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Abstract

This paper studies the tail behavior of the maximum exceedance of a sequence of
independent and identically distributed random variables over a random walk. For
both light-tailed and heavy-tailed cases we derive a precise asymptotic formula, which
extends and uni�es some existing results in the recent literature of applied probability.
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1 Introduction and Main Result

Let fYn; n = 1; 2; : : :g be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with generic random variable Y , common distribution F = 1�F on (�1;1),
and 0 < �F =

R1
0
F (u)du <1. De�ne the equilibrium distribution of F as

Fe(x) =
1

�F

Z x

0

F (u)du; x � 0:

For every constant � > 0, the maximum

M0 = sup
n�1

(Yn � (n� 1)�)

is �nite almost surely. If Fe is long tailed (i.e., limx!1 Fe(x+ 1)=Fe(x) = 1), then it is easy
to check that

lim
x!1

Pr (M0 > x)R1
x
F (u)du

=
1

�
:
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Motivated by the observation above, in this paper we study the tail probability of the
maximum exceedance of the sequence fYn; n = 1; 2; : : :g over a random walk with positive
drift. Precisely, let f(Xn; Yn) ; n = 1; 2; : : :g be a sequence of i.i.d. random pairs with generic
random pair (X; Y ). Assume that EX = � > 0 and that Y follows a distribution F on
(�1;1) with 0 < �F <1. Then, the maximum

M = sup
n�1

(Yn � Sn�1) ; (1.1)

with Sn�1 =
Pn�1

i=1 Xi, is �nite almost surely, where a sum over an empty set of indices is
equal to 0 by convention.
To state our conditions on Y , we introduce the following distribution classes, which are

popular in applied probability. A distribution F on (�1;1) is said to belong to the class
L() for some  � 0 if F (x) > 0 for all x and

lim
x!1

F (x� y)
F (x)

= ey for all y 2 (�1;1) : (1.2)

Note that L (0) reduces to the well-known class L of long-tailed distributions. Furthermore,
a distribution F on [0;1) is said to belong to the class S() for some  � 0 if F 2 L()
and the limit

lim
x!1

F 2�(x)

F (x)
= 2c

exists and is �nite, where F 2� denotes the 2-fold convolution of F . More generally, a distri-
bution F on (�1;1) is also said to belong to the class S() if F+(x) = F (x)1(x�0) does,
where 1E denotes the indicator of an event E. Note that S(0) reduces to the well-known
class S of subexponential distributions.
For the sake of consistency, for a random variable X with mean � > 0 we make a

convention that


1� Ee�X

����
=0

=
1

�
:

The main result of this paper is given below:

Theorem 1.1 Consider the i.i.d. sequence f(Xn; Yn) ; n = 1; 2; : : :g and the maximum M

de�ned in (1.1), where EX = � > 0 and Y is distributed by F with 0 < �F <1. Then, the
relation

lim
x!1

Pr (M > x)R1
x
F (u)du

=


1� Ee�X
(1.3)

holds under one of the following groups of conditions:
(i) Fe 2 L() for some  � 0, EX2 <1, and Ee��X < 1 for some � > ;
(ii) Fe 2 S() for some  � 0, Pr(�X > x) = o(F (x)), and Ee�X < 1 provided  > 0.

Clearly, Ee��X , as a function of �, is convex over all � for which Ee��X is �nite. Hence
for case (i), Ee��X < 1 for every � 2 (0; �].
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As shown in Lemma 2.1 below, for every  � 0, the condition Fe 2 L() is equivalent to
the relation

lim
x!1

F (x)R1
x
F (u)du

= : (1.4)

In particular, the condition Fe 2 L (or, equivalently, relation (1.4) with  = 0) is ful�lled by
most cited heavy-tailed distributions including all long-tailed or dominatedly-varying-tailed
distributions with �nite mean; see Theorem 3.1 and Example 3.1 of Su and Tang (2003) for
more details.
Some closely related works are summarized as follows. Robert (2005) considered a special

case of our Theorem 1.1(i) with  = 0 and X positive and proposed an application to ruin
theory in the presence of dividends paid out at a sequence of random epochs. Araman
and Glynn (2006) systematically studied the same problem in the framework of a perturbed
random walk for various cases. Their Theorem 3 corresponds to a special case of our Theorem
1.1(i) with  > 0, X;Y independent, and F exponential, but under a slightly weaker moment
condition on X than ours. Their Theorem 4, assuming that F has a continuous hazard rate
function converging to 0, corresponds to a special case of our Theorem 1.1(i) with  = 0

and X; Y independent. Palmowski and Zwart (2007) also studied the same problem but in
the framework of a regenerative process. In terms of their model in which the regenerative
process fS(t); t � 0g has renewal epochs 0 = T0 < T1 < � � � , the random variables Xn

and Yn in our theorems correspond to S(Tn�1) � S(Tn) and supTn�1�t<Tn S(t) � S(Tn�1),
respectively. In particular, their Theorem 1 corresponds to our Theorem 1.1(ii) with  = 0
under the assumption that the equilibrium distribution of (�X) _ Y is subexponential and
their Theorem 2 corresponds to our Theorem 1.1 with  > 0 under slightly more general
conditions than ours.
In the rest of this paper, after preparing a series of lemmas in Section 2, we prove cases

(i) and (ii) of Theorem 1.1 in Sections 3 and 4, respectively.

2 Lemmas

Throughout this paper, all limit relationships are for x!1 unless stated otherwise. For two
positive functions a(�) and b(�), we write a(x) � b(x) if lim a(x)=b(x) = 1, write a(x) . b(x)
if lim sup a(x)=b(x) � 1, and write a(x) & b(x) if lim inf a(x)=b(x) � 1.

Lemma 2.1 Assume that F on (�1;1) satis�es 0 <
R1
0
F (u)du < 1. For each  � 0,

Fe 2 L() if and only if relation (1.4) holds.

Proof. For  > 0, see Lemma 3.1 of Tang (2007). For  = 0, observe that

0 � Fe(x)� Fe(x+ 1)
Fe(x)

� F (x)R1
x
F (u)du

� Fe(x� 1)� Fe(x)
Fe(x)

;

from which the desired equivalence follows.
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Lemma 2.2 Let f�n; n = 1; 2; : : :g be a sequence of i.i.d. random variables with generic
random variable � satisfying �1 < E� < 0 and Pr (� > 0) > 0. Then, E (� _ 0)2 < 1 if
and only if

1X
n=1

Pr

 
nX
i=1

�i > 0

!
<1:

Proof. See Lemma 3.1 of Robert (2005).

Lemma 2.3 If F 2 L() for some  � 0, then for every � > ,
(i) there exist some positive constants c0 and x0 such that, for all x � y � x0,

F (y)

F (x)
� c0e�(x�y);

(ii) e��x = o
�
F (x)

�
.

Proof. (i) Note that F 2 L() if and only if F (lnx) is regularly varying of index �. Thus,
the desired conclusion is a straightforward consequence of the well-known Potter�s bound;
see Theorem 1.5.6(iii) of Bingham et al. (1987).
(ii) For some �0,  < �0 < �, by item (i) there exist some positive constants c0 and x0

such that, for all x � x0,
F (x0)

F (x)
� c0e�

0(x�x0):

Hence, the relation e��x = o
�
F (x)

�
holds.

Lemma 2.4 Let F , G, G1, G2 be distributions on (�1;1).
(i) If F 2 L() for some  � 0 and

R1
�1 e

�uG(du) <1 for some � > , then

lim
x!1

F �G(x)
F (x)

=

Z 1

�1
euG(du):

(ii) If F 2 S() for some  � 0 and the limit ci = limGi(x)=F (x) exists and belongs to
[0;1) for i = 1; 2, then

lim
x!1

G1 �G2(x)
F (x)

= c1

Z 1

�1
euG2(du) + c2

Z 1

�1
euG1(du):

Proof. (i) See Lemma 2.1 of Pakes (2004). Notice that, under the current conditions, the
relation G(x) = o

�
F (x)

�
, as required in Lemma 2.1 of Pakes (2004), holds automatically by

Lemma 2.3(ii).
(ii) See Proposition 2 of Rogozin and Sgibnev (1999).

Lemma 2.5 Let f�n; n = 1; 2; : : :g be a sequence of i.i.d. random variables with �nite mean
�. Then for arbitrarily small "; � > 0, there exists some constant C > 0 such that

Pr

 1\
n=1

 
n (�� �)� C �

nX
i=1

�i � n (�+ �) + C
!!

> 1� ": (2.1)
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Proof. Follow the proof of Lemma 3.1 of Asmussen et al. (1999) with some obvious modi-
�cations.

Lemma 2.6 Assume Fe 2 S() for some  � 0. Let f�n; n = 1; 2; : : :g be a sequence of i.i.d.
random variables with generic random variable � satisfying �1 < E� < 0, Pr (� > x) =
o(F (x)), and Ee� < 1 provided  > 0. Then,

Pr

 
sup
n�0

nX
i=1

�i > x

!
= o(Fe(x)):

Proof. For arbitrarily �xed N , we have

Pr

 
sup
n�0

nX
i=1

�i > x

!
� Pr

 
sup

0�n�N

nX
i=1

�i > x

!
+ Pr

 
NX
i=1

�i + sup
n�N

nX
i=N+1

�i > x

!
= I1(x;N) + I2(x;N): (2.2)

By Lemma 2.1, Pr (� > x) = o(F (x)) = o(Fe(x)). Then by Lemma 2.4(ii),

I1(x;N) � Pr
 

NX
i=1

(�i _ 0) > x
!
= o(Fe(x)): (2.3)

To consider I2(x;N), for arbitrarily small " > 0, introduce a random variable � satisfying

Pr(� > x) = Pr (� > x) _ "F (x):

Clearly, Pr(� > x) � "F (x). Since � = �(") converges to � in distribution as " & 0, for
all small " > 0 we have E� < 0 and Ee� < 1 provided  > 0. Let f�n; n = 1; 2; : : :g be a
sequence of i.i.d. copies of � independent of f�n; n = 1; 2; : : :g. By Theorem 2 of Veraverbeke
(1977), it holds for some constant c(; ") > 0 that

Pr

 
sup
n�N

nX
i=N+1

�i > x

!
= Pr

 
sup
n�0

nX
i=1

�i > x

!
� c(; ")Fe(x):

When  > 0, the expression of c(; ") is rather involved. However, when  = 0, we have the
transparent expression c(0; ") = �"�F=E�. Then by Lemma 2.4(ii),

I2(x;N) � Pr
 

NX
i=1

�i + sup
n�N

nX
i=N+1

�i > x

!
�
�
Ee�

�N
c(; ")Fe(x): (2.4)

Plugging (2.3) and (2.4) into (2.2) yields that

lim sup
x!1

1

Fe(x)
Pr

 
sup
n�0

nX
i=1

�i > x

!
�
�
Ee�

�N
c(; "):

If  > 0 with " �xed we let N ! 1, while if  = 0 we let " & 0. Thus, in any case, the
right-hand side of the above goes to 0 and the proof is complete.
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3 Proof of Theorem 1.1(i)

3.1 Preliminary results

Proposition 3.1 Under the conditions of Theorem 1.1(i), it holds for arbitrarily small " >
0, all 0 < � < 1, and all large k that

1X
n=k+1

Pr (Yn � Sn�1 > x; Sn�1 < (n� 1)� (1� �)) . "
Z 1

x

F (u)du: (3.1)

Proof. Let 0 < � < 1 and D > 0 be arbitrarily �xed. For all x > D, according to the range
of Sn�1 we split the left-hand side of (3.1) into three parts as

1X
n=k+1

Pr (Yn � Sn�1 > x; Sn�1 2 (0; (n� 1)� (1� �))
S
(�x+D; 0]

S
(�1;�x+D])

= J1 (x; k; �) + J2 (x; k;D) + J3 (x; k;D) : (3.2)

Using Lemmas 2.1 and 2.2, for arbitrarily small " > 0 and all large k,

J1 (x; k; �) � F (x)
1X

n=k+1

Pr

 
n�1X
i=1

(� (1� �)�Xi) > 0

!
. "

2

Z 1

x

F (u)du: (3.3)

Furthermore, by Lemma 2.3(i), there exist some constants c0; D > 0 such that for all x �
x+ y � 1 � D � 1 and all large k,

J2 (x; k;D) =
1X

n=k+1

Z 0

�x+D
F (x+ y) Pr (Sn�1 2 dy)

�
1X

n=k+1

Z 0

�x+D

�Z x+y

x+y�1
F (u)du

�
Pr (Sn�1 2 dy)

�
Z 1

x

F (u)du
1X

n=k+1

Z 0

�x+D

Fe(x+ y � 1)
Fe(x)

Pr (Sn�1 2 dy)

� c0
Z 1

x

F (u)du

1X
n=k+1

Ee��(Sn�1�1)

� "

2

Z 1

x

F (u)du: (3.4)

For D speci�ed in (3.4) and for all k, employ Markov�s inequality and Lemma 2.3(ii) to
obtain that

J3 (x; k;D) �
1X

n=k+1

Pr (Sn�1 � �x+D) �
1X

n=k+1

Ee��Sn�1

e�(x�D)
= o

�
Fe(x)

�
: (3.5)

Plugging (3.3)�(3.5) into (3.2) yields (3.1).
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Proposition 3.2 Under the conditions of Theorem 1.1(i), it holds for each k = 2; 3; : : : thatX
1�n<m�k

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x) = o
�
Fe(x)

�
: (3.6)

Proof. Let � > 0 be a constant satisfying � (1� �) > . For 1 = n < m � k,

Pr (Y1 > x; Ym � Sm�1 > x)
� Pr (�Sm�1 > (1� �)x) + Pr (Y1 > x; Ym � Sm�1 > x;�Sm�1 � (1� �)x)
� e��(1��)xEe��Sm�1 + Pr (Y1 > x; Ym > �x)
= o

�
Fe(x)

�
; (3.7)

where we used Markov�s inequality and Lemmas 2.1 and 2.3(ii). Similarly, for 1 < n < m �
k,

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x)
� Pr (�Sn�1 > (1� �)x) + Pr (Yn � Sn�1 > x; Ym � Sm�1 > x;�Sn�1 � (1� �)x)

� e��(1��)xEe��Sn�1 +
Z (1��)x

�1
Pr (Yn > x� y; Ym � Sn;m�1 > x� y) Pr (�Sn�1 2 dy) ;

where Sn;m�1 =
Pm�1

i=n Xi. By (3.7), it holds uniformly for all y � (1� �)x that

Pr (Yn > x� y; Ym � Sn;m�1 > x� y) = o (1)Fe(x� y):

Hence by Lemmas 2.3(ii) and 2.4(i),

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x) = o
�
Fe(x)

�
+ o (1)

Z (1��)x

�1
Fe(x� y) Pr (�Sn�1 2 dy)

= o
�
Fe(x)

�
: (3.8)

A combination of (3.7) and (3.8) gives (3.6).

3.2 Proof of Theorem 1.1(i) for  > 0

We �rst prove the asymptotic upper bound. For some 0 < � < 1 and each k = 1; 2; : : :,

Pr (M > x) �
 

kX
n=1

+
1X

n=k+1

!
Pr (Yn � Sn�1 > x)

�
kX
n=1

Pr (Yn � Sn�1 > x) +
1X

n=k+1

F (x+ (n� 1)� (1� �))

+

1X
n=k+1

Pr (Yn � Sn�1 > x; Sn�1 < (n� 1)� (1� �))

= K1 (x; k) +K2 (x; k; �) +K3 (x; k; �) : (3.9)
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By Proposition 3.1, it holds for arbitrarily small " > 0 and all large k that

K3 (x; k; �) .
"

2

Z 1

x

F (u)du: (3.10)

Since Fe 2 L(), it holds for all large k that

K2 (x; k; �) �
1

� (1� �)

Z 1

x+(k�1)�(1��)
F (u)du . "

2

Z 1

x

F (u)du: (3.11)

With k speci�ed in (3.10) and (3.11), by Lemma 2.4(i) and relation (1.4) we have

K1 (x; k) � F (x)
kX
n=1

Ee�Sn�1 . 

1� Ee�X
Z 1

x

F (u)du: (3.12)

Plugging (3.10)�(3.12) into (3.9) and using the arbitrariness of " > 0, we obtain that

lim sup
x!1

Pr (M > x)R1
x
F (u)du

� 

1� Ee�X
:

Next, we turn to prove the asymptotic lower bound. Obviously, for each k = 1; 2; : : :,
using Bonferroni�s inequality,

Pr (M > x) � Pr
 

k[
n=1

(Yn � Sn�1 > x)
!

� K1 (x; k)�
X

1�n<m�k

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x) ; (3.13)

where K1 (x; k) is the same as in (3.9). Similar to (3.12), for arbitrarily small " > 0 and all
large k,

K1 (x; k) & (1� ")


1� Ee�X
Z 1

x

F (u)du: (3.14)

By Proposition 3.2, relation (3.6) holds. Plugging (3.6) and (3.14) into (3.13) and using the
arbitrariness of " > 0, we have

lim inf
x!1

Pr (M > x)R1
x
F (u)du

� 

1� Ee�X
:

3.3 Proof of Theorem 1.1(i) for  = 0

For  = 0, relation (1.3) becomes

lim
x!1

Pr (M > x)R1
x
F (u)du

=
1

�
: (3.15)

To derive the asymptotic upper bound, we still use (3.9). By Proposition 3.1, relation (3.10)
holds for arbitrarily small "; � > 0 and all large k. With k speci�ed in (3.10), by Fe 2 L we
have

K2 (x; k; �) �
1

� (1� �)

Z 1

x+(k�1)�(1��)
F (u)du � 1

� (1� �)

Z 1

x

F (u)du; (3.16)
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while by Lemmas 2.1 and 2.4(i) it is easy to see that

K1 (x; k) = o(1)

Z 1

x

F (u)du: (3.17)

Plugging (3.10), (3.16), and (3.17) into (3.9) and using the arbitrariness of "; � > 0, we have

lim sup
x!1

Pr (M > x)R1
x
F (u)du

� 1

�
:

Next, we consider the asymptotic lower bound. For arbitrarily small "; � > 0, by
Lemma 2.5 there exists some constant C > 0 such that inequality (2.1) holds. Write
En = fn (�� �) � C � Sn � n (�+ �) + Cg for n = 0; 1; : : :. Then by Bonferroni�s in-
equality again,

Pr (M > x) � Pr
 1[
n=1

((Yn � Sn�1 > x)
T
En�1)

!

�
1X
n=1

Pr ((Yn � Sn�1 > x)
T
En�1)

�
X

1�n<m<1
Pr ((Yn � Sn�1 > x)

T
(Ym � Sm�1 > x)

T
En�1

T
Em�1)

� (1� ")
1X
n=1

F (x+ (n� 1) (�+ �) + C)

�
X

1�n<m<1
F (x+ (n� 1) (�� �)� C)F (x+ (m� 1) (�� �)� C)

� 1� "
�+ �

Z 1

x+C

F (u)du�
�

1

�� �

Z 1

x�(���)�C
F (u)du

�2
:

Since Fe 2 L, by the arbitrariness of "; � > 0 it follows that

lim inf
x!1

Pr (M > x)R1
x
F (u)du

� 1

�
:

4 Proof of Theorem 1.1(ii)

4.1 Preliminary results

We establish the counterparts of Propositions 3.1 and 3.2 for the case  > 0, respectively.

Proposition 4.1 Under the conditions of Theorem 1.1(ii) for the case  > 0, relation (3.1)
holds for arbitrarily small " > 0, 0 < � < 1 arbitrarily close to 1, and all large k.

Proof. For 0 < �; d < 1, introduce the maximum M� = supn�1
Pn�1

i=1 (� (1� d�)�Xi),
which is �nite almost surely. For every n � k + 1, we derive

Sn�1 = (n� 1)� (1� d�)�
n�1X
i=1

(� (1� d�)�Xi) � (n� 1)� (1� d�)�M�:
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Introduce another random variable M�
� which is identically distributed as M� and is inde-

pendent of fYn; n = 1; 2; : : :g Therefore, for every k � 1,
1X

n=k+1

Pr (Yn � Sn�1 > x; Sn�1 < (n� 1)� (1� �))

�
1X

n=k+1

Pr (Yn � (n� 1)� (1� d�) +M�
� > x;M

�
� > k�(1� d)�)

=

Z 1

k�(1�d)�

1X
n=k+1

F (x� y + (n� 1)� (1� d�)) Pr (M� 2 dy)

� 1

� (1� d�)

�Z x

k�(1�d)�
+

Z 1

x

��Z 1

x�y
F (u)du

�
Pr (M� 2 dy)

� 1

� (1� d�)

�
�F

Z x

k�(1�d)�
Fe(x� y) +

Z 1

x

(y � x+ �F )
�
Pr (M� 2 dy) : (4.1)

To apply Lemma 2.6, we need to choose � and d close to 1 such that Ee(�(1�d�)�X) < 1. Let
F � be a distribution de�ned as F �(x) = F (x� � (1� d�)). Then, Pr(� (1� d�)�X > x) =

o(F �(x)) and F �e 2 S(). By Lemma 2.6, we have

Pr(M� > x) = o(F �e (x)) = o(Fe(x)): (4.2)

By Lemma 2.4(ii) and the local uniformity of the convergence in relation (1.2), it holds for
arbitrarily �xed k � 1 thatZ x

k�(1�d)�
Fe(x� y) Pr (M� 2 dy) �

 Z 1

0�
�
Z k�(1�d)�

0�

!
Fe(x� y) Pr (M� 2 dy)

� Fe(x)EeM�1(M�>k�(1�d)�); (4.3)

where the �niteness of EeM� is guaranteed by (4.2). Moreover, by Lemma 2.1,Z 1

x

(y � x) Pr (M� 2 dy) =
Z 1

x

Pr (M� > y) dy = o(1)

Z 1

x

Fe(y)dy = o(Fe(x)): (4.4)

Plugging (4.2)-(4.4) into (4.1) yields the desired assertion.

Proposition 4.2 Under the conditions of Theorem 1.1(ii) for the case  > 0, relation (3.6)
holds for each k = 2; 3; : : :.

Proof. By Lemma 2.1, Fe 2 S() for some  > 0 implies F 2 S(). When 1 = n < m � k,
for arbitrarily �xed D > 0, we have

Pr (Y1 > x; Ym � Sm�1 > x)
� Pr (�Sm�1 > x�D) + Pr (Y1 > x; Ym � Sm�1 > x;�Sm�1 � x�D)
� Pr (�Sm�1 > x�D) + Pr (Y1 > x; Ym > D) : (4.5)
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By Lemma 2.4(ii),

Pr (�Sm�1 > x�D) = o
�
F (x�D)

�
= o

�
F (x)

�
:

Substitute this into (4.5) then notice that D can be arbitrarily large. It follows that

Pr (Y1 > x; Ym � Sm�1 > x) = o(F (x)) = o(Fe(x)): (4.6)

Similarly, when 1 < n < m � k, for arbitrarily �xed D > 0,

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x)

� Pr (�Sn�1 > x�D) +
Z x�D

�1
Pr (Yn > x� y; Ym � Sn;m�1 > x� y) Pr(�Sn�1 2 dy);

where Sn;m�1 =
Pm�1

i=n Xi as before. By (4.6), for arbitrarily small " > 0, choose D > 0 such
that

Pr (Yn > x; Ym � Sn;m�1 > x) � "Fe(x)

for 1 < n < m � k and all x � D. Using this inequality and Lemma 2.4(ii), we obtain that

Pr (Yn � Sn�1 > x; Ym � Sm�1 > x) � o(Fe(x)) + "
Z x�D

�1
Fe(x� y) Pr(�Sn�1 2 dy)

. "Ee�Sn�1Fe(x):

This proves that
Pr (Yn � Sn�1 > x; Ym � Sm�1 > x) = o(Fe(x)): (4.7)

A combination of (4.6) and (4.7) gives (3.6).

4.2 Proof of Theorem 1.1(ii)

The proof for the case  > 0 can be given by copying the proof of Theorem 1.1(i) for the
case  > 0 with only modi�cations that we use Lemma 2.4(ii) and Propositions 4.1 and 4.2
instead of Lemma 2.4(i) and Propositions 3.1 and 3.2.
Consider the case  = 0 and we aim at relation (3.15). The proof of the asymptotic lower

bound is the same as that in Theorem 1.1(i). The proof of the asymptotic upper bound can
be found in Palmowski and Zwart (2007). Nevertheless, for the sake of self-containedness,
we copy their proof here.
For an arbitrarily large but �xed number y > 0, de�ne

Z = (�X)1((�X)_Y�y) + ((�X) _ Y ) 1((�X)_Y >y):

Clearly, Z = Z(y) converges to �X almost surely as y ! 1 and EZ < 0 for all large y.
Moreover, it is easy to see that the relation Pr (Z > x) � F (x) holds for arbitrarily �xed y.
De�ne Zn in a similar way in terms of Xn and Yn, n = 1; 2; : : :, so that fZn; n = 1; 2; : : :g
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forms a sequence of i.i.d. copies of Z. Then, we arrive at a key inequality of Palmowski and
Zwart (2007) that

M = sup
n�1

(Yn � Sn�1) � sup
n�1

n�1X
i=1

Zi + y:

Therefore, by Theorem 2(B) of Veraverbeke (1977),

Pr (M > x) � Pr
 
sup
n�1

n�1X
i=1

Zi > x� y
!
� � 1

EZ

Z 1

x�y
F (u)du:

Since Fe 2 S and y can be arbitrarily large, it follows that

Pr (M > x) . 1

�

Z 1

x

F (u)du:
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