− j then k+ 2(j −m) ≤ j.
and t ≤ ∑d

i=1

(
`
i

)
. Some results of such computations are contained in Theorems 5.3 and

5.4 in the next section.

5 Upper bounds for f(Md, j, `)

Recall that f(Md, j, `) is the maximum number of vertices in a cyclic d-polytope P with
V (P ) ⊂ Md such that there exists ` hyperplanes H1, . . . , H` so that every j-face of P is
bisected by some Hi, and

f(Md, j, `) = max
H`

G(Md, j,H`),

where the maximum is taken over all hyperplane arrangements H` = {H1, . . . , H`}, where
each Hi has no points of tangency with Md.

The following global upper bound for f(Md, j, `) follows from Theorem 4.6.

Theorem 5.1 For d ≥ 4, d ∈ {2m, 2m+ 1}, m ≤ j ≤ 2m− 1, and ` > 1,

f(Md, j, `) ≤ `d+ 2`+1j.

Proof: By (3) and (4), for any hyperplane arrangement H`,

G(Md, j,H`) ≤ sj +


 ∑

ki≥d−j
ki


+ 2(t− s)(j −m) + 1
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≤ sj +

(
t∑

i=1

ki

)
+ 2(t− s)(j −m) + 1

= sj + `d− 1 + 2(t− s)(j −m) + 1
= `d+ 2t(j −m)− sj + 2sm
≤ `d+ 2t(j −m) + 2tm
= `d+ 2tj
≤ `d+ 2 · 2`j.

2

Sharper upper bounds for f(Md, j, `) are available in special situations by bounding
expressions in Theorem 4.6.

Since any consecutive j + 1 vertices in C(n, d) determine a j-face, if f(Md, j, `) exists,
then there is a hyperplane arrangement so that no arc contains more than j vertices, and
when d is even, both end arcs are in the same region, and together these arcs contain no
more than j vertices. We conclude:

Theorem 5.2 Let d ∈ {2m, 2m+1}, d ≥ 3, and 1 ≤ j < 2m. If f(Md, j, `) exists, then

f(Md, j, `) ≤
{
ldj for d = 2m
(ld+ 1)j for d = 2m+ 1.

.

In Theorem 7.1 we see that the bound in Theorem 5.2 is attained when `d = 2`.
Other upper bounds for f(Md, j, `) which can be obtained with more careful counting

are stated in the next two theorems without proof:

Theorem 5.3 If d ≥ 4 is even, ` ≥ 2 and d
2`
< j < d then

(i) f(Md, j, `) ≤ `dj if d ≤ 2`

` ;

(ii) f(Md, d− 1, `) ≤ `d+ 2`(d− 2) if d > 2`

` ;

(iii) f(Md, j, `) < `d+ 2`(j − 1) if j ≤ d− 2 and d > 2`

` .

Theorem 5.4 If d ≥ 5 is odd, ` ≥ 2 and d
2`
< j < d− 1 then

(i) f(Md, j, `) ≤ (`d+ 1)j if d < 2`

` ;

(ii) f(Md, d− 2, `) ≤ `d+ 2`(d− 3) + 1 if d > 2`

` ;

(iii) f(Md, j, `) < `d+ 2`(j − 1) if j ≤ d− 3 and d > 2`

` .
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6 Hyperplane arrangements and codes

We now concentrate on finding lower bounds for f(Md, j, `). To accomplish this, we
seek examples of families H` for which G(Md, j,H`) is large. We translate the problem of
finding maximum values of t into the language of codes, or equivalently, paths on the cube
{0, 1}`. In this section, we develop some of this language, and then return in Section 7 to
apply the codes. Different techniques are required depending on the relative sizes of d and
`.

Let hyperplanesH1,H2, . . . , H` intersect the moment curveMd each in `d distinct points,
yielding `d+ 1 arcs in Md\(H1 ∪ · · · ∪H`), and refer to the notation in Section 3.2.

Let Q` denote the graph on vertices {0, 1}` (the set of `-tuples of 0’s and 1’s) where two
vertices are connected by an edge if, and only if, they differ in precisely one coordinate.
A walk of length k in Q` is a sequence v0, v1, v2, . . . , vk, of vertices vi, where for each
i = 1, . . . , k, ei = (vi−1, vi) is an edge. A walk in Q` is sometimes called a code with spread
1. Note: the vertices vi need not be distinct. A path in Q` is a walk in which no vertex
(and no edge) is repeated. A circuit is a walk in which no edge is repeated and the first
and last vertices are the same. A cycle is a circuit which repeats no vertex other than the
first and last.

Every walk W in Q` is fully determined by its first vertex and its transition sequence,
(s1, s2, . . . , sk), where si is the coordinate changed between vi−1 and vi. For each i = 1, . . . , `,
let the transition count TC(i) be the number of times the i-th coordinate changes in W .
We say that a walk W in Q` of length `d is totally balanced if each TC(i) = d. Note, if
v0, v1, . . . , v`d is a totally balanced walk in Q` and d is even then v0 = v`d; if d is odd, then
v0 and v`d differ in every coordinate.

When counting types of arcs in Md cut by ` hyperplanes, we can freely interchange the
language of geometry with the language of walks in Q`.

Lemma 6.1 For every placement of ` hyperplanes, each intersecting Md in d points,
there corresponds a totally balanced walk of length `d whose vertices corresponds to the
types of the `d+ 1 arcs in Md\(H1 ∪ · · · ∪H`). Furthermore, for every such walk, there is
a placement of hyperplanes yielding that walk.

The number of types of arcs in Md\(H1 ∪ · · · ∪ H`) is the number of distinct vertices
used in the corresponding walk. Also, since the assignment of “+” or “−” to each side of a
hyperplane is arbitrary, we may assume that the walk begins at (0, 0, . . . , 0). See Figure 3
for an example with d = 4, ` = 3 (where the moment is curve is drawn as a straight line,
and commas and parentheses are omitted in the types).

M4

000 t
H1

100 t
H2

110 t
H3

111 t
H3

110 t
H2

100 t
H2

110 t
H1

010 t
H1

110 t
H3

111 t
H1

011 t
H2

001 t
H3

000

Figure 3: Types of arcs of M4 with 3 hyperplanes.
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Lemma 6.2 Let W be a totally balanced walk of length `d on Q`. If d ≥ 2, then the
number of distinct vertices in W is at least `+ 1, and this value is attainable for any d.

Proof: Let W be such a walk. Since each coordinate must be changed at least once,
W must have at least `+ 1 vertices.

In fact, such a W using exactly `+1 vertices exists when d is even. Let v0 = (0, 0, . . . , 0),
and for each i = 1, . . . , `, let xi = (1, 1, . . . , 1, 0, 0, . . . , 0) where the first i coordinates are 1
and the rest 0’s. Now let W be the walk on these `+ 1 vertices xi, going from x0 to x` and
back, each path repeated d times. 2

Trivially, the number of vertices in a walk given in Lemma 6.2 is at most the smaller of
`d+ 1 and 2`.

In the next two sections, we find special kinds of totally balanced walks, those arising
from Gray codes (to be used when d is large), and ones constructed by splicing together
disjoint chains in a lattice (for use when d is small).

6.1 Gray codes

Recall that in a graph, a hamiltonian cycle is a cycle which uses each vertex precisely
once; similarly, a hamiltonian path is a path which contains every vertex. A graph is called
hamiltonian if, and only if, it contains a hamiltonian cycle. It is well known that for every
`, the graph Q` is hamiltonian.

When d = 2`/`, then `d is precisely the number of vertices in a hamiltonian cycle, that
is, it might be possible to find a totally balanced walk which uses all vertices. In fact,
whenever `d is a multiple of 2`, all vertices might be used by just walking a hamiltonian
cycle `d/2` times. However, it is rare that a hamiltonian cycle in Q` represents a totally
balanced walk. For example, examine the hamiltonian cycle in Q3: 000, 001, 011, 111, 101,
100, 110, 010, 000. It has TC(1) = TC(3) = 2 yet TC(2) = 4. The standard inductive
construction of a hamiltonian cycle in Q` gives one coordinate with only 2 changes, and so
these cycles are not of much use for hyperplane placements.

An `-bit Gray code is an ordered listing of all 2` `-bit binary strings so that adjacent
strings differ in precisely one position. In terms of walks, a Gray code is a walk on Q` which
uses each vertex precisely once. A Gray code is called cyclic if the last word differs from the
first in precisely one bit. The cyclic Gray code corresponding to the standard hamiltonian
cycle (which arises by induction) is called a “binary reflected Gray code” and was patented
by Frank Gray in 1953 [6].

If a Gray code is cyclic, for each i = 1, . . . , `, define the transition count TC(i) to be the
number of times the i-th bit changes, including the final bit change from the last word to
the first. A balanced Gray code is a code where the TC(i)’s are as close to being the same
value as possible. One of the earliest methods proposed for generating balanced Gray codes
is found in [13].

In a cyclic Gray code, since
∑

TC(i) = 2` the most balanced distribution of transition
counts is to have each TC(i) ∼ 2`/`.

Theorem 6.3 (Wagner, West [14]) An `-bit cyclic Gray code exists with all TC(i)’s
being equal if, and only if, ` is a power of 2.
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In 1996, it was proved that a (nearly) balanced Gray code exists for any `:

Theorem 6.4 (Bhat, Savage [2]) If a` is the largest even integer not larger than 2`/`,
then there is an `-bit cyclic Gray code with each TC(i) ∈ {a`, a` + 2}.

6.2 Symmetric chain decomposition of B(`)

Let X be any set with |X| = `. The Boolean lattice B(`) is the lattice on the power set
P(X), where the partial order is containment. A collection C ⊆ P(X) of subsets of X is
a chain if, and only if, for every A,B ∈ C, either A ⊂ B or B ⊂ A. A chain C in B(n) is
convex if whenever A ⊂ B ⊂ C and A,C ∈ C, then B ∈ C. A chain C ⊆ P(X) is symmetric
if for every C ∈ C there exists C ′ ∈ C so that {|C|, |C ′|} = {d`/2e + i, b`/2c − i} for some
i ≥ 0.

We emphasize that any convex chain from ∅ to X has precisely one change in each of
the coordinates of the characteristic vectors.

There are a number of methods by which B(`) can be partitioned into
(

`
b`/2c

)} disjoint
symmetric convex chains (see, for example, [5]). Let C = {C1, C2, . . . , C( `

b`/2c)
} be a de-

composition of B(`) into disjoint symmetric convex chains. These chains will have lengths
`+ 1, `− 1, `− 3, . . ., and the number of chains of length `+ 1− 2i is

(
`
i

)− ( `
i−1

)
. For each

k, there are
(
`
k

)
chains with length at least `+ 1− 2k.

If d ≤ `, one can ‘splice’ together the largest d disjoint convex chains to obtain a totally
balanced walk of length `d on 2+d(`−1) points in the Boolean lattice. We give an example
as to how this is done for d = ` = 4.

Examine the following symmetric chain decomposition of B(4), the Boolean algebra of
subsets of {1, 2, 3, 4} into 6 chains (where columns are chains):

{1, 2, 3, 4}
{1, 2, 3} {1, 3, 4} {2, 3, 4} {1, 2, 4}
{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}
{1} {3} {2} {4}
∅

Each subset of {1, 2, 3, 4} will have a geometric meaning, and as a first step, we translate
the above decomposition replacing sets with characteristic vectors (forgetting commas):

1111
1110 1011 0111 1101
1100 1010 0110 1001 0101 0011
1000 0010 0100 0001
0000

Consider the walk that goes back and forth between 0000 and 1111 twice: 0000, 1000, 1100,
1110, 1111, 1011, 1010, 0010, 0000, 0100, 0110, 0111, 1111, 1101, 1001, 0001, 0000. Each
4-bit word corresponds to a region, determined by each of four hyperplanes H1,H2,H3,H4.
Notice that in each 0000 → 1111 or 1111 → 0000 path each bit is changed precisely once,
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so such a path corresponds to a sequential placement of one point of each Hi ∩Md, giving
the points of the hyperplanes placed as follows (where, for example, the first transition
0000→ 1000 represents Md passing through H1):

H1,H2,H3,H4, H2,H4,H1,H3,H2,H3,H4,H1, H3,H2,H1,H4.

This placement ensures that the moment curve passes through fourteen of 24 = 16 possible
types of regions; it also gives us that Md passes through each of twelve regions exactly once,
two types of region are missed, region 0000 contains three arcs of Md, once at each end and
once in the middle, and region 1111 contains two arcs.

Generalizing the construction above, the next lemma is easy to verify.

Lemma 6.5 If d ≤ `, there is a totally balanced walk W of length `d in Q` which
uses ` + 1 + (d − 1)(` − 1) distinct vertices. If ` < d ≤ (`2

)
, then such a walk exists on

`+ 1 + (`− 1)(`− 1) + (d− `)(`− 2) points.

7 Lower bounds for f(Md, j, `)

Theorem 7.1 Let ` be a power of 2 and d` = 2` (so d = 2m). Then

f(M2m, 2m− 1, `) ≥ 2m`+ 2`+1(m− 1),

and for each j satisfying, m < j < 2m− 1,

f(M2m, j, `) ≥ j2` = j · (2m)`.

Proof: To obtain the bound for f(M2m, 2m− 1, `), we determine an H` with s = 0 and
apply (3). To obtain the bound for f(M2m, j, `), we use the same H`, but now with s = t,
and apply (4). We find such a H` with t = 2` and each ki = 1 (then s = 0 for j = d − 1
and s = t for j < d− 1) by using a totally balanced Gray code guaranteed by Theorem 6.3
when ` is a power of 2.

LetW1,W2, . . . ,W2` be a totally balanced Gray code where for each i = 1, . . . , `, TC(i) =
2`/` = d. For each i = 1, . . . , ` let Hi ∩Md = {hi,1, hi,2, . . . , hi,d}. We now describe how
to arrange the points hi,j on Md. For ease of notation, write hi,j < hi′,j′ if, and only if,
hi,j = Md(z) and hi′,j′ = Md(z′) and z < z′. For each i, and j < j′, we insist that hi,j < hi,j′

(points determining one hyperplane are written in order).
Construct the arrangement H` of hyperplanes as follows. Without loss of generality, put

h1,1 first. If W2 differs from W1 in bit b, then put hb,1 next. Now assume that α points have
been placed. If Wα and Wα+1 differ in bit b′, then the next hi,j is the smallest available
point from Hb′ . 2

Theorem 7.2 Let ` be a power of 2, d = 2m, and for some integer c ≥ d − j, let
d` = c2`. Then for every m < j < 2m,

f(M2m, j, `) ≥ 2m`+ 2`+1(j −m).
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Proof idea: Argue as in the proof of Theorem 7.1 using the same Gray code c times.
This yields a hyperplane arrangement with t = 2` and each ki = c. Now apply (3). 2

We now want to examine a case when d is very large compared to `, without the
assumption that ` is a power of 2. Before stating the next theorem, we give an example
which makes its proof more transparent.

Consider the case ` = 5; since b25/5c = 6, Theorem 6.4 says that there exists a 5-bit
Gray code with each TC(i) ∈ {6, 8}. An example of such (from [2]) is:

00000, 10000, 11000, 11100, 11110, 11111, 01111, 01110,
00110, 00010, 00011, 01011, 01001, 00001, 00101, 00111,
10111, 10101, 10001, 11001, 11101, 01101, 01100, 01000,
01010, 11010, 11011, 10011, 10010, 10110, 10100, 00100.

This code has TC(3) = 8, and for i 6= 3, TC(i) = 6. The sequence of bit changes (counting
the last switch back to the beginning) is:

312345152352423414323153414253413.

Now let d = 8, the larger of the two transition counts. Arrange hyperplanes H1, . . . ,H5

according to the above sequence, that is, the first point on M8 is a point from H3; the
second point is a point from H1, and so on, getting a sequence

H3, H1,H2,H3,H4,H5, . . . , H1,H3.

However, we still have two points from each of H1,H2, H4,H5 to choose, and we do so (in
any order) at the end:

H3,H1,H2,H3,H4, H5, . . . , H1,H3, H1,H1,H2,H2,H4,H4,H5,H5.

The hyperplane arrangement H5 is now fully determined. Note that the region contain-
ing the unbounded arcs also contains a bounded arc between the 32nd and 33rd point of
intersection because the code is cyclic.

The bounded arcs with endpoints among the first 32 yield all t = 32 types. By Corol-
lary 4.8, for j ≤ 6, G(M8, j,H5) ≥ 32j, thus f(M8, 4, 5) ≥ 128, f(M8, 5, 5) ≥ 160, and
f(M8, 6, 5) ≥ 192. When j = 7, d− j = 1, each ki ≥ 1, and by Corollary 4.7, equation (6),

G(M8, 7,H5) = 5 · 8 + 2 · 32(7− 4) = 232.

Next, we generalize the preceding construction.

Theorem 7.3 Let d and ` be given with d ≥ b2`/`c. Let d∗ be largest even integer not
larger than b2`/`c+ 2, and suppose that j ≥ d− b dd∗ c. Then

f(Md, j, `) ≥
{
d`+ 2`+1(j −m) if d = 2m
d`− 1 + 2`+1(j −m) if d = 2m+ 1.
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Proof: By Theorem 6.4, choose a (nearly) balanced `-bit Gray code with each TC(i) ∈
{d∗−2, d∗}. Let k = b dd∗ c, and apply the code consecutively k times to obtain the placement
of k2` < d` points of ` hyperplanes. Append the remaining d`− k2` necessary points from
hyperplanes (each hyperplane will intersect the moment curve an even number of times
more) to get a legitimate placement of d` points determining an arrangement H` of `
hyperplanes. Note that t = 2`. One can verify that each region contains at least k bounded
arcs.

The fact j ≥ d− ⌊ dd∗
⌋

implies k ≥ d− j, and by construction, in each region, ki ≥ k. To
finish the proof, apply equation (6) to find G(d, j,H`). 2

For example, in the case d = 96, and ` = 5, then d∗ = 8 (from our last example), so
repeat the Gray code given in the last example k = b96/8c = 12 times and add whatever
is necessary to balance the number of times each hyperplane intersects the moment curve.
(This can be minimized by applying the Gray code for different permutations of bits.) If
j ≥ 84, then each ki ≥ 12 ≥ d− j, so there is an arrangement H5 of five hyperplanes with
G(96, j,H5) = 5 · 96 + 64(j − 48) = 64j − 2592.

Next we examine the case d = `, where we use the symmetric chain decomposition
technique described in Section 6.2. Since f(Md, j, `) ≥ f(Md, d− 1, `), in the case that d is
even, we restrict our attention to facets. We have already shown the example for d = ` = 4.

Theorem 7.4 For d even, and d ≥ 4,

d3 − 2d2 + 4d− 4 ≤ f(Md, d− 1, d) ≤ d3 − d2.

Proof: We first give the construction which realizes the lower bound. Let X be a set
of d elements and let C = {C1, C2, . . . , C( d

d/2)
} be a decomposition of P(X) into disjoint

symmetric convex chains. These chains have lengths d+ 1, d− 1, d− 3, . . ., and the number
of chains of length d+ 1− 2i is

(
d
i

)− ( d
i−1

)
(in particular, there is one chain of length d+ 1

and d−1 chains of length d−1). Let C1 have length d+1 and let each of C2, C3, . . . , Cd have
length d−1. Construct the code of characteristic vectors of the d+ 1 + (d−1)2 = d2−d+ 2
sets in these first d chains according the following pattern: start at ∅, go up C1 to X, then
down through C2 to ∅, up through C3 to X, down through C4 to ∅, . . ., up through Cd−1 to
X, and finally down through Cd to ∅. Since each path from ∅ to X corresponds to crossing
all ` = d hyperplanes, the resulting path gives a legitimate placing of the hyperplanes.

Each vector corresponds to a type of region, and so t = d2 − d + 2. The type 11 · · · 1
occurs d/2 times, and so for one value of i, ki = d/2. The type 00 · · · 0 is realized as
a bounded arc d

2 − 1 times, and as an end arc twice. Thus for one value of i, we have
ki = d

2 − 1. For the remaining d2 − d types, ki = 1. By equation (6) with t = d2 − d + 2,
one obtains

G(Md, d− 1,Hd) = d3 − 2d2 + 4d− 4,

proving the lower bound. (If instead, one were to simply put j = d−1 points in each region,
one would have (d2 − d+ 2)(d− 1) = d3 − 2d2 + 3d− 2 points, a difference of d− 2 points,
so equation (6) gives a slight improvement.)

If the region in which the curve begins (and ends) contains no inner arc, and if no two
bounded arcs occur in the same region, then one could put j points in each region, of which
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there are d2 = d`, yielding a total of d2(d− 1) = d3 − d2 vertices. (This is the same bound
as in (6) with t = d2.) However such a hyperplane arrangement might not be realizable. 2

One can generalize the construction above to give bounds when d 6= ` but d is still ‘close
to’ `.

Theorem 7.5 Suppose that 4 ≤ d ≤ `. If d is even, then

f(Md, d− 1, `) ≥ (d2 − d)`− d2 + 4d− 4.

and if d is odd,
f(Md, d− 2, `) ≥ (d2 − 2d)`+ 3d− 7.

Proof idea: Perform the aforementioned construction of splicing together d disjoint chains
in the Boolean lattice of subsets of an `-element set X. The construction uses only one chain
of length `+1 and d−1 chains of length `−1. This yieldsH` with t = (`+1)+(d−1)(`−1) =
d(` − 1) + 2, where all but two types are used precisely once. (When d is even, these two
types occur on bounded arcs respectively d

2 and d
2 −1 times; when d is odd, they both occur

d−1
2 times on bounded arcs). So, when d is even, and j = d − 1, apply equation (6) with
t = d(`− 1) + 2 (or (3) with s = 0), to obtain

G(Md, d− 1H`) = `d+ 2(d(`− 1) + 2)(2j − d)
= (d2 − d)`− d2 + 4d− 4.

When d is odd and j = d− 2, we showed above that all regions except two have ki = 1 <=
d− j and s = d(`− 1). By (3)

G(Md, d− 2,H`) = d(`− 1)(d− 2) + d− 1 + 2 · 2(m− 1) + 1
= d(`− 1)(d− 2) + d− 1 + 2(d− 3) + 1
= (d2 − d)`+ 3d− 6.

2

Note: the construction of splicing together symmetric convex chains can be used for values
of ` that are ‘near’ d. For example, when ` < 2d, one can find symmetric chains of length d+1
which intersect in at most two points at each end. When ` ≤ d, the number of types realized
was d+1+`(d−1). When d < ` ≤ (d2

)
, the number of types is d+1+(d−1)2 +(`−d)(d−3),

however there are a few more ki’s with ki > 1. If one further restricts ` to be not too much
larger than d, the construction still yields nearly optimal values; for example, when ` = 2d
and d is even, we obtain H2d with t = d+ 1 + (d− 1)2d(d− 3), and each ki > 0, and so by
(6),

G(Md, d− 1,H2d) = d`+ t(d− 2)
= 2d3 − 6d2 + 10d− 4,

which is fairly close to the optimal of j(`d) = (d− 1)(2d2) = 2d3 − 2d2.
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8 Conclusions

The connection between cyclic polytopes and various areas of mathematics is becoming
well known. To matroids, Bruhat orders, game theory, K-theory, and others, we can now
add coding theory. The question of finding hyperplane arrangements that bisect all j-faces
of a cyclic polytope on a moment curve led us to a purely combinatorial problem of how to
linearly order `d points so as to create as many different types, or `-bit words, as possible.
Some success was achieved by finding or constructing certain spread 1 binary codes (binary
codes whose adjacent words differ in exactly one bit). It would be very interesting to classify
the conditions on codes of spread 1 that give legitimate hyperplane placements and yield
the greatest number of types of non-empty regions.

Can one say more about the asymptotic behaviour of f(Md, j, `)? It follows from
Theorem 7.3 and Corollary 4.8 that for fixed `, as d → ∞, f(Md, j, `) is asymptotically
d`+ 2`+1(j −m), and for fixed d, j, as `→∞, f(Md, j, `) ∼ d`j. The probabilistic method
might be a worthwhile approach to discovering more properties of f . For example, it seems
that for fixed ` and large enough d, a random placement of ` hyperplanes almost surely
yields all 2` types.

Given that we have some understanding of the behaviour of f(Md, j, `), we can now pose
the more practical problem of determining the smallest number b(Md, j, n) of hyperplanes
needed to bisect every j-face of some C(n, d). Assuming that j > 0 and noting the trivial
case of b(M2m+1, 2m,n) = 1, it is clear that

n ≥ b(Md, 1, n) ≥ b(Md, 2, n) ≥ · · · ≥ b(Md, d− 1, n),

and thus the most interesting of these numbers are b(Md, 1, n), b(M2m+1, 2m − 1, n) and
(Md, 2m− 1, n).

For example, what is b(M4, 3, 100)? By Theorem 7.4, it is greater than four; from
Theorem 7.5, we have f(M4, 3, `) ≥ 12` − 4. Thus, 100 ≤ 12` − 4 implies that ` ≥ 9 and
b(M4, 3, 100) = 9. If we knew how to calculate tight bounds for f(Md, j, `), then finding
b(Md, j, n) would be easy. Can one give general theorems about b(Md, j, n)? It would be
surprising if not much is known for even b(Md, 1, n), however we could find no references.
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