
On sets forming Boolean algebras and partite

hypergraphs

D. S. Gunderson
Bielefeld, Germany

V. Rödl
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Abstract

Three classes of finite structures are related by extremal properties:
d-partite hypergraphs, d-dimensional affine cubes of integers, and families
of 2d sets forming a d-dimensional Boolean algebra. We review extremal
results for each of these classes and derive new ones for Boolean algebras
and hypergraphs, many obtained by employing relationships between the
three classes. The similarity in bounds for extremal problems in different
classes is remarkable.

1 Introduction

The original purpose of our research was to determine extremal results for
Boolean algebras of sets. We employed theorems and techniques from two other
areas, extremal aspects of d-partite d-uniform hypergraphs, and some old, some-
what hard questions concerning integers. We review some of the facts used about
integers, and develop extremal results for Boolean algebras and hypergraphs.
Each area contains many interesting open questions, solutions to some of which
would immediately yield improvements in each of the other two.

In this introduction, we outline the results in this paper. In the next section
on hypergraphs, we establish some statements for later employment in theorems
for both affine cubes and for Boolean algebras, and briefly survey some related
facts. Of independent interest, new upper bounds for extremal numbers for par-
tite hypergraphs are proved using a technique involving affine spaces. Section
3 outlines known related results concerning integers, some obtained by hyper-
graph proofs, some of which are used later for extremal problems on Boolean
algebras. Section 4 is on Boolean algebras of sets, containing Ramsey and den-
sity theorems.

Let X be a finite set; P(X) = {Y : Y ⊆ X} denotes the power set of X
and [X]s = {S ⊂ X : |S| = s}. It will often be convenient to use the notation
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[n] = [1, n] = {1, 2, . . . , n} and use X = [n]. For many mathematicians, the
term “Boolean algebra” has a very specific meaning. For a finite set X, the
collection P(X) is often referred to as the Boolean algebra on X. We will use
the term “Boolean algebra” in a slightly different manner, however, the analogy
should be clear.

Definition 1.0.1 A collection B ⊆ P(X) forms a d-dimensional Boolean
algebra if and only if there exist pairwise disjoint sets X0, X1, . . . , Xd ∈ P(X),
all non-empty with perhaps the exception of X0, so that

B =

{
X0 ∪

⋃

i∈I
Xi : I ⊆ [1, d]

}
.

The Boolean algebra generated by the sets X0, X1, . . . , Xd may be viewed as
a lattice (of inclusion) with meet X0, join ∪di=0Xi, and d atoms X0∪X1, . . . , X0∪
Xd. We refer to any d-dimensional Boolean algebra of sets as simply a B(d).
From the definition, it follows that a B(d) contains 2d elements. It is not un-
common to view a power set as a lattice with inclusion as the relation; under
such an interpretation, the set P(X) of subsets of an n-element set X is the
standard Boolean algebra of sets (which has, by our definition, dimension n).

Definition 1.0.2 Given an n-element set X and positive integer d, define
r(d, n) to be the largest integer so that for every partition of a set X,

P(X) = F1 ∪ F2 ∪ . . . ∪ Fr(d,n),

into r(d, n) color classes, one color class contains a B(d).

In Theorem 4.1.1 we make the observation that r(1, n) = n. The bounds
for r(2, n) are tight up to a constant; in Theorem 4.1.2, using a well known
extremal result for graphs and a statement about Singer sets, we show that for
n sufficiently large,

1√
2
n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2.

For general d, we have Theorem 4.1.3, stating

cn1/2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1))

,

where the lower bound follows from Theorem 4.3.1, a density result, and the
upper bound uses a partition result for certain families of integers.

Definition 1.0.3 Given an n-element set X and a positive integer d, define
b(n, d) to be the maximum size of a family F ⊂ P(X) which does not contain a
B(d).
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Note that a B(1) is simply a pair of sets, one contained in the other. By
Sperner’s theorem (see [39] for but one of the many elegant proofs),

b(n, 1) =
(

n

bn/2c
)
∼ (
√

2/π)n−1/2 · 2n.

Erdős and Kleitman [14] found that there exist constants c1 and c2 so that for
n sufficiently large,

c1n
−1/4 · 2n ≤ b(n, 2) ≤ c2n−1/4 · 2n. (1)

Voigt [49] asked about a general bound for b(n, d); in this paper we show
that for each d ≥ 1 there exist positive constants c1, c2, so that for n sufficiently
large,

c1n
− d

2d+1−2
(1−o(1)) · 2n ≤ b(n, d) ≤ c2n−1/2d · 2n. (2)

The lower bound in (2) appears as Theorem 4.2.1. The upper bound in (2) ap-
pears as Theorem 4.3.1, and is proved probabilistically; an old result (Theorem
2.2.4, due to Erdős) concerning extremal d-partite hypergraphs is used.

The proof of the lower bound given for b(n, d) involves some famous results
(and refinements thereof) regarding of integers and certain sum-sets, which we
present in Section 3. Essentially, we use families of subsets determined only
by their sizes, and these sizes are determined, in part, by families of integers
containing no arithmetic progressions, and by affine cubes, which we now define.

Definition 1.0.4 For d+ 1 positive integers x0, x1, . . . , xd, the collection

H(x0, x1, . . . , xd) =

{
x0 +

∑

i∈I
xi : I ⊆ [d]

}

is called a d-dimensional affine cube, or simply, an affine d-cube.

Hilbert [35] showed that for every r, d, there exists a least number h(d, r)
so that for every coloring χ : [1, h(d, r)] → [1, r], there exists an affine d-cube
monochromatic under χ. Szemerédi [46] (Lemma p(δ, l), p. 93) gave a density
version of Hilbert’s theorem (see also problem 14.12 in [38] for two proofs) and
implicitly showed that if A ⊂ [n] is chosen with at least cn1−21−d

elements, then
A contains an affine d-cube. In [8] it was shown that h(2, r) = (1 + o(1))r2.
Also in [8], it was noted that there exist constants c1 and c2 so that

rc1d ≤ h(d, r) ≤ rcd2 , (3)

where c2 ∼ 2.6 follows from Hilbert’s proof (using Fibonacci numbers). In [32]
bounds (for d > 2) in (3) are improved to

r(1−o(1))(2d−1)/d ≤ h(d, r) ≤ cr2d−1
. (4)
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The upper bound in (4) appears here as Corollary 3.5.1; the lower bound in (4)
is Theorem 3.3.2. In [32] and [33], hypergraphs are also used to give different
proofs of Szemerédi’s density thoerem.

Definition 1.0.5 A d-dimensional uniform Boolean algebra is a Boolean
algebra of sets B = {B0 ∪

⋃
i∈I Bi : I ⊆ [1, d]} (where the Bi’s are pairwise

disjoint) which satisfies |B1| = |B2| = . . . = |Bd|. Define bu(n, d) to be the
maximum size of a family in P([n]) which contains no d-dimensional uniform
Boolean algebra.

In Theorem 4.4.1, we show that for n large enough,

c

no(1)
2n ≤ bu(n, d) ≤ ε · 2n. (5)

Again, the lower bound of (5) is proved by choosing sets according only to their
size, and these sizes are determined by a Behrend set. The main tool used in
the upper bound of (5) is a density version (proved using dynamical systems by
Furstenberg and Katznelson [26]) of the celebrated Hales-Jewett theorem [34].

2 Density results for d-partite hypergraphs

Density results for d-partite hypergraphs have many applications. For ex-
ample, we will use such results in the proof of an upper bound for b(n, d), and
in [32] and [33] they are employed in proving related results for affine d-cubes.
Extremal results for hypergraphs are also of great independent interest. In
this section, we examine some known results and methods and, introducing a
technique which slightly improves some probabilistic ‘constructions’, give new
bounds.

2.1 Notation

A d-uniform hypergraph is a pair G = (V, E) = (V (G), E(G)), with vertex
set V and hyperedge set E ⊂ [V ]d. Note that by this definition, each d-set
from V may occur only once as a hyperedge; that is, we deal only with simple
hypergraphs. An ordinary graph is a 2-uniform hypergraph, with hyperedges
called, simply, edges.

For pairwise disjoint sets X1, X2, . . . , Xd, let

G = (X1, X2, . . . , Xd, E(G))

denote a d-uniform hypergraph on vertex set V (G) = ∪di=1Xi and edge set
E(G) ⊆ [V (G)]d, where for each E ∈ E(G) and each i = 1, . . . , d, |E ∩Xi| = 1
holds. In this case, G is called a d-partite d-uniform hypergraph, and the sets
X1, . . . , Xd are called partite sets.
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Let K(d)(n1, n2, . . . , nd) denote the complete d-partite d-uniform hypergraph
on
∑d
i=1 ni vertices, partitioned into sets of sizes n1, n2 . . . , nd, and having∏d

i=1 ni edges, each edge containing exactly one vertex from each partite set.
(The “(d)” in the notation is not redundant, it depicts the number of vertices
per hyperedge.) The complete d-partite d-uniform hypergraph with two vertices
in each partite set, K(d)(2, 2, . . . , 2), is of particular interest; the graph C4, also
denoted K(2)(2, 2) or K2,2, is such an example.

For any d-uniform hypergraph H, we let ex(n,H) denote the maximum num-
ber of d-hyperedges in a hypergraph on n vertices which does not contain a
copy of H. This number is also called the Turan number, or extremal number
for H. Turan’s theorem gives the extremal numbers for complete graphs, and
the Erdős-Stone theorem gives a good approximation of extremal numbers for
graphs with chromatic number greater than two.

Few non-trivial bounds are known for extremal numbers of graphs which
are 2-chromatic. Erdős and Simonovits [17] showed ex(n,Q3) < cn8/5 (where
Q3 denotes the graph on 8 vertices and 12 edges corresponding to a cube);
also close to our present interests, Erdős and Spencer [18] proved ex(n,Kt,t) ≥
(1/2)n2−2/(t+1). For more references, see any of many good surveys in, for
example, [5], [22], or [44]. In what follows, we will be particularly interested in
extremal numbers ex(n,K(d)(2, 2, . . . , 2)).

2.2 Upper bounds for ex(n,K(d)(2, 2, . . . , 2))

In 1938 Erdős and Klein [11] (see [13]) proved that ex(n,K2,2) = Θ(n3/2),
and in 1966, Erdős, Rényi, and Sós [15] and Brown [7] showed ex(n,K2,2) =
1
2n

3/2 +O(n4/3). We might mention that in 1954, Kővári, Sós, and Turán [37]
proved that ex(n,K2,2) ≤ 1+n+ 1

2n
3/2, so it is interesting to see the “O(n4/3)”

term in a later result.
By what is now a standard argument (for example, see [38]), counting pairs

of vertices in neighborhoods, the following is easily shown.

Lemma 2.2.1 For every n ≥ 4, ex(n,K2,2) ≤ n
4 (1 +

√
4n− 3).

So we see that (1+o(1))1
2n

3/2 edges in an n-vertex graph suffices to produce
a K2,2. If a graph is equibipartite on n vertices, then only (1 + o(1)) 1

2
√

2
n3/2

edges is needed, as we see in the next lemma (whose proof uses the same idea
as used for Lemma 2.2.1).

Lemma 2.2.2 If G is an equibipartite graph on n vertices (n/2 in each
partite set), and |E(G)| > n

4 (1 +
√

2n− 3), then G contains a K2,2.

Proof: Write G = (X1, X2, E), where |X1| = n/2, and let D be the average
degree of vertices in X1 (which is the same as in X2).
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If
∑
x∈X1

(deg(x)
2

)
>
(
n/2

2

)
, one pair of vertices in X2 is in two different

neighborhoods of vertices from X1. By Jensen’s inequality,
∑

x∈X1

(
deg(x)

2

)
>
n

2

(
D

2

)
,

and so it suffices to have

n

2

(
2|E|/n

2

)
>

(
n/2
2

)
(6)

to guarantee a K2,2. Simple calculations shows that |E| > n
4 (1 +

√
2n− 3) is

sufficient to guarantee (6). 2

Increasing slightly the constant 1
2
√

2
from Lemma 2.2.2 guarantees many

copies of K2,2; this can be seen probabilistically, however we choose to show a
double counting argument used by [13] in his proof of Theorem 2.2.4. A similar
technique was used in [33] in a restricted extremal result for K(d)(2, . . . , 2)’s,
which in turn was used to show extremal results for affine d-cubes of integers
(and implicitly, then could be used for Boolean algebras).

Lemma 2.2.3 For any δ > 0, and n ≥ max{4, 1/(4δ2)} if G is an equibi-
partite graph on n vertices and

|E(G)| ≥ (1 + δ)
1
2
n3/2

then G contains
(
n/2
2

)
copies of C4

∼= K2,2.

Proof: Let G = (X1, X2, E) be an equibipartite graph with |X1| = |X2| = a,
where a = n/2 ≥ 1/(8δ2). Assume that |E(G)| ≥ (1 + δ)

√
2a3/2. For any

x ∈ V (G) = X1 ∪X2, deg(x) denotes the degree of x in G; for i, j ∈ V (G), let
deg(i, j) denote the pairwise degree of i and j, that is, the number of common
neighbors to i and j. The number of copies of K(2)(2, 2) ∼= C4 in G is

∑

{i,j}∈[X1]2

(
deg(i, j)

2

)
≥

(
a

2

)(∑

[X1]2

deg(i, j)/
(|X1|

2

)

2

)
(by Jensen’s ineq.),

=
(
a

2

)( 1

(a2)
∑

x∈X2

(deg(x)
2

)

2

)
(counting from X2)

≥
(
a

2

)( a

(a2)
(|E(G)|/|X2|

2

)

2

)
(again by Jensen’s),

=
(
a

2

)( 2
a−1

(
(1+δ)

√
2a

2

)

2

)
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≥
(
a

2

)
,

where the last line follows because a ≥ max{2, 1/(8δ2)}.2
The following theorem due to Erdős was proved by induction, and in a more

general setting (for arbitrary l, not just l = 2 as we state it here, see also [22],
equation (4.2).) This result is a critical tool used in later giving an upper bound
for b(n, d), thereby increasing our interest in studying similar extremal results.

Theorem 2.2.4 (Erdős [13]) For each d and n sufficiently large,

ex(n,K(d)(2, 2, . . . , 2)) ≤ nd− 1
2d−1 .

Examining the inductive step of the proof of Theorem 2.2.4 shows that if
one can somehow improve the upper bound for some particular d, we get an
improvement for every d′ > d thereafter.

Corollary 2.2.5 ([31]) If for some d > 2, f is so that for n sufficiently
large,

ex(n,K(d−1)(2, 2, . . . , 2)) ≤ nd−1−f ,

then
ex(n,K(d)(2, 2, . . . , 2)) ≤ nd−f/2

holds for n sufficiently large.

In particular, it is well known (see, for example, [7]) that ex(n,C4) =
(1+o(1))

2 n3/2, so hopes of actually employing Corollary 2.2.5 are, at present at
least, remote.

2.3 Restricted upper bounds

We now consider a special class of d-partite hypergraphs.

Definition 2.3.1 For positive integers d ≥ 2 and a, let G(d, a) be the class
of d-partite d-uniform hypergraphs G = (X1, X2, . . . , Xd, E(G)) which satisfy
|X1| = a and for each i = 2, . . . , d, |Xi| = a2i−2

( hence |X2| = a as well).
Define p(1, a) =

(
a
2

)
, and for d ≥ 2, define

p(d, a) =
(
a

2

) d∏

i=2

(
a2i−2

2

)
,

the number of ways to pick two vertices from each partite set in a graph from
G(d, a).

The following theorem has a coloring analogue, appearing in [28] (Lemma
5.6), which also yields a density result.
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Theorem 2.3.2 ([33]) For each integer d ≥ 2 and real number ε > 0, there
exists a0 so that for a ≥ a0, and any G ∈ G(d, a), if

|E(G)| ≥ (1 + ε)2d−3/2 · a(2d−1)/2

then G contains p(d−1, a) = Θ

(
a2d−1

2d−1

)
(a→∞) copies of K(d)(2, . . . , 2). Up

to a multiplicative constant, this result is sharp, that is, there exists a constant
c so that for every d ≥ 2, and sufficiently large a, there exists a hypergraph
G ∈ G(d, a) with |E(G)| = ca(2d−1)/2 which is K(d)(2, . . . , 2)-free.

Theorem 2.3.2 is proved by induction with the base case being Lemma 2.2.3.
The sharpness aspect is proved by extending every edge in a K2,2-free bipartite
graph to a hyperedge in every possible way.

2.4 Lower bounds for ex(n,K(d)(2, 2, . . . , 2))

In [13], it was stated that there is a universal constant C so that for any in-
tegers l > 1 and r > 1 and n sufficiently large, ex(n;K(r)(l, . . . , l)) ≥ nr−C/lr−1

.
Unfortunately, the proof for this claim has not been found (cp. [22], p. 259). In
what follows, we examine arguments for lower bounds on this extremal number,
some standard and well known, some new.

For certain choices of n, the (upper) bound in Lemma 2.2.1 is nearly tight,
as was found by Reiman [42]. In [38], (Problem 10.36), a standard proof of the
following is given using polars in projective planes.

Lemma 2.4.1 If n = q2 + q + 1 for some prime power q, then

ex(n,K2,2) > (1/2)(n3/2 − n1/2).

Another proof for a lower bound for ex(n,K2,2) is standard, and a bit sim-
pler, though the constant is different. Briefly, the construction is as follows. Fix
a finite projective plane of order q with points P and lines P. Let n = q2 +q+1
and form the equibipartite graph on 2n vertices, where the points P are in one
part and the lines P are the vertices of the other part; a point is connected to a
line if and only if the point is on the line. In this case, we get a C4-free (regular)
graph with (q2 + q+ 1)(q+ 1) ∼ n3/2 edges on 2n vertices. This shows that the
constant in Lemma 2.2.2 is best possible.

The lower bound in Lemma 2.4.1 only applies for certain values of n (al-
though with some interpolation, a similar statement follows for all n) and it is
not quite equal to the upper bound found in Lemma 2.2.1. Other techniques
were sought for the lower bound (many exact values are known—see [22] for
references—Füredi completing those for n = q2 + q + 1, q a prime power). The
number of C4-free graphs on n vertices with cn3/2 edges is well studied (see [36],
for example).
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A natural choice for a method by which to prove general lower bounds (for
ex(n,K2,2) and other extremal numbers) is the probabilistic method; in this
case, a fairly simple argument may give a more general result however con-
siderably weaker than some known constructions. The following is a popular
probabilistic argument, one we refer to as the “deletion method” (see [12] for
perhaps the first instantiation of this method; see also [18]). In later applica-
tions of the deletion method (for example, Lemma 3.2.5) we only sketch the
proof; the first time we give considerably more detail.

Before we begin, we review two inequalities and some notation. For a random
variableX, we use E(X) to denote the expectation ofX, and Var(X) = E(X2)−
E(X)2 to denote the variance of X. For t > 0, Markov’s inequality (e.g., see
[40]) states that for a non-negative random variable X,

Prob(X ≥ t) < E(X)
t

, (7)

and for a random variable Y ; Chebychev’s inequality is

Prob(|Y − E(Y )| ≥ t) ≤ Var(Y )
t2

. (8)

Lemma 2.4.2 There is a constant c so that for n sufficiently large,

ex(n,K2,2) > cn4/3.

Proof: Let G ∈ Gn,p be a random graph on n vertices where edges are chosen
independently with probability p. Define the random variable X = X(G) to
be the number of copies (not necessarily induced) of C4 in G. The expected
number of copies of C4 in G is

E(X) = 3
(
n

4

)
p4 ∼ n4p4

8
.

For 0 < ε < 1, by Markov’s inequality (7), Prob(X ≥ E(X)
1−ε ) < 1 − ε, and so

Prob(X < 1
1−ε3

(
n
4

)
p4) > ε.

Define the random variable Y = Y (G) = |E(G)|, the number of edges in G.
It is not too difficult to see that Y has a binomial distribution with E(Y ) =

(
n
2

)
p

and variance Var(Y ) =
(
n
2

)
p(1− p). By Chebychev’s inequality (8), for t > 0,

Prob(|Y −
(
n

2

)
p| ≥ t) ≤

(
n
2

)
p(1− p)
t2

,

and so

Prob(Y ≥
(
n

2

)
p− t) > 1−

(
n
2

)
p(1− p)
t2

> 1−
(
n
2

)
p

t2
.

Using t = 1
2

(
n
2

)
p, we have Prob(Y ≥ 1

2

(
n
2

)
p) > 1− 4

(n2)p
.
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If
ε+ 1− 4(

n
2

)
p
> 1, (9)

then there is a graph G with both at least 1
2

(
n
2

)
p edges and at most 1

1−ε3
(
n
4

)
p4

copies of C4
∼= K2,2. Observe that for ε fixed and n sufficiently large, equation

(9) holds whenever n2p → ∞ (as n → ∞). Suppose that ε and p have been
chosen so that equation (9) holds and G is a witness with |E(G)| ≥ 1

2

(
n
2

)
p and

at most 1
1−ε3

(
n
4

)
p4 C4’s. We wish to construct a C4-free G′ from G by deleting

an edge from each C4 in G. If there are half as many C4’s as edges, we have

1
4

(
n

2

)
p =

1
1− ε3

(
n

4

)
p4,

which is satisfied for p = (1 + o(1))(1 − ε)1/3n−2/3. With this choice of p, we
have on the order of n2p/8 = Θ(n4/3) edges remaining after deletion, as claimed
in the statement of the theorem. It remains to observe that with this choice of
p, n2p→∞. 2

2.5 Lower bounds for ex(n,K(3)(2, 2, 2))

We review some methods for proving the lower bound for ex(K(3)(2, 2, 2)),
the first following naturally from Lemma 2.4.1, the second a deletion argument
similar to Lemma 2.4.2, and the third an extension based on affine spaces. Even
though each of the successive results imply the previous, we include them all
here for the record. We believe that each technique may be of independent
value.

The first bound is based on a straightforward observation of Füredi [23] (this
idea was also used in showing the sharpness of the bound in Theorem 2.3.2).

Lemma 2.5.1 There is a constant c so that for n sufficiently large,

ex(n,K(3)(2, 2, 2)) > cn5/2.

Proof: Let X1, X2, X3 be disjoint vertex sets, each with n vertices. We
construct the 3-regular 3-partite hypergraph G = (X1, X2, X3, E) on 3n vertices
and edges E as follows. By Lemma 2.4.1 on vertices X1 ∪ X2 impose a graph
G12 (an ordinary graph) which is C4-free and has cn3/2 edges, (where c > 1 is
a constant independent of n). Now define the edge set of G by

E = {(x1, x2, x3) : (x1, x2) ∈ E(G12), x3 ∈ X3}.
So what we have done is extend every edge of G12 n times to hyperedges con-
taining elements from X3, yielding |E(G)| = n|E(G12)| = cn5/2 edges. 2

One can improve the bound found in Lemma 2.5.1 by imitating the proof of
Lemma 2.4.2, the standard deletion technique. We show this in the first proof
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of the next lemma. In the second proof, a slight variation of this technique is
employed yielding the same bound (up to at most a constant multiple). The
second proof is given because it is the foundation for yet another technique using
affine subspaces.

Lemma 2.5.2 There is a constant c so that for n sufficiently large,

ex(n,K(3)(2, 2, 2)) > cn18/7.

First proof of Lemma 2.5.2: We only outline the calculations; the method
is the deletion method as used in Lemma 2.4.2.

Let G = G(n, p) be a 3-regular hypergraph whose hyperedges are chosen
independently at random with probablity p. The expected number of edges in
G is on the order of n3p.

The expected number of K(3)(2, 2, 2)’s in G is on the order of n6p8. In order
to delete one hyperedge from each copy of K(3)(2, 2, 2), it suffices to have

n6p8 ∼ n3p.

In this case, p ∼ n−3/7. Deleting these edges gives cn18/7 edges remaining. 2

Second proof of Lemma 2.5.2: Let X, Y , Z be disjoint vertex sets, each with
n vertices. We construct the 3-regular 3-partite hypergraph G = (X,Y, Z, E)
on 3n vertices and hyperedges E as follows. For each pair (x, y), x ∈ X, y ∈
Y , let Sxy be a random subset of Z with elements chosen independently with
probability p. Define E ′ = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Sxy}. The expected
number of edges in E ′ is n3p.

We now count the expected number of K(3)(2, 2, 2)’s. For each 4-tuple of
vertices

{x1, x2, y1, y2 : x1, x2 ∈ X, y1, y2 ∈ Y },
the expected number of pairs common to Sx1y1 ∩ Sx1y2 ∩ Sx2y1 ∩ Sx2y2 is

(
n
2

)
p8.

Hence the expected number of K(3)(2, 2, 2)’s is
(
n
2

)2(n
2

)
p8 = Θ(n6p8).

From this point on, we only outline the calculations behind the deletion
method (as in Lemma 2.4.2). Fix a hypergraph with these expected values.
Now from each copy of K(3)(2, 2, 2) delete one hyperedge. In order for this to
be possible,

n6p8 = Θ(n3p)

suffices. In this case, p = Θ(n−3/7), giving cn18/7 edges remaining. 2

To demonstrate a technique using affine subspaces, we use the following well
known lemma (for example, see [47], p. 292).

Lemma 2.5.3 If V is an s-dimensional vector space on ls points, the num-
ber of k-dimensional affine subspaces contained in V is given by the Gaussian
coeffiecient

[
s
k

]

l

=
ls(ls − 1)(ls − l) · · · (ls − lk−1)
lk(lk − 1)(lk − l) · · · (lk − lk−1)

= (1 + o(1))l(s−k)(k+1)

11



as l→∞.

Lemma 2.5.4 There is a constant c so that for n sufficiently large,

ex(n,K(3)(2, 2, 2)) > cn13/5.

Proof: Let X, Y , Z be disjoint vertex sets, each with n vertices. We construct
the 3-regular 3-partite hypergraph G = (X,Y, Z, E) on 3n vertices and edges E
as follows. For the moment, fix integers 2 ≤ r < s and let l = n1/s, and so n = ls.
Let Z = ls, viewed as the elements of the vector space ls = {0, 1, . . . , l − 1}s.

Let R be the collection of r-dimensional affine subspaces of ls. Each element
R ∈ R has lr elements. First we define the hyperedge set E ′, from which we
will delete some hyperedges to yield E . For each x ∈ X, y ∈ Y select at random
Rxy ∈ R

E ′ = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Rxy}.
For the moment, fix two vertices in X and two in Y , and let R1, R2, R3, and
R4 be the four r-spaces thereby determined.

The number of lines (one dimensional affine subspaces) in ls is
(
ls

2

)
/
(
l
2

) ∼
l2s−2 (as l→∞). For a fixed line L ⊂ Z = ls, the probability that L is contained
in one R is the total number of lines in R divided by the total number of lines,
that is l2r−2/l2s−2, and so

Prob [L ⊆ R1 ∩R2 ∩R3 ∩R4] =
(
l2r−2

l2s−2

)4

l2s−2.

Since any two lines intersect in at most one point, any two points from Z deter-
mining a copy of K(3)(2, 2, 2) must come from the same line, and with l points
per line, the expected number of edges contributing to copies of K(3)(2, 2, 2) is

(
n

2

)2

4
(
l2r−2

l2s−2

)4

l2s−2l.

If we delete all of these edges, it suffices that

l4s
(
l2r−2

l2s−2

)4

l2s−2 · l ≤ l2slr

2
. (10)

This implies that 7r− 4s ≤ 1. With r = 3 and s = 5, this inequality is satisfied
and in this case the number of original edges is at least n13/5. The resulting
hypergraph formed by deleting edges then has cn13/5 edges and contains no
copy of K(3)(2, 2, 2). 2

It is interesting to note that in the proof of Lemma 2.5.4, if we instead use
planes in the role of lines, naively one would arrive at

l4s
(
l3r−3

l3s−3

)4

l3s−3 · l2 ≤ l2slr

2
,

12



yielding 11r − 7s ≤ 1, and with r = 2, s = 3, one would hope to obtain n8/3

remaining edges. However, this neglects to take into account that four r-spaces
may intersect in only a line, not just a plane, and in that case, two points from
such a line will determine a K(3)(2, 2, 2) unaccounted for. This idea is not to be
forsaken however.

One can extend proof techniques used in Lemma 2.5.4 to forbidding copies
of K(3)(2, 2, t), where t is large. We only hint at the proof.

Lemma 2.5.5 For every δ > 0 and for t sufficiently large, there is a con-
stant c = c(t, δ) so that for all n sufficiently large,

ex(n,K(3)(2, 2, t)) > cn8/3−δ.

Proof idea: Take some sphere of points in the common intersection of planes,
guaranteeing that the troublesome lines hit at most two points in the intersec-
tion.

2.6 Extensions to ex(n,K(d)(2, 2, . . . , 2))

We can use the standard deletion technique as in Lemmas 2.4.2 and 2.5.2 to
give a lower bound for ex(n,K(d)(2, 2, . . . , 2)).

Lemma 2.6.1 For each d ≥ 3, there exists c = c(d) and n0 = n0(d) so that
for n ≥ n0 sufficiently large,

ex(n,K(d)(2, 2, . . . , 2)) > cn
d− d

2d−1 .

Proof: We only outline the calculations; the proof follows the deletion method
given in Lemma 2.4.2. If we examine a random d-uniform hypergraph G =
G(n, p) on n vertices and d-hyperedges chosen with probability p, the expected
number of copies of K(d)(2, 2, . . . , 2) is of the order of n2dp2d and the expected
number of hyperedges is of the order ndp. Equating these numbers yields p =

n
−d

2d−1 , and hence the desired number of edges. 2

We again apply the affine-space technique (as in Lemma 2.5.4) to d-uniform
hypergraphs. The following is presently (cf. [22]) the best known lower bound
for ex(n,K(d)(2, 2, . . . , 2)), not much of an improvement over that given in
Lemma 2.6.1.

Lemma 2.6.2 For each d ≥ 3, if there exists a (smallest) positive integer s
so that sd−1

2d−1
is an integer, then there exists c = c(d) and n0 = n0(d) so that for

n ≥ n0 sufficiently large,

ex(n,K(d)(2, 2, . . . , 2)) > cn
d− d−1/s

2d−1 ,

13



Proof: For n = ls, and 2 ≤ r < s, duplicate the construction in the proof of
Lemma 2.5.4, but for arbitrary d. Corresponding to (10), we need (counting
edges used in copies of K(d)(2, 2, . . . , 2)),

l2(d−1)s

(
l2r−2

l2s−2

)2d−1

· l2s−2l ∼ l(d−1)slr. (11)

For (11) to hold, it suffices to have

r =
s(d+ 1− 2ds)− 1

1− 2d
,

which yields

l
s(d−1+ d+1−2d

1−2d
)−1 = n

d− d−1/s
2d−1

edges. 2.

Notice that if the s in the statement of Lemma 2.6.2 does not exist, then we
can let s be arbitrarily large, say kl for some constant k, and then since l−1/s

can be bounded by a constant, we get the bound stated in Lemma 2.6.1. In the
case d = 3, s = 5 was found to satisfy the condition in Lemma 2.6.2. For d = 4,
the assignments s = 4 and r = 3 work for the lower bound, and together with
the upper bound obtained from Erdős’ Theorem 2.2.4, we have:

Corollary 2.6.3 There is a constant c so that for n sufficiently large,

n15/4 ≤ ex(n,K(4)(2, 2, 2, 2) ≤ cn31/8.

One obvious condition is that if d is a power of 2, then the desired s in
Lemma 2.6.2 exists. Perhaps the result can be restated with s = 4 or s = 3,
but even so, one obtains only a minimal improvement (for large d) over Lemma
2.6.1, still far from the upper bound.

3 Integers and cubes

3.1 Sidon sets

A Sidon set is a collection of integers whose pairwise sums a+ b, (a 6= b) are
all distinct; these are also referred to as B2-sets. In the proof of the upper bound
in Theorem 4.1.2, we use the following result due to Singer [45] to produce a
partition into Sidon sets. See also [19] for a simple construction of a single Sidon
set, but with different bounds.

Theorem 3.1.1 (Singer) Let m be a prime power. There exist m+1 integers

0 ≤ x1 < x2 . . . < xm+1 < m2 +m+ 1

so that the m2 +m differences xi − xj , 1 ≤ i 6= j ≤ m+ 1, are distinct modulo
m2 +m+ 1.

14



For example, with m = 4, the integers 0, 1, 6, 8, and 18 have distinct
differences modulo 21.

0 1 6 8 18
0 20 15 13 3
1 1 16 14 4
6 6 5 19 9
8 8 7 2 11

18 18 17 12 10

3.2 Affine cubes

As with the Boolean algebras, we will be concerned with both coloring and
density results for Hilbert sets (as defined in the introduction), also called affine
d-cubes. In what follows, r, d, and x1, . . . , xd are positive integers and x0 is
non-negative. Many results here are contained in [32] and [33], and so appear
without proof.

Theorem 3.2.1 (Hilbert [35]) For every r, d, there exists a least num-
ber h(d, r) so that for every coloring χ : [h(d, r)] → [r], there exists an H(d)
monochromatic under χ.

Recall that, by definition, for any H(d) = H(x0, x1, . . . , xd), |H(d)| ≤ 2d

trivially holds, and that the H(d)-set is full if |H(d)| = 2d, that is, if all the
sums defining H(d) are distinct.

The following has a simple proof, but is essential in showing known bounds
for partitions of [n] into sets not containing affine d-cubes.

Lemma 3.2.2 ([32]) If a finite collection X of distinct non-negative inte-
gers does not contain any full affine d-cubes and does not contain any arithmetic
progressions of length three, then X does not contain any affine d-cubes.

Apart from the original source, one can find the proof of the following in
[28], (lower bound of their Theorem 6.6).

Theorem 3.2.3 (Behrend [4]) There exists a constant c so that for m
sufficiently large, there exists B ⊂ [m] not containing any arithmetic progres-
sions of length three, and satisfying

|B| ≥ me−c
√

lnm = m1−o(1).

A modification of the proof of Behrend’s Theorem yields the following par-
tition result.

Theorem 3.2.4 ([32]) For sufficiently large n, there exists q < e3
√

lnn and
a partition [n] = X1 ∪ . . . ∪Xq so that each Xi does not contain an arithmetic
progression of length 3 and |Xi| ≤ n/eln 2

√
lnn.
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The proof of the following result employs the standard deletion technique
using the probabilistic method (as in Lemma 2.4.2).

Lemma 3.2.5 ([32]) For each d, and every set X of positive integers, there
exists A ⊂ X not containing a full affine d-cubes and

|A| ≥ 1
8
|X|1− d

2d−1 .

The following lemma is a combination of Theorem 3.2.3 and a special case
of Lemma 3.2.5, stated separately for later use in the proof of Theorem 4.2.1.

Lemma 3.2.6 For every d there is a constant c so that for every k and
every m, there is a set S ⊂ [k + 1, k +m] containing no full affine d-cubes nor
containing any arithmetic progression of length 3, yet has at least

|S| ≥ cm1− d

2d−1
(1−o(1))

elements.

Proof: By Theorem 3.2.3, let B ⊂ [1,m] containing no arithmetic progression,
and with

|B| ≥ me−
√

lnm = m1−o(1).

The translation of B, Bk = {b+ k : b ∈ B} also has no arithmetic progression.
With Bk playing the role of X, Lemma 3.2.5 yields S as desired. 2

3.3 Lower coloring bound for affine d-cubes

Lemma 3.3.1 ([32]) For each d ≥ 2, there exists a constant c so that for
any sufficiently large set X of positive integers, there exists a partition X =
A0 ∪ A1 ∪ . . . ∪ Ar into r + 1 ≤ c|X| d

2d−1 colors so that no color class contains
a full affine d-cube.

The two partition results, Theorem 3.2.4 and Lemma 3.3.1, together with
Lemma 3.2.2 give a coloring result for affine d-cubes.

Theorem 3.3.2 ([32]) For each d ≥ 2, and r sufficiently large,

r
2d−1
d (1−o(1)) ≤ h(d, r).

3.4 Density for affine d-cubes—upper bounds

Szemerédi [46] (Lemma p(δ, l), p. 93) gave a density version of Hilbert’s
theorem.
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Theorem 3.4.1 (Szemerédi [46]) For each d there exists a constant c so
that for n sufficiently large, if A ⊆ [1, n] satisfies |A| ≥ n1− 1

2d , then A contains
an affine d-cube.

In [32] and [33], other proofs of Theorem 3.4.1 have been given using hyper-
graphs. In [33], each edge of a graph G ∈ G(d, a) (recall Definition 2.3.1) were
related to an integer, thereby deriving a density result for full affine d-cubes,
and so for affine d-cubes in general.

Theorem 3.4.2 ([33]) For each integer d ≥ 2, for every real number ε > 0,
there exists an n0 so that for every n ≥ n0, if A ⊂ [1, n] satisfies

|A| ≥ (1 + ε)2d−3/2n1−1/2d(1 + o(1)),

then A contains (1− o(1))n2/2d−1 full affine d-cubes.

3.5 Upper coloring bound for affine d-cubes

An upper bound for the number h(d, r) is the trivial one obtained by the
associated density result, say Theorem 3.4.1 or 3.4.2.

Corollary 3.5.1 ([32]) For every d ≥ 2, there exists a constant c so that

h(d, r) ≤ cr2d .

4 Boolean Algebras

4.1 Bounds on r(d, n); partition results

Theorem 4.1.1 For any positive integer n, r(1, n) = n.

Proof of Theorem 4.1.1: Coloring subsets of [n] according to the n + 1
different set sizes shows that r(1, n) < n+ 1. An easy proof by induction yields
r(1, n) ≥ n. Let χ : P([1, n+1])→ [1, n+1] be given. Without loss of generality,
assume that χ([1, n+ 1]) = n+ 1. If any other set also received the color n+ 1,
then, since that set must be contained in [1, n + 1], we have a monochromatic
B(1); if not, then every set in P([1, n]) receives one of at most n colors, in which
case the inductive hypothesis yields a monochromatic B(1). 2

Theorem 4.1.2 For n sufficiently large,

1√
2
n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2.

17



Before giving the proof of Theorem 4.1.2, we briefly mention what we need
to show. To prove the lower bound, we need to demonstrate that for every
coloring with fewer than n1/2/

√
2 colors, one color class will contain a B(2).

This will be done with a surprisingly simple trick, appearing (in some sense)
first in [14], again in [16] (as referred to in [3]).

To see the upper bound, it suffices to give a (1 + o(1))n1/2-coloring which
‘kills’ every B(2). This will be done in a manner very similar to that used in [9]
(or summarized in [27]).
Proof of lower bound in Theorem 4.1.2: Let ε > 0 and n ≥ n(ε) and fix a
coloring

P([n]) = F1 ∪ F2 ∪ . . . ∪ Fr,
where r ≤ n1/2√

2(1+ε)
.

Without loss of generality, suppose that n is even, and consider only the
n2/4 sets

S(i, j) = {1, 2, . . . , i} ∪ {n/2 + 1, n/2 + 2, . . . , n/2 + j},

where 1 ≤ i, j ≤ n/2. By the pigeon-hole principle, there is one family Fk
containing at least

n2/4
n1/2√
2(1+ε)

=
1

2
√

2
(1 + ε)n3/2

sets S(i, j). Consider the bipartite graph G = (V1, V2, E), where

V1 = {[1], [2], . . . , [n/2]},

V2 = {{n/2 + 1}, . . . , [n/2 + 1, n]},
and ([i], [n/2, n/2 + j]) ∈ E , if and only if S(i, j) ∈ Fk. By Lemma 2.2.2, since

|E| = |Fk| ≥ 1
2
√

2
(1 + ε)n3/2,

G contains a rectangle (copy of C4), determined by say, S(i, j), S(i, j′), S(i′, j)
and S(i′, j′). These sets clearly form a B(2). 2

The proof of the upper bound in Theorem 4.1.2 uses a construction dupli-
cating those employed in [9] and [8]. One property of a 2-dimensional Boolean
algebra

B(2) = {X0, X0 +X1, X0 +X2, X0 +X1 +X2} = {A,B,C,D}

we will use is that since B\A = X1 = D\C, (or C\A = X2 = D\B), set sizes
of differences of sets (in the Boolean algebra) are repeated.
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Proof of upper bound in Theorem 4.1.2: Let m be a prime power and let
0 ≤ x1 < x2 . . . < xm+1 < m2 + m + 1 be as in Singer’s theorem. For each
j = 1, . . . ,m+ 1, define

Yj = {xi − xj (mod m2 +m+ 1) : 1 ≤ i ≤ m+ 1, i 6= j} ⊂ [1,m2 +m],

and put Y0 = {0}. A simple calculation shows that if {a, b, c, d} ⊂ Yj for some
j, and a+ b = c+ d, then {a, b} = {c, d}. Furthermore, it is not too difficult to
see that the Yj ’s partition the set [0,m2 +m] and for each j 6= 0, |Yj | = m.

For each j = 0, 1, 2, . . . ,m+ 1, define

Sj = {X ⊂ [1,m2 +m] : |X| ∈ Yj}.

This defines a decomposition of the power set of [1,m2 +m] into m+ 2 classes.
If for some j, there were sets A,B,C,D ∈ Sj with |A| + |B| = |C| + |D|, then
{|A|, |B|} = {|C|, |D|}, and so these four sets do not form a B(2) (cf. [14]).

Now for a given n, let m = m(n) be the smallest prime power so that n ≤
m2+m. Since the ratio between consecutive prime powers tends to one, (as n→
∞) the minimum number of color classes required to prevent a monochromatic
B(2) is at most

m+ 2 = (1 + o(1))
√
m2 +m = (1 + o(1))

√
n. 2

Theorem 4.1.3 For d > 2, and n sufficiently large,

cn1/2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1))

.

Proof: If we color P([n]) with fewer than cn1/2d colors, then one color class
contains c1n−1/2d elements, and so by the density result, Theorem 4.3.1, one
class contains a B(d).

For a number r, to prove that r(d, n) < r, we need to produce a partition
P([n]) = F1 ∪ . . . ∪ Fr so that each Fi is B(d)-free. It follows from the proof
of Theorem 3.3.2 that there exists a partition [n] = S1 ∪ S2 ∪ . . . ∪ Sr, with

r = n
d

2d−1
(1+o(1), each class containing no full affine d-cube, nor any arithmetic

progressions. For each i = 1, . . . , d, put

Fi = {F ⊂ [n] : |F | ∈ Si}.

Suppose, in hopes of a contradiction, that B ⊂ Fi is a d-dimensional Boolean
algebra, that is, there exist pairwise disjoint sets B0, B1, . . . , Bd, so that

B =

{
B0 ∪

⋃

i∈I
Bi : I ⊂ [1, d]

}
,
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For each i = 0, 1, . . . , d, put |Bi| = xi. If all of the sets in B are different sizes,
then the set

{|B| : B ∈ B} =

{
x0 +

∑

i∈I
xi : I ⊂ [1, d]

}
⊂ Si

is a full affine d-cube, a contradiction.
So there must be two elements of B with the same size. Suppose that C,D ∈

B satisfy |C ∩D| = a and |C| = |D| = a+ b. Since B is a Boolean algebra, the
sets C ∩D, C, and C ∪ D are contained in B, but in this case, the respective
sizes, (which are members of Si) a, a+ b, a+ 2b form an arithmetic progression,
another contradiction.

We conclude that each Fi can not contain any d-dimensional Boolean alge-
bra, ending the proof. 2

4.2 Lower bound for b(n, d), a density result

Theorem 4.2.1 For each d > 2, there exists c1 = c1(d) so that for n suffi-
ciently large,

c12nn−
d

2d+1−2
(1−o(1)) ≤ b(n, d).

To streamline the proof of the theorem, we provide the following simple
estimate regarding the number of subsets of a set which are close to the average
size.

Lemma 4.2.2 For n sufficiently large and each i satisfying −√n/2 ≤ i ≤√
n/2, (

n

n/2 + i

)
≥ 1√

e

(
n

n/2

)
.

Proof: It suffices to show the result for i =
√
n/2, which we shall assume is an

integer (as well as n/2).
(

n
n/2−√n/2

)
(
n
n/2

) =

√
n/2−1∏

j=0

n/2− j
n/2 +

√
n/2− j

=

√
n/2−1∏

j=0

(
1−

√
n

n+
√
n− 2j

)

≥
(

1− 1√
n

)√n/2

≥ e
−1/
√
n

1−1/
√
n

√
n

2

> e−1/2,
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where the penultimate inequality follows from 1− x ≥ e−x/(1−x). 2

Proof of Theorem 4.2.1: Fix n and let X be a set of n elements. We will
construct a large family F of subsets of X which contains no d-dimensional
algebra.

Applying Lemma 3.2.6 with m =
√
n and k = n

2 −
√
n

2 − 1, let

S ⊂
[
n

2
−
√
n

2
,
n

2
+
√
n

2

]

be a collection of
|S| = n

1
2− d

2d+1−2
(1−o(1))

integers that contains no full H(d) and no arithmetic progression of length three.
Define

F = {Y ⊂ X : |Y | ∈ S}.
Calculating the size of F ,

|F| =
∑

s∈S

(
n

s

)

> |S|e−1/2

(
n

n/2

)
(by Lemma 4.2.2)

∼ |S| 1√
πen

2n

= c2nn−
d

2d+1−2
(1−o(1))

.

So F contains the desired number of elements; the fact that F does not contain
a d-dimensional Boolean algebra follows as in the proof of the upper bound in
Theorem 4.1.3. 2

4.3 Upper bound for b(n, d)

In [43], Rödl proved a weak version of the following density result; this proof
is based on similar ideas.

Theorem 4.3.1 For each d ≥ 1 there exists a constant c2 so that

b(n, d) ≤ c2n−1/2d · 2n.
First we give a preparatory discussion of chains in Boolean lattices, then

give the proof of Theorem 4.3.1 which relies both on these notions and a result
from Section 2 on hypergraphs.

Let Y be a set of t vertices. A collection C ⊆ P(Y ) of subsets of Y is a chain
if and only if for every A,B ∈ C, either A ⊂ B or B ⊂ A. A chain C ⊆ P(Y ) is
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symmetric if for every C ∈ C there exists C ′ ∈ C so that {|C|, |C ′|} = {dt/2e+
i, bt/2c− i} for some i ≥ 0. A chain is convex if whenever A ⊂ B ⊂ C and both
A and C are in the chain, then so is B.

There are a number of methods by which a t-dimensional Boolean lattice
can be partitioned into

(
t
bt/2c

)} disjoint symmetric convex chains. One proof
is a fairly easy by induction, likely due to de Bruin, known since the early
1950’s. In [1] (or [2], p. 439), Aigner uses “lexicographic matchings”, duplicating
that of the so-called “upper-lower neighbor construction” (see for example, [2],
p. 436). In [29], (or see [30], p. 30) a construction by Greene and Kleitman called
“parenthesization” gives an explicit construction of such partition. The problem
of partitioning a linear lattice (the lattice of subfields of a finite dimensional
field) into symmetric chains has only recently been solved by Vogt and Voigt
[48].

Let C = {C1, C2, . . . , C( t
bt/2c)} be a decomposition of P(Y ) into disjoint sym-

metric convex chains, and let C>2i ⊂ C denote the subcollection of those chains
having length greater than 2i.

Since each chain C ∈ C>2i contains a different set with bt/2c − i vertices, it
follows that

|C>2i| =
(

t

bt/2c − i
)
.

For any permutation π : Y → Y of the vertices of Y and for any chain
C ∈ C, the collection

π(C) = {π(C) : C ∈ C}
is also a chain, so

π(C) = {π(C) : C ∈ C}
is also a symmetric chain decomposition of P(Y ), with π(C>2i) ⊂ π(C).

Lemma 4.3.2 Let Y be a set of t elements. Fix D ⊂ Y and let

C = {C1, C2, . . . , C( t
bt/2c)}

be a fixed decomposition of the power set P(Y ) into disjoint symmetric convex
chains. If π : Y → Y is a permutation chosen randomly from the set of t!
permutations of Y , then

prob(D ∈ π(C) for some C ∈ C>2i) >
(

1− 2i+ 2
t

)i
.

Proof: If |D| ≤ bt/2c − i or |D| ≥ bt/2c + i, then since π(∪C>2i) contains all
sets of these sizes, then D ∈ π(C) for some C ∈ C>2i, that is, the probability is
1.
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Now fix D ⊂ Y with bt/2c− i < |D| < bt/2c+ i. Set S = ∪C>2i∩ [Y ]|D|. Let
π : Y → Y be a random permutation. For a fixed S ⊂ Y chosen with |S| = |D|,

Prob(π−1(D) = S) =
|D|!(t− |D|!)

t!
=

1(
t
|D|
) .

Hence,

Prob(D ∈ π(S)) = Prob(π−1(D) ∈ S)

=
∑

S∈S
Prob(π−1(D) = S)

=
|S|(
t
|D|
)

=
|C>2i|(

t
|D|
)

≥
(

t
bt/2c−i

)
(

t
bt/2c

)

=
i−1∏

j=0

bt/2c − j
dt/2e+ i− j

≥
i−1∏

j=0

t/2− 1/2− j
t/2 + 1/2 + i− j

≥
i−1∏

j=0

(
1− i+ 1

t/2 + 1/2 + i− j
)

>

(
1− 2i+ 2

t

)i
. 2

The following fact follows from a simple averaging argument; we omit the
proof.

Lemma 4.3.3 Let H = (V1, . . . , Vd, E(H)) be a given d-partite d-uniform
hypergraph and let v ≤ min1≤i≤d{|Vi|}. For each i = 1, . . . , d, there exist vertex
sets Wi ⊆ Vi, |Wi| = v, so that the the subgraph H ′ induced by ∪di=1Wi has edge
density at least that of H, that is,

|E(H ′)|
vd

≥ |E(H)|
|V1| · . . . · |Vd| .
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We are now prepared to prove an upper bound for b(n, d).

Proof of Theorem 4.3.1: Let X be a set of n elements and fix a positive
integer d. Let F ⊂ P(X) satisfy

|F| ≥ c1n−1/2d2n, (12)

where, with c from Theorem 2.2.4,

c1 = c · 10d2−1/2d−1
dd−1/2d . (13)

We will show that F contains a Boolean algebra of dimension d.
Partition X = X1 ∪X2 ∪ . . .∪Xd into d sets, each with size bn/dc ≤ |Xj | ≤

dn/de. For each j = 1, . . . d, fix Cj , a symmetric chain decomposition of P(Xj);
for i to be determined later, let C>2i

j ⊆ Cj be the subcollection of those chains
longer than 2i. For each j = 1, . . . , d let πj : Xj → Xj denote a permutation
of Xj chosen randomly from the collection of all |Xj |! permutations on Xj (the
permutations π1, π2, . . . , πd are chosen independently). Let Fπ1,...,πd ⊂ F be a
random subset of F defined by

Fπ1,...,πd = {F ∈ F : ∀j = 1, . . . , d, ∃D(j) ∈ πj(C>2i
j ) with F ∩Xj ∈ D(j)}.

(14)
By Lemma 4.3.2, for any F ∈ F ,

prob (F ∈ Fπ1,...,πd) >
d∏

j=1

(
1− 2i+ 2

|Xj |
)i
. (15)

Fix i = b
√
n/dc, sufficient for our purpose in what follows. Then for sufficiently

large n, as |Xj | ≥ bn/dc, the right hand side of (15) can be further bounded
from below by

(
1− 2

√
bn/dc+ 2
bn/dc

)b√n/dcd
>

(
1− 2.1√

n/d

)(
√
n/d)d

>

(
1
e2.1

)d
> (.1)d.

Hence the expected number of sets in Fπ1,...,πd is

E(|Fπ1,...,πd |) > (.1)d|F|. (16)

Fix a choice of π̂1, . . . , π̂d for which (16) is realized. For each j = 1, . . . , d,
set Dj = π̂j(C>2i

j ), the family of disjoint chains in Xj longer than 2i, and write

Dj =
{
Dj,kj : 1 ≤ kj ≤

( |Xj |
b|Xj |/2c − i

)}
.

24



Put G = Fπ̂1,...,π̂d . Note that by (14) and (16),

G = {F ∈ F : ∀j = 1, . . . , d, ∃D(j) ∈ Dj with F ∩Xj ∈ D(j)},
and

|G| > (.1)d|F|. (17)

For each choice of k1, . . . , kd (the ki’s not necessarily distinct), define the set
system

D1,k1 ⊗ · · · ⊗ Dd,kd = {∪dj=1Dj,kj : Dj,kj ∈ Dj,kj},
and also define

D =
⋃

k1,,...,kd

(D1,k1 ⊗ · · · ⊗ Dd,kd),

where now we have G = F ∩ D. Also for each j = 1, . . . , d, set sj = | ∪Dj | the
number of sets in chains in Dj . Furthermore, put

Gk1,...,kd = F ∩ (D1,k1 ⊗ · · · ⊗ Dd,kd).

We observe that by (14) and (17),

|G| =
∣∣∣∣∣∣
⋃

k1,...,kd

Gk1,...,kd

∣∣∣∣∣∣
= |F ∩ D| > (.1)d|F|.

Since ∑

k1,...,kd

|D1,k1 | · · · |Dd,kd | = s1 · · · sd < 2n,

we infer that there is a choice of k̂1, . . . , k̂d so that

|Gk̂1,...,k̂d
|

|D1,k̂1
| · · · |Dd,k̂d |

≥ |G|
s1 · · · sd >

(.1)d|F|
2n

. (18)

Using (12), we obtain from (18),

|Gk̂1,...,k̂d
| > c1(.1)d · n−1/2d |D1,k̂1

| · · · |Dd,k̂d |. (19)

By Lemma 4.3.3, for each j = 1, . . . , d, choose D∗
j,k̂j
⊂ Dj,k̂j with |D∗

j,k̂j
| =

2b
√
n/dc so that for

G∗
k̂1,...,k̂d

= F ∩ (D∗
1,k̂1
⊗ · · · ⊗ D∗

d,k̂d
),

the corresponding inequality to (19) holds, namely,

|G∗
k̂1,...,k̂d

| > c1(.1)d · n−1/2d |D∗
1,k̂1
| · · · |D∗

d,k̂d
|

= c1(.1)d · n−1/2d · (2b
√
n/dc)d.
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For m = d · 2b
√
n/dc, then n ≥ (m/2)2 · 1/d, and hence

|G∗
k̂1,...,k̂d

| > c1(.1)d
((m

2

)2 1
d

)−1/2d(m
d

)d

= c1(.1)d21/2d−1
d−d+2−dmd−1/2d−1

. (20)

By the choice of c1, (13) and (20) yield

|G∗
k̂1,...,k̂d

| > c2 ·md−1/2d−1
. (21)

For each j = 1, . . . , d consider Yj = D∗
j,k̂j

as a vertex set, vertices being
subsets of Xj in the chain D∗

j,k̂j
. Using the d-partite d-uniform hypergraph

H = (Y1, . . . , Yd,G∗k̂1,...,k̂d
),

then Theorem 2.2.4 (with d ·2b
√
n/dc as the number of vertices) and (21) imply

that there is a copy of K(d)(2, 2, . . . , 2) in H. That is, for each j = 1, . . . , d,
there are A0

j , A
1
j ∈ D∗j,k̂j with A0

j 6= A1
j , say A0

j ⊂ A1
j , so that for any choice of

(δ1, . . . , δd) ∈ {0, 1}d,

Aδ11 ∪ . . . ∪Aδdd ∈ G∗k̂1,...,k̂d
⊂ F .

In this case,
{Aδ11 ∪ . . . ∪Aδdd : (δ1, . . . , δd) ∈ {0, 1}d}

is the desired d-dimensional Boolean algebra (cf. [28], Lemma 5.7) (with meet
(A0

1 ∪ . . . ∪A0
d) and join (A1

1 ∪ . . . ∪A1
d)) completing the proof. 2

4.4 Uniform Boolean algebras

Theorem 4.4.1 For any fixed d, ε > 0, there exists n0 and a constant c so
that for every n ≥ n0,

c

no(1)
2n ≤ bu(n, d) ≤ ε · 2n.

By Theorem 4.3.1, if a subset of P([n]) is chosen with cn−1/2d2n elements,
then this subset contains a d-dimensional Boolean algebra. In this section, we
show that (for n sufficiently large), if a subset of P([n]) is chosen with ε · 2n
elements, then it contains a d-dimensional uniform Boolean algebra. The main
tool used here is a density version of the Hales-Jewett theorem, which we now
briefly describe.

Let A = {a1, a2, . . . , at} be an alphabet of t distinct letters. Let Am = {f :
[m]→ A} denote the set of words f = (f(1), f(2), . . . , f(m)) of length m formed
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by letters from A. A collection L = {g1, . . . , gt} ⊂ Am is a combinatorial line if
there exists a partition of the coordinates [m] = F ∪M [F-ixed and M-oving] so
that for every gp, gq ∈ L,

gp(i) = gq(i) for each i ∈ F , and

gp(j) = ap for each j ∈M .

A density version of the Hales-Jewett theorem [34] was proved by Furstenburg
and Katznelson [26] (or see [25] for survey paper):

Theorem 4.4.2 For any ε > 0 and any alphabet A, |A| = t, there exists
m0 so that for m ≥ m0, if S ⊂ Am satisfies |S| ≥ εtm, then S contains a
combinatorial line.

Proof of upper bound in Theorem 4.4.1: Put

A = P([d]) = {∅, {1}, . . . , {d}, {1, 2}, . . . , {1, 2, . . . , d}},
t = 2d = |A|, and without loss, assume that m = n/d is an integer. Any
word from Am has the form f = (S1, . . . , Sm), where for each i = 1, . . . ,m,
Si ⊂ [d]. We will use special notation to describe subsets of [n] = [md]. For
each i = 1, . . . ,m, let [d]i = {1i, 2i, . . . , di} be a copy of [d]; write

[n] = [md] = ∪mi=1[d]i,

the union of m disjoint copies of [d]. Consider the bijection

ψ : Am → P(md)

defined by
ψ((S1, . . . , Sm)) = ∪mi=1{si : s ∈ Si}.

For example, with d = 2, m = 6 and f = (∅, {2}, {1, 2}, ∅, {2}, {1}), we have

ψ(f) = {22, 13, 23, 25, 16}.
Now fix ε > 0 and d and let m be so large that Theorem 4.4.2 applies, and

let L = {f1, f2, . . . , ft} be a combinatorial line in Am with fixed coordinates
F ⊂ [m] and moving coordinates M ⊂ [m]. We claim that the family

ψ(L) = {ψ(fj) : j = 1, . . . , t}
is a d-dimensional uniform Boolean algebra.

Let B0 be the union of those subsets of [d]i’s determined by the fixed coor-
dinates; to be precise, for each i = 1, . . . ,m, put f1(i) = Si and

B0 =
⋃

i∈F
φ(f1(i)) =

⋃

i∈F
{si : s ∈ Si}.
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Thus, B0 can be interpreted as ψ(f1) provided f1 is chosen so that f1(j) = ∅
(or ∅j) for each j ∈M . For each j = 1, 2, . . . , d, put

Bj = {ji : i ∈M}.

Clearly |B1| = |B2| = . . . = |Bd| = |M |, and all the Bj ’s are disjoint. Now, since
for any set J ⊂ [d], there is a word f ∈ L so that for every i ∈M , f(i) = J , we
see that for each J ⊂ [1, d],

B0 ∪
⋃

j∈J
Bj ∈ ψ(L). 2

4.5 Lower bound for bu(n, d)

Proof of lower bound in Theorem 4.4.1: Essentially, one duplicates the
proof of Theorem 4.2.1, except without mention of the Hilbert set.

Let S ⊂ [n2 −
√
n

2 , n2 +
√
n

2 ] which contains no arithmetic progression of
length 3 and is as large as possible. By Behrend’s theorem (Theorem 3.2.3,
using m =

√
n, and then translating the set B by n

2 −
√
n

2 − 1), we can have
|S| = (n1/2)1−o(1) = n1/2−o(1). Defining S = {X ⊂ [n] : |X| ∈ S},

|S| ≥
(

n

n/2−√n
)
|S| ∼ c 2n√

n
|S| = c

2n

no(1)
.

It is now not difficult to see that S contains no d-dimensional uniform
Boolean algebra. 2

5 Conclusion

One more observation with respect to Lemma 2.6.1 may be in order. The
bound in Lemma 2.6.1 is similar to that of one in Theorem 4.2.1, so it may be
reasonable to conclude a (so far inscrutable) relationship between lower bounds
for ex(n,K(d)(2, 2, . . . , 2)) and b(n, d)—after all, upper bounds are analogously
similar, and one is used to prove the other (see the proof of Theorem 4.3.1).
Efforts to find the putative correspondence have failed as of yet.

If one can improve a known bound on ex(n,K(d)(2, 2, . . . , 2)) for some d > 2,
then one immediately improves other results in this paper (e.g., Theorem 4.3.1).
In the proof of Theorem 3.4.2, (the variation of Szemeredi’s density theorem
for cubes) Theorem 2.3.2 was employed. A much simpler proof using instead
Theorem 2.2.4, also works, however yielding a weaker result. It may be that
Theorem 4.3.1 can be improved by applying Theorem 3.4.2 rather than Theorem
2.2.4 (preliminary calculations look hopeful, yet imposing).

There are many fields of study closely related to the questions studied in
this paper. One could ask extremal questions for families of sets forbidding only
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certain types of substructures in a Boolean algebra, as in union-free families;
instead of investigating these here, we refer the reader to [3] and [20] for an
introduction and further references. We may also consider the work here as
one kind of extension of Sperner’s Lemma; many other interesting extensions
of Sperner’s Lemma have been made in similar directions, for example, [21],
[24] and [10]. Another perspective on this work may be taken from the point
of hypercubes and extremal questions thereof; see [6] for recent references and
results.

For comparison and contrast purposes, we list some of the bounds mentioned
in this paper. For d = 2:

(1− o(1))
1

2n1/2
≤ ex(n,K2,2)

n2
≤ (1 + o(1))

1
2n1/2

;

(1− o(1))r2 ≤ h(2, r) ≤ (1 + o(1))r2;

1√
2
n1/2 ≤ r(2, n) ≤ (1 + o(1))n1/2;

c1n
−1/4 ≤ b(n, 2)

2n
≤ c2n−1/4.

For d ≥ 3:

c

n
d

2d−1

≤ ex(n,K(d)(2, 2, . . . , 2))
nd

≤ 1

n
1

2d−1
;

r(1−o(1)) 2d−1
d ≤ h(d, r) ≤ cr2d−1

;

cn
1

2d ≤ r(d, n) ≤ n d

2d−1
(1+o(1));

c1

n
d

2d+1−2
(1−o(1))

≤ b(n, d)
2n

≤ c2

n1/2d
.
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