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1. Motivations

The following are some basic questions in insurance mathematics:

• how to model the claim size distribution?

– subexponential distribution class

• how to model discounted aggregate claims?

– constant force of interest

• how to describe the tail behavior of aggregate claims?

– value at risk, expected shortfall, etc.
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2. Model Description
Assume that there is a constant force of interest r > 0. We model discounted
aggregate claims as the stochastic process

Dr(t) =
∞∑

k=1

Xke
−rτk1(τk≤t), t ≥ 0, (1)

in which we make the following standard assumptions:

• X1, X2, . . ., are i.i.d. nonnegative random variables with distribution F

representing claim sizes;

• 0 < τ1 < τ2 < · · · are claim arrival times constituting a renewal counting
process

Nt = #{k = 1, 2, . . . : τk ≤ t}, t ≥ 0,

with renewal function λt = ENt;

• the sequences {X1, X2, . . .} and {τ1, τ2, · · · } are mutually independent.
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3. Subexponentiality
Definition: A distribution F on [0,∞) is said to be subexponential, denoted
by F ∈ S , if

F 2∗(x) ∼ 2F (x), x →∞.

An important property of subexponentiality:
It holds for all n ≥ 2 that

Pr

(
n∑

k=1

Xk > x

)
∼ Pr

(
max
1≤k≤n

Xk > x

)
, x →∞.

This reveals an interesting phenomenon of subexponentiality that the tail of the
maximum dominates that of the sum. It explains the relevance of subexponen-
tiality in modeling heavy-tailed distributions.
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Some Examples in the Class S
(F = distribution, f = density)

• Lognormal: for −∞ < µ < ∞ and σ > 0,

f(x; µ, σ2) =
1√

2πσx
exp{−(ln x− µ)2/(2σ2)};

• Pareto: for α > 0, κ > 0,

F (x) =

(
κ

κ + x

)α

;

• Burr: for α > 0, κ > 0, τ > 0,

F (x) =

(
κ

κ + xτ

)α

;
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• Benktander-type I: for α > 0, β > 0,

F (x) = (1 + 2(β/α) ln x) exp{−β(ln x)2 − (α + 1) ln x};

• Benktander-type II: for α > 0, 0 < β < 1,

F (x) = eα/βx−(1−β) exp{−αxβ/β};

• Weibull: for c > 0, 0 < τ < 1,

F (x) = exp{−cxτ};

• Loggamma: for α > 0, β > 0,

f(x) =
αβ

Γ(β)
(ln x)β−1x−α−1.
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4. Main Results

Notation: Denote Λ = {t : λt > 0} = {t : Pr (τ1 ≤ t) > 0}.

Theorem 1 If F ∈ S , then the relation

Pr (Dr(t) > x) ∼
∫ t

0−
F (xers)dλs, x →∞, (2)

holds uniformly for all t ∈ ΛT = Λ ∩ [0, T ] for arbitrarily fixed T ∈ Λ. That is
to say,

lim
x→∞

sup
t∈ΛT

∣∣∣∣∣Pr (Dr(t) > x)∫ t

0− F (xers)dλs

− 1

∣∣∣∣∣ = 0.

Theorem 2 If F ∈ S, lim supx→∞ F (vx) /F (x) < 1 for some v > 1, and
Pr (τ1 > δ) = 1 for some δ > 0, then relation (2) holds uniformly for all t ∈ Λ.
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Notation: If F has a finite expectation µ, then denote by

Fe(x) =
1

µ

∫ x

0
F (s)ds, x ≥ 0,

the equilibrium distribution function of F .

Theorem 3 Restrict {Nt, t ≥ 0} to be a Poisson process with intensity λ > 0.
If F ∈ S, Fe ∈ S, and lim supx→∞ F e (vx) /F e (x) < 1 for some v > 1, then
the relation

Pr (Dr(t) > x) ∼ λ

∫ t

0
F (xers)ds, x →∞, (3)

holds uniformly for all t ∈ (0,∞].
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5. Two Remarks
Remark 1: Denote by τ(x) = inf{t : Dr(t) > x} the first time when Dr (t)

up-crosses the level x > 0. Apply the uniform asymptotic relation (3) to get

E
(
e−uτ(x)

)
∼ λ

∫ ∞

0
e−usF (xers)ds, ∀ u > 0,

which gives an explicit asymptotic expression for the Laplace transform of τ(x).

Remark 2: Consider the limiting conditional distribution of τ (x) given
(τ (x) < ∞) as x →∞. For every fixed t > 0, by (3),

Pr (τ (x) ≤ t| τ (x) < ∞) =
Pr (Dr (t) > x)

Pr (Dr (∞) > x)
∼
∫ t

0 F (xers)ds∫∞
0 F (xers)ds

.

If F ∈ R−α with α > 0, then

Pr (τ (x) ≤ t| τ (x) < ∞) → 1− e−αrt,

meaning that the limiting conditional distribution of τ (x) given (τ (x) < ∞) is
exponential.
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6. Sketch of the Proof of Theorem 1
Remember we want to prove (2). It is clearly that, for t ∈ ΛT ,

Pr (Dr(t) > x)=

(
N∑

n=1

+
∞∑

n=N+1

)
Pr

(
n∑

k=1

Xke
−rτk > x,Nt = n

)
=I1 (x, t,N) + I2 (x, t,N) .

Consider I2 (x, t,N) first. We have

I2 (x, t,N)≤
∞∑

n=N

∫ t

0−
Pr

(
n+1∑
k=1

Xk > xers

)
Pr (Nt−s = n) dλs

≤Cε (1 + ε) E(1 + ε)NT 1(NT≥N)

∫ t

0−
F (xers)dλs.

Given ε small enough, E(1 + ε)NT 1(NT≥N) → 0 as N → ∞. Therefore, for all
x > 0,

lim
N→∞

sup
t∈ΛT

I2 (x, t,N)∫ t

0− F (xers) dλs

= 0. (4)
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Next consider I1 (x, t,N). It holds uniformly for all t ∈ ΛT that

I1 (x, t,N)∼

( ∞∑
n=1

n∑
k=1

−
∞∑

n=N+1

n∑
k=1

)
Pr
(
Xke

−rτk > x,Nt = n
)

=

∫ t

0−
F (xers) dλs − I12 (x, t,N) .

For I12 (x, t,N),

I12 (x, t,N)≤
∫ t

0−
F (xers) dλs

∞∑
n=N

(n + 1) Pr (NT ≥ n) .

It follows that, for all x > 0,

lim
N→∞

sup
t∈ΛT

I12 (x, t,N)∫ t

0− F (xers) dλs

= 0. (5)

By (4) and (5), we conclude that the asymptotic relation (2) holds uniformly for
all t ∈ ΛT . �



Motivations
Model Description
Subexponentiality
Main Results
Two Remarks
Sketch of the . . .

Open Problems

Home Page

Title Page

JJ II

J I

Page 13 of 13

Go Back

Full Screen

Close

Quit

7. Open Problems

• Theorem 2 would look much nicer if we could get rid of the technical as-
sumption on the distribution of the inter-arrival time τ1.

• Recall (3). It strongly suggests that for F ∈ S , the relation

Pr(Dr(∞) > x) ∼ λ

∫ ∞

0
F (xers)ds

holds as x →∞. As far as I know, this is still an open problem.

• Whether or not F ∈ S implies Fe ∈ S is still unknown.

∼ The End ∼
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