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ABSTRACT

In this thesis we are interested in the impact of economic and financial factors,

such as interest rate, tax payment, reinsurance, and investment return, on insurance

business. The underlying risk models of insurance business that we consider range

from the classical compound Poisson risk model to the newly emerging and more gen-

eral Lévy risk model. In these risk models, we assume that the claim-size distribution

belongs to some distribution classes according to its asymptotic tail behavior. We

consider both light-tailed and heavy-tailed cases.

Our study is through asymptotic tail probabilities. Firstly, we study the

asymptotic tail probability of discounted aggregate claims in the renewal risk model

by introducing a constant force of interest. In this situation we focus on claims with

subexponential tails. We derive for the tail probability of discounted aggregate claims

an asymptotic formula, which holds uniformly for finite time intervals. For various

special cases, we extend this uniformity to be valid for all time horizons.

Then, we investigate the asymptotic tail probability of the maximum ex-

ceedance of a sequence of random variables over a renewal threshold. We derive

a unified asymptotic formula for this tail probability for both light-tailed and heavy-

tailed cases.

By using the previous result, we study how to capture the impact of tax

payments on the ruin probability in the Lévy risk model. We introduce periodic

taxation under which the company pays tax at a fixed rate on its net income during
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each period. Assuming the Lévy measure, representing the claim-size distribution

in the Lévy risk model, has a subexponential tail, a convolution-equivalent tail, or

an exponential-like tail, we derive for the ruin probability several explicit asymptotic

relations, in which the prefactor varies with the tax rate, reflecting the impact of tax

payments.

Finally, we consider the renewal risk model in which the surplus is invested

into a portfolio consisting of both a riskless bond and a risky stock. The price process

of the stock is modeled by an exponential Lévy process. We derive an asymptotic

formula for the tail probability of the stochastically discounted net loss process.
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CHAPTER 1
INTRODUCTION

1.1 Notation and Conventions

Throughout this thesis we use the following conventions:

• Without otherwise stated, the limit procedure is according to x→∞.

• The summation over an empty set of indices produces a value 0.

• The multiplication over an empty set of indices produces a value 1.

We also use these mathematical signs:

a+ a ∨ 0 = max{a, 0}

a− − (a ∧ 0) = −min{a, 0}

a(x) . b(x) lim supx→∞ a(x)/b(x) ≤ 1 for positive functions a (·) and b (·)

a(x) & b(x) lim infx→∞ a(x)/b(x) ≥ 1 for positive functions a (·) and b (·)

a (x) ∼ b (x) both relations a(x) . b(x) and a(x) & b(x) hold

a(x) � b(x) lim supx→∞ a(x)/b(x) <∞ and lim supx→∞ b(x)/a(x) <∞

o(1), O(1) limx→∞ o(1) = 0 and lim supx→∞ |O(1)| <∞

Probability notation used is summarized below:

1E the indicator function of an event E

a.s. almost surely

d
= X

d
= Y ⇐⇒ Pr(X > x) = Pr(Y > x) for every x

d

≤ X
d

≤ Y ⇐⇒ Pr(X > x) ≤ Pr(Y > x) for every x
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d

≥ X
d

≥ Y ⇐⇒ Pr(X > x) ≥ Pr(Y > x) for every x

D the class of distributions with dominatedly-varying tails

E expectation

ERV the class of distributions with extended-regularly-varying

tails

F 1− F for a distribution F

Fe the equilibrium distribution of a distribution F on [0,∞)

with finite expectation

f ? g the convolution of measurable functions f and g

fn? the n-fold convolution of a measurable function f

F ∗G the convolution of distributions F and G

F n∗ the n-fold convolution of a distribution F

F+(x) F (x)1(x≥0) for a distribution F on (−∞,∞)

J±F Matuszewska indices of a distribution F

K the class of heavy-tailed distributions

L the class of long-tailed distributions

P probability measure

Φ(·) the standard normal distribution

R the class of distributions with regularly-varying tails

S the class of subexponential distributions

Notation for surplus process is summarized below:
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Bt a Brownian motion at time t

càdlàg right continuous with left limits

Dr(t) the discounted aggregate claims by time t in the presence

of the force of interest r

Lt a Lévy process at time t

λt the renewal function ENt

Λ {t : λt > 0} ∪ {∞}

Nt a renewal counting process at time t

ϕ the Laplace exponent of a Lévy process

ψ ruin probability of an insurance risk process

Ψ the characteristic exponent of a Lévy process

τk the kth claim arrival time

θk the inter-arrival time between (k − 1)th and kth claims

Ut a general surplus process at time t

1.2 Objectives and Outline of the Thesis

In this thesis, we study the asymptotic tail probabilities of quantities of interest

in various risk models, from the compound Poisson risk model to the newly emerging

and more general Lévy risk model, to investigate the impact of economic and financial

factors, such as interest rate, tax payment, reinsurance, and investment return, on

insurance business. We consider both light-tailed and heavy-tailed claim sizes in

our models, seeing that the tail behavior of the claim-size distribution may vary in
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different types of insurance business.

In Chapter 2 we prepare some probability tools that are needed for the follow-

ing chapters. In Section 2.1 we give the definitions and properties for some stochastic

processes that are widely used in insurance mathematics. In Section 2.2 we present

some basic theory for stochastic integral with respect to a semimartingale. This part

is crucial for us to investigate the impact of risky investment in Chapter 6. Section 2.3

reviews some popular classes of distributions, including both light-tailed and heavy-

tailed classes. They are going to be used as assumptions on the claim-size distribution

in our risk models and play a very important role in deriving our main results.

The main part of this thesis consists of Chapters 3–6. In Chapter 3 we in-

troduce a constant force of interest in the renewal risk model and study the tail

probability of discounted aggregate claims. Since it is usually not possible to get

closed-form expressions except for few ideal cases, we instead aim at asymptotic for-

mulas. The question is of much practical interest in insurance risk management. The

study can provide an easy and precise approximation when measuring the risk of large

losses via Value-at-Risk or Conditional Tail Expectation. Also, such an approxima-

tion usually plays a crucial role in pricing some insurance products. We derive for the

tail probability of discounted aggregate claims an asymptotic formula, which holds

uniformly for all time horizons. A key assumption in our model is that the claim-size

distribution is subexponential.

In Chapter 4 we study an interesting problem in the field of probability that

will be used as an important tool to give the proof for some main results in Chapter
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5. Motivated by the observations that many problems in applied fields, including

corporate finance, insurance risk, and production systems, can be reduced to the

study of the maximum exceedance of a sequence of random variables over a renewal

threshold, we derive a unified asymptotic formula for the tail probability of such a

maximum exceedance for both light-tailed and heavy-tailed cases.

In Chapter 5, we use a general Lévy process to model the underlying surplus

process of an insurance company in a world without economic factors. This so-called

Lévy risk model has recently attracted a lot of attention in the insurance literature.

We are particularly interested in how to capture the impact of tax payments on the

ruin probability. In a series of papers recently by Albrecher and his coauthors, it is

assumed that taxes are paid at a certain fixed rate immediately when the surplus

of the company is at a running maximum. In reality, however, taxes are usually

paid periodically (e.g. monthly, semi-annually, or annually). Therefore, we introduce

periodic taxation under which the company pays tax at a fixed rate on its net income

during each period. As main results, we derive for the ruin probability several explicit

asymptotic relations, in which the prefactor varies with the tax rate, reflecting the

impact of tax payments.

In Chapter 6, we study the tail behavior of the stochastically discounted net

loss process in the renewal risk model with risky investment. Consider an insurance

company who invests its surplus into a portfolio consisting of both a riskless bond

and a risky stock. Suppose the price process of the bond grows with a constant force

of interest, while the price process of the stock is modeled by an exponential Lévy
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process. The study of such a risk model has become a hot topic in the past decade.

Assuming a constant mix investment strategy, i.e., the proportions of surplus invested

into the riskless and risky assets remain constant, we derive an asymptotic formula

for the tail probability of the stochastically discounted net loss process.
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CHAPTER 2
PRELIMINARIES

2.1 Brief Review on Stochastic Processes

Stochastic processes as a probabilistic tool have been extensively used for

modeling insurance risk processes for a long time. For instance, Lundberg (1903)

pointed out that Poisson processes lie at the heart of non-life insurance models.

Definition 2.1. A counting process N = (Nt)t≥0, defined on a probability space

(Ω,F ,P), is said to be a Poisson process with intensity λ > 0 if

(i) the paths of N are P-almost surely right continuous with left limits (càdlàg);

(ii) P (N0 = 0) = 1;

(iii) the process has independent increments;

(iv) the number of events in any interval of length t is Poisson distributed with mean

λt, i.e., for every s ≥ 0 and t > 0

P (Nt+s −Ns = n) = P (Nt = n) = e−λt (λt)
n

n!
, n = 0, 1, . . . .

A useful property of the Poisson process with intensity λ is that the inter-

arrival times are independent and identically distributed (i.i.d.) exponential random

variables with mean 1/λ. If we allow the inter-arrival times to be i.i.d. copies of an

arbitrary nonnegative and not-degenerate-at-zero random variable (a random variable

θ is said to be not degenerate at zero if P(θ = 0) < 1), then Poisson processes are

generalized to renewal counting processes.
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Definition 2.2. A counting process N = (Nt)t≥0, defined on a probability space

(Ω,F ,P), is said to be a renewal counting process with parameter λ > 0 if

(i) the paths of N are P-almost surely càdlàg;

(ii) P (N0 = 0) = 1;

(iii) the inter-arrival times are i.i.d., nonnegative, and not-degenerate-at-zero ran-

dom variables with mean 1/λ.

Like Poisson processes in actuarial risk theory, Bachelier (1900) recognized

that Brownian motions are a key building block for financial models.

Definition 2.3. A stochastic process B = (Bt)t≥0, defined on a probability space

(Ω,F ,P), is said to be a Brownian motion if

(i) the paths of B are P-almost surely continuous;

(ii) P (B0 = 0) = 1;

(iii) B has stationary and independent increments;

(iv) for every t > 0, Bt is normally distributed with mean 0 and variance σ2t.

When σ = 1 in the above definition, the process B is called a standard Brow-

nian motion. Both Poisson processes and Brownian motions are initiated from the

origin and have stationary and independent increments. Actually, these properties

define a more general class of stochastic processes, which are called Lévy processes.
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Definition 2.4. A stochastic process L = (Lt)t≥0, defined on a probability space

(Ω,F ,P), is said to be a Lévy process if

(i) the paths of L are P-almost surely càdlàg;

(ii) P (L0 = 0) = 1;

(iii) L has stationary and independent increments.

Lévy processes have an intimate relationship with infinitely divisible distribu-

tions, as described below:

Definition 2.5. A random variable X is said to have an infinitely divisible dis-

tribution if for each n = 1, 2, . . ., there exists a sequence of i.i.d. random variables

X1,1, X1,2, . . . , X1,n such that

X
d
= X1,1 +X1,2 + · · ·+X1,n.

For a Lévy process L = (Lt)t≥0, Lt is a random variable with infinitely divisible

distribution. This follows from the fact that for every n = 1, 2, . . .,

Lt = Lt/n +
(
L2t/n − Lt/n

)
+ · · ·+

(
Lt − L(n−1)t/n

)
(2.1)

and the fact that L has stationary and independent increments. For every t ≥ 0,

define

Ψt (s) = − log EeisLt .

From (2.1) it is easy to obtain that for every rational t > 0,

Ψt (s) = tΨ1 (s) . (2.2)
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If t is an irrational number, then we can choose a decreasing sequence of rationals

{tn, n = 1, 2, . . .} such that tn → t as n→∞. Since L is almost surely right continu-

ous, EeisLt = exp {−Ψt (s)} is also right continuous in t. Hence, (2.2) still holds.

In conclusion, for every Lévy process L its characteristic function can be writ-

ten in the form

EeisLt = e−tΨ(s),

where Ψ (s) := Ψ1 (s) is the characteristic exponent of L1. The famous Lévy-Khintchine

formula gives the following representation for Ψ (s):

Ψ (s) = ias+
1

2
σ2s2 +

∫ ∞

−∞

(
1− eisx + isx1{|x|≤1}

)
ρ (dx)

with a ∈ (−∞,∞), σ ≥ 0, and Lévy measure ρ on (−∞,∞) satisfying ρ ({0}) = 0

and
∫∞
−∞ (x2 ∧ 1) ρ (dx) < ∞. The triplet (a, σ2, ρ) (called Lévy triplet) uniquely

determines the distribution of the Lévy process L. In the following chapters, we also

need the Laplace exponent of a Lévy process L given by

ϕ(s) = −Ψ (is) = log Ee−sL1 .

For more details of Lévy processes, refer to Kyprianou (2006).

Lévy processes form a very rich class of stochastic processes. Besides Poisson

processes and Brownian motions, we further give the following typical examples:

(i) Compound Poisson Processes

Consider a compound Poisson process V = (Vt)t≥0 with

Vt =
Nt∑

k=1

ξk, t ≥ 0, (2.3)
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where N = (Nt)t≥0 is a Poisson process with intensity λ > 0 and ξ1, ξ2, . . . are i.i.d.

random variables independent of N and with common distribution F on (−∞,∞).

Here, in (2.3) we use the convention that the summation over an empty set of indices

produces a value 0. For s ∈ (−∞,∞),

EeisVt =
∞∑

n=0

E
(
eis

Pn
k=1 ξk

)
e−λλ

n

n!

=
∞∑

n=0

(∫ ∞

−∞
eisxF (dx)

)n

e−λλ
n

n!

= e−λ
R∞
−∞(1−eisx)F (dx). (2.4)

From (2.4) we see that the Lévy triplet of the compound Poisson process V is given

by a = −λ
∫

0<|x|<1
xF (dx), σ = 0, and ρ (dx) = λF (dx).

(ii) Gamma Processes

A gamma process Γ = (Γt)t≥0 is a stochastic process starting from 0, having

stationary and independent increments, and with Γ1 distributed by the gamma(α,β)

distribution with density

f(x) =
αβ

Γ(β)
xβ−1e−αx, α, β, x > 0.

Its Lévy triplet is given by a = β (e−α − 1) /α, σ = 0, and ρ(dx) = βx−1e−αxdx; see

Subsection 1.2.4 of Kyprianou (2006) for details.

(iii) Subordinators

A subordinator is a Lévy process whose paths are almost surely nondecreasing.

The following lemma characterizes subordinators:

Lemma 2.6 (Lemma 2.14 of Kyprianou (2006)). A Lévy process is a subordinator if

and only if ρ(−∞, 0) = 0,
∫∞

0
(1 ∧ x)ρ(dx) <∞, σ = 0, and a+

∫ 1−
0

xρ(dx) ≤ 0.
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(iv) Spectrally One-sided Processes

For a Lévy process L, if ρ(−∞, 0) = 0 and L is not a subordinator, then it is

called a spectrally positive Lévy process. A spectrally positive Lévy process has no

downward jumps. A Lévy process L is called spectrally negative if −L is spectrally

positive. These two classes of processes are together called spectrally one-sided.

2.2 Semimartingales and Stochastic Integrals

In this section, we introduce stochastic integrals and semimartingales, the most

general processes of which stochastic integration gives a reasonable meaning. This

section is based on Chapter 8 of Klebaner (2005) and Chapter II of Protter (2005).

2.2.1 Semimartingales

We assume as given a complete probability space (Ω,F ,P). In addition, we

are given a filtration F = (Ft)0≤t≤∞. By a filtration we mean a family of σ-fields

(Ft)0≤t≤∞ that is nondecreasing, i.e., Fs ⊂ Ft for all 0 ≤ s ≤ t ≤ ∞. A nonnegative

random variable τ , which is allowed to take the value ∞, is called a stopping time

(with respect to filtration F) if for each t,

{τ ≤ t} ∈ Ft.

In other words, by observing the information contained in Ft we can decide whether

the event {τ ≤ t} has or has not occurred.

We then introduce finite variation. If g is a function of real variable, its
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variation over the interval [a, b] is defined as

Vg ([a, b]) = sup
n∑

i=1

∣∣g (tni )− g
(
tni−1

)∣∣ , (2.5)

where the supremum is taken over the partitions of [a, b]:

a = tn0 < tn1 < · · · < tnn = b.

Clearly, (by the triangle inequality) the sum in (2.5) increases as new points are added

to the partitions. Therefore, the variation of g is

Vg ([a, b]) = lim
δn→0

n∑
i=1

∣∣g (tni )− g
(
tni−1

)∣∣ ,
where δn = max1≤i≤n (ti − ti−1). If Vg ([a, b]) is finite then g is said to be a function

of finite variation on [a, b]. If g is a function of t ≥ 0, then the variation function of

g as a function of t is defined by

Vg (t) = Vg ([0, t]) .

Clearly, Vg (t) is a nondecreasing function of t. The function g is of finite variation if

Vg (t) < ∞ for every t. A process X = (Xt)t≥0 is called a finite variation process if

the paths of X are almost surely of finite variation.

In the following we define predictable processes and martingales:

Definition 2.7. A process X = (Xt)t≥0 is called adapted to the filtration F =

(Ft)0≤t≤∞ if for every t, Xt is Ft-measurable.

Definition 2.8. A process H = (Ht)t≥0 is predictable if it is one of the following:
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(i) a left-continuous adapted process, in particular, a continuous adapted pro-

cess;

(ii) a limit (almost sure, in probability) of left-continuous adapted processes;

(iii) a regular right-continuous process such that, for any stopping time τ , Hτ

is Fτ−-measurable, the σ-field generated by the sets A ∩ {T < t}, where A ∈ Ft;

(iv) a Borel-measurable function of a predictable process.

Definition 2.9. A stochastic process M = (Mt), where the time t is continuous

0 ≤ t ≤ T , or discrete t = 0, 1,. . . , T , adapted to a filtration F is a martingale if

for every t, Mt is integrable (that is, E |Mt| <∞), and for all 0 ≤ s ≤ t ≤ T ,

E (Mt |Fs ) = Ms a.s.

To define semimartingales, we still need to introduce local martingales.

Definition 2.10. A process (Xt)0≤t≤T with T ∈ [0,∞] is called uniformly inte-

grable if E
(
|Xt| 1{|Xt|>n}

)
converges to 0 as n→∞ uniformly in t, that is,

lim
n→∞

sup
0≤t≤T

E
(
|Xt| 1{|Xt|>n}

)
= 0.

where the supremum is over [0, T ] in the case of a finite time interval and [0,∞) if

the process is considered on 0 ≤ t <∞.

Definition 2.11. An adapted process M = (Mt)0≤t≤T with T ∈ [0,∞] is called a

local martingale if there exists a sequence of stopping times {τn, n = 1, 2, . . .}, such

that τn → ∞ as n → ∞ and for each n the stopped process Mt∧τn is a uniformly

integrable martingale in t.
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Now we are ready to give the definition of the core process in this section.

Definition 2.12. A càdlàg adapted process S = (St)t≥0 is a semimartingale if it

can be represented as a sum of two processes: a local martingale M = (Mt)t≥0 and a

finite variation process A = (At)t≥0,

St = S0 +Mt + At, with M0 = A0 = 0. (2.6)

Here are some examples of semimartingales:

1. A Lévy process is a semimartingale.

2. One way to obtain semimartingale from known semimartingales is by applying a

twice continuously differentiable (C2) transformation. If S is a semimartingale

and f is a C2 function, then f(S) is also a semimartingale.

3. A diffusion, that is, the solution to a stochastic differential equation with respect

to a Brownian motion, is a semimartingale.

2.2.2 Quadratic Variation and Covariation

If X, Y are semimartingales on the common space, then their quadratic co-

variation process, also known as the square bracket process and denoted by [X, Y ](t),

is defined, as usual, by

[X, Y ](t) = lim
n−1∑
i=0

(
Xtni+1

−Xtni

)(
Ytni+1

− Ytni

)
,

where the limit is taken over shrinking partitions 0 = tn0 < tn1 < . . . < tnn = t when

δn = max1≤i≤n

(
tni − tni−1

)
→ 0 and is in probability. Taking Y = X we obtain the

quadratic variation process of X.
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Here are some properties of quadratic variation and covariation:

1. [X,Y ](t) is a regular càdlàg function of finite variation.

2. ∆[X,Y ] = ∆X∆Y , that is, the jumps of the quadratic covariation process occur

only at points where both processes have jumps.

3. If X or Y is of finite variation, then [X, Y ](t) =
∑

s<t ∆Xs∆Ys. Notice that

although the summation is taken over all s not exceeding t, there are at most

countably many terms different from zero.

4. [X,Y ] = 0 if X or Y is continuous and is of finite variation.

In terms of stochastic integral that to be introduced in the next subsection,

we have the following lemma known as integration by parts:

Lemma 2.13. For semimartingales X and Y , their quadratic covariation process is

given by

[X, Y ](t) = XtYt −X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs.

2.2.3 Stochastic Integrals

We are going to define the stochastic integral
∫ T

0
HtdSt for a semimartingale

S = (St)t≥0. Due to (2.6) the integral with respect to S is the sum of two integrals one

with respect to a local martingale M and the other with respect to a finite variation

process A. The integral with respect to A can be done path by path as the Stieltjes

integrals, since A, although random, is of finite variation. So H = (Ht)t≥0 should be
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integrable with respect to A. A sufficient condition for that is

∫ T

0

|Ht|VA(dt) <∞, (2.7)

where VA(t) is the variation process of A. Then we need to define the stochastic

integral of H with respect to the local martingale M ,
∫ T

0
HtdMt.

Stochastic integral with respect to a martingale:

For a simple predictable process H, given by

Ht = H01{0}(t) +
n−1∑
i=0

hi1(Ti,Ti+1](t),

where 0 = T0 ≤ T1 ≤ · · · ≤ Tn ≤ T are stopping times and hi is FTi
-measurable,

i = 0, 1, . . . n− 1, the stochastic integral is defined as the sum

∫ T

0

HtdMt =
n−1∑
i=0

hi

(
MTi+1

−MTi

)
.

If M is a locally square integrable martingale, then one can extend the stochastic

integral from simple predictable processes to the class of predictable processes H

such that √∫ T

0

H2
t [M,M ](dt) is locally integrable. (2.8)

If M is a continuous local martingale, then the stochastic integral is defined for a

wider class of predictable processes H satisfying

∫ T

0

H2
t [M,M ](dt)

a.s.
< ∞.

Stochastic Integrals with respect to a semimartingale:
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Let S = (St)t≥0 be a semimartingale with representation given by (2.6). Let H

be a predictable process such that conditions (2.7) and (2.8) hold. Then the stochastic

integral is defined as the sum of integrals,

∫ T

0

HtdSt =

∫ T

0

HtdMt +

∫ T

0

HtdAt.

Although the decomposition of a semimartingale (2.6) is not unique, the stochastic

integral defined above does not depend on the decomposition used. For details, see

pages 216–217 of Klebaner (2005).

Since the integral with respect to a local martingale is a local martingale,

and the integral with respect to a finite variation process is a finite variation pro-

cess, it follows that a stochastic integral with respect to a semimartingale is still a

semimartingale.

Stochastic exponential:

Definition 2.14. Let X = (Xt)t≥0 be a semimartingale. Then the stochastic equation

Ut = 1 +

∫ t

0

Us−dXs (2.9)

has a unique solution, denoted by E(X), called the stochastic exponential of X.

For a Lévy process L, its ordinary exponential and stochastic exponential

correspond to different stochastic processes. One may ask, which of the two processes

is more suitable for building models for price dynamics. Actually, as pointed out in

Subsection 8.4.3 of Cont and Tankov (2004), the two approaches are equivalent: if

Z > 0 is the stochastic exponential of a Lévy process then it is also the ordinary
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exponential of another Lévy process, and vice versa. Therefore, the two operations,

although they produce different objects when applied to the same Lévy process, end

up by giving us the same class of positive processes. The following lemma, due to Goll

and Kallsen (2000), gives the relation between ordinary and stochastic exponentials

of a Lévy process:

Lemma 2.15 (Lemma A.8 of Goll and Kallsen (2000); Proposition 8.22 of Cont and

Tankov (2004)). (i) Let X = (Xt)t≥0 be a Lévy process with Lévy triplet (a, σ2, ρ)

and Z = E(X) its stochastic exponential. If Z
a.s.
> 0, then there exists another Lévy

process L = (Lt)t≥0 such that Zt = eLt, where

Lt = logZt = Xt −
σ2t

2
+
∑

0≤s≤t

(log (1 + ∆Xs)−∆Xs) .

Its Lévy triplet (aL, σ
2
L, ρL) is given by

aL = a+
σ2

2
−
∫ ∞

−∞

(
log (1 + x) 1{−1≤log(1+x)≤1} − x1{−1≤x≤1}

)
ρ (dx) ,

σL = σ,

ρL(A) = ρ ({x : log(1 + x) ∈ A}) =

∫ ∞

−∞
1A log (1 + x) ρ (dx) .

(ii) Let L = (Lt)t≥0 be a Lévy process with Lévy triplet (aL, σ
2
L, ρL) and St = eLt

its ordinary exponential. Then there exists a Lévy process X = (Xt)t≥0 such that St

is the stochastic exponential of X, i.e., S = E(X), where

Xt = Lt +
σ2t

2
−
∑

0≤s≤t

(
1 + ∆Ls − e∆Ls

)
.
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The Lévy triplet (a, σ2, ρ) of X is given by

a = aL −
σ2

L

2
−
∫ ∞

−∞

(
(ex − 1) 1{−1≤ex−1≤1} − x1{−1≤x≤1}

)
ρL (dx) ,

σ = σL,

ρ(A) = ρL ({x : ex − 1 ∈ A}) =

∫ ∞

−∞
1A (ex − 1) ρL (dx) .

2.3 Heavy-tailed and Light-tailed Distribution Classes

2.3.1 Subexponentiality and Rapid Variation

Let us denote by K the class of (right) heavy-tailed distributions, i.e.,

K =

{
F distribution on (−∞,∞) :

∫ ∞

−∞
eεxF (dx) = ∞ for all ε > 0

}
.

In insurance mathematics, claim-size distributions are often assumed to belong to

some subclass of the class K.

Next we introduce several related subclasses of the class K. A distribution F

on (−∞,∞) is said to have a long tail, denoted by F ∈ L, if F (x) > 0 for all x and

lim
x→∞

F (x− y)

F (x)
= 1 (2.10)

holds for all (or, equivalently, for some) y 6= 0.

Throughout this thesis, for two distributions F and G on (−∞,∞) denote by

F ∗G(x) =

∫ ∞

−∞
F (x− y)G(dy)

the convolution of F and G. Write F 1∗ = F and F n∗ = F ∗ F (n−1)∗ for every

n = 2, 3, . . .. For notational convenience, write F 0∗ as a distribution degenerate at

0. A very important subclass of L is the subexponential class S. By definition, a



21

distribution F on [0,∞) is subexponential, denoted by F ∈ S, if F (x) > 0 for all

x ≥ 0 and the relation

lim
x→∞

F n∗(x)

F (x)
= n (2.11)

holds for all (or, equivalently, for some) n = 2, 3, . . .. More generally, a distribution

F on (−∞,∞) is also subexponential if F+(x) = F (x)1(x≥0) is. In this case, relation

(2.11) still holds. However, for F on (−∞,∞), relation (2.11) is not sufficient for

F ∈ S; see the example in Subsection 2.3.2.

Table 2.1, partially copied from Table 1.2.6 of Embrechts et al. (1997), gives

some examples in the class S.

Name Tail F or density f Parameters

Lognormal f(x) = 1√
2πσx

e−(log x−µ)2/(2σ2) −∞ < µ <∞, σ > 0

Pareto F (x) =
(

κ
κ+x

)α
α, κ > 0

Burr F (x) =
(

κ
κ+xτ

)α
α, κ, τ > 0

Benktander-

type-I

F (x)=(1 + 2(β/α) log x)

e−β(log x)2−(α+1) log x

α, β > 0

Benktander-

type-II

F (x) = eα/βx−(1−β)e−αxβ/β α > 0, 0 < β < 1

Weibull F (x) = e−cxτ
c > 0, 0 < τ < 1

Loggamma f(x) = αβ

Γ(β)
(log x)β−1x−α−1 α, β > 0

Table 2.1: Some examples of subexponential distributions
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We also want to introduce some subclasses of S that will play important

roles in the following chapters. One useful subclass is A, which was introduced by

Konstantinides et al. (2002). By definition, a distribution F on [0,∞) is said to

belong to the class A if F ∈ S and, for some v > 1,

lim sup
x→∞

F (vx)

F (x)
< 1. (2.12)

We remark that the class A almost coincides with the class S. Indeed, relation (2.12)

is satisfied by almost all useful distributions with unbounded supports on the right,

including all distributions in Table 2.1.

Another subclass of S is S∗, which was introduced by Klüppelberg (1988). By

definition, a distribution F on [0,∞) is said to belong to the class S∗ if F (x) > 0 for

all x ≥ 0, νF =
∫∞

0
F (x)dx <∞, and

lim
x→∞

∫ x

0

F (x− y)

F (x)
F (y)dy = 2νF .

It is well known that if F ∈ S∗, then both F ∈ S and Fe ∈ S, where Fe is the

equilibrium distribution of F , i.e.,

Fe(x) =
1

νF

∫ x

0

F (y)dy, x ≥ 0.

For a distribution F on (−∞,∞), its equilibrium distribution Fe is defined as the

equilibrium distribution of F+. Again, S∗ contains all distributions in Table 2.1 with

finite mean.

A closely related class is the class of dominatedly varying distributions. A

distribution F on (−∞,∞) is said to have a dominatedly-varying tail, denoted by



23

F ∈ D, if F (x) > 0 for all x and

lim sup
x→∞

F (vx)

F (x)
<∞

holds for all (or, equivalently, for some) 0 < v < 1.

L ∩ D forms another important subclass of S; see Proposition 1.4.4 of Em-

brechts et al. (1997). In particular, L∩D covers the class ERV of distributions with

extended-regularly-varying tails. By definition, a distribution F on (−∞,∞) is said

to belong to the class ERV(−α,−β) for some 0 ≤ α ≤ β <∞ if F (x) > 0 holds for

all x and the relations

v−β ≤ lim inf
x→∞

F (vx)

F (x)
≤ lim sup

x→∞

F (vx)

F (x)
≤ v−α (2.13)

hold for all v ≥ 1. The class ERV means the union of all ERV(−α,−β) over the

range 0 ≤ α ≤ β <∞. Note that relations (2.13) with α = β define the famous class

R−α of regularly-varying-tailed distributions with regularity index −α. Analogously,

the class R means the union of all R−α over the range 0 ≤ α <∞.

An extension of regular variation is rapid variation. By definition, a distribu-

tion F on (−∞,∞) is said to have a rapidly-varying tail, denoted byR−∞, if F (x) > 0

for all x and

lim
x→∞

F (vx)

F (x)
= 0

holds for all v > 1. Note that lognormal, Benktander-type I & II, and Weibull

distributions all belong to the class R−∞.
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2.3.2 Light-tailed Distribution Classes

When the right-hand side of (2.10) is replaced by eαy for some α ≥ 0, the class

L is generalized to the class L(α). By definition, a distribution F on (−∞,∞) is said

to belong to the class L(α) for some α ≥ 0 if F (x) > 0 for all x and

lim
x→∞

F (x− y)

F (x)
= eαy (2.14)

for all y ∈ (−∞,∞). For example, the exponential distribution with density f(x) =

αe−αx for α > 0 belongs to the class L(α). In the literature, a distribution F in

L(α) with α > 0 is thus usually said to have an exponential-like tail. Furthermore, a

distribution F on [0,∞) is said to belong to the class S(α) for some α ≥ 0 if F ∈ L(α)

and the limit

lim
x→∞

F 2∗(x)

F (x)
= 2c (2.15)

exists and is finite. It is known that the constant c in (2.15) is equal to
∫∞

0− eαxF (dx);

see Rogozin (2000) and references therein. More generally, a distribution F on

(−∞,∞) is also said to belong to the class S(α) if F+ does. In the literature, a

distribution F in S(α) with α > 0 is said to have a convolution-equivalent tail.

By using a distribution in the class S(α), we can construct an example showing

that for a distribution F on (−∞,∞) relation (2.11) with n = 2 is not sufficient for

F ∈ S.

Example. Let Y be a nonnegative random variable with a distribution G ∈ S(α)

for some α > 0. Define

X = Y − c
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where c is the positive constant satisfying that EeαY = ecα. Denote by F the distri-

bution of X. Then relation (2.11) with n = 2 holds for F . Actually, as x→∞,

F 2∗(x) = G2∗(x+ 2c) ∼ 2EeαYG(x+ 2c) ∼ 2e−cαEeαYG(x+ c) = 2F (x).

However, by Lemma 2.24(ii), F+ ∈ S(α) because, as x→∞,

F+(x) = F (x) = P(Y > x+ c) ∼ e−cαG(x).

Hence, in no way can F+ belong to L, not to say S.

Finally, we need density classes corresponding to the classes L(α) and S(α).

Throughout this thesis, for two measurable functions f and g : [0,∞) → [0,∞),

denote by

f ? g(x) =

∫ x

0

f(x− y)g(y)dy

the convolution of f and g. Write f 1? = f and fn? = f ?f (n−1)? for every n = 2, 3, . . ..

According to Chover et al. (1973) and Klüppelberg (1989), a measurable function

f : [0,∞) → [0,∞) is said to belong to the class Sd(α) for some α ≥ 0 if f(x) > 0

for all large x,

lim
x→∞

f(x− y)

f(x)
= eαy, y ∈ (−∞,∞) , (2.16)

and

lim
x→∞

f 2?(x)

f(x)
= 2c (2.17)

exists and is finite. Relation (2.16) defines the class Ld(α). It is known that the

constant c in (2.17) is equal to
∫∞

0
eαxf(x)dx. For a distribution F with a density

f ∈ Ld(α) for some α > 0, it is easy to see that f(x)/F (x) → α. Furthermore, for
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this case F ∈ S(α) if and only if f ∈ Sd(α). The convergence in both (2.14) and

(2.16) is automatically uniform on compact y-intervals. See Klüppelberg (1989) for

these assertions.

2.3.3 Inverse Gaussian Distributions

The class S(α) with α > 0 contains inverse Gaussian distributions, which find

important applications in various fields. The inverse Gaussian distributions form a

two-parameter family of continuous probability distributions with support on (0,∞).

The general forms of the probability density and distribution of an inverse Gaussian

distribution are given by

f(x) =
( ν

2πx3

)1/2

exp

{
−ν(x− µ)2

2µ2x

}
, (2.18)

F (x) = Φ

(√
ν

x

(
x

µ
− 1

))
+ exp

{
2ν

µ

}
Φ

(
−
√
ν

x

(
x

µ
+ 1

))
,

for x > 0, where Φ(·) is the standard normal distribution, µ > 0 is the expectation,

and ν > 0 is the shape parameter. The inverse Gaussian distribution with parameters

µ and ν is denoted by IG (µ, ν). According to the main theorem of Embrechts (1983),

IG (µ, ν) belongs to the class S(α) with α = ν/ (2µ2).

Here are some basic properties of inverse Gaussian distributions:

1. The moment generating function of F = IG (µ, ν) is given by

MF (t) = exp

{
ν

µ

(
1−

√
1− 2µ2t

ν

)}
.

2. If a random variable X is distributed by IG (µ, ν), then for each t > 0, the

random variable tX is distributed by IG (tµ, tν).
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3. IfX1, . . . , Xn are independent random variables withXi distributed by IG(µ0wi,

ν0w
2
i ), i = 1, . . . , n, then

n∑
i=1

Xi is distributed by IG
(
µ0w, ν0w

2
)
,

where w =
∑n

i=1wi.

Inverse Gaussian distributions have an intimate relationship with Brownian

motions. Actually, the inverse Gaussian distributions have their origin in Brownian

motions as first passage time distributions. Let B(µ) =
(
B

(µ)
t

)
t≥0

be a stochastic

process such that

B
(µ)
t = µt+ σBt, with B

(µ)
0 = 0,

where µ is a constant and (Bt)t≥0 is the standard Brownian motion. Considering

T (a) = inf
{
t > 0

∣∣∣B(µ)
t = a

}
,

the first passage time for a fixed level a > 0 by B(µ), we have the following results:

(i) if µ > 0, then P(T (a) <∞) = 1 and

T (a) is distributed by IG

(
a

µ
,
a2

σ2

)
;

(ii) if µ < 0, then P(T (a) <∞) = exp {2aµ/σ2} and

T (a) |T (a) <∞ is distributed by IG

(
−a
µ
,
a2

σ2

)
;

(iii) if µ = 0, then P(T (a) < ∞) = 1 and T (a) is distributed by a stable distribu-

tion with index 1/2. (See Feller (1966, page 170) for the definition of stable

distributions.)
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The above results can be proved by identifying the Laplace transform of T (a) given

that T (a) <∞; see Prabhu (1965) and Chhikara and Folks (1989, Chapter 3) for the

proofs.

The inverse Gaussian distributions have been applied to a wide range of fields.

Most of these applications are based on the idea of first passage times of a Brownian

motion with drift. These fields include actuarial science, demography, employment

management, finance, and even linguistics; see Chhikara and Folks (1989, Chapter

10), Seshadri (1999, Part II), and references therein.

2.3.4 Matuszewska Indices

In this subsection we introduce Matuszewska indices of a distribution, which

are connected with many useful properties of heavy-tailed distribution classes. As

was done by Tang and Tsitsiashvili (2003b), for each v > 0, we set

F ∗(v) = lim inf
x→∞

F (vx)

F (x)
, F

∗
(v) = lim sup

x→∞

F (vx)

F (x)
,

and then define

J+
F = inf

v>1

{
− logF ∗(v)

log v

}
, J−F = sup

v>1

{
− logF

∗
(v)

log v

}
.

In the terminology of Bingham et al. (1987), J+
F and J−F are the upper and lower

Matuszewska indices of the nonnegative and nondecreasing function f = 1/F . Fol-

lowing Tang and Tsitsiashvili (2003b), we call the quantities J+
F and J−F the upper

and lower Matuszewska indices of the distribution F , respectively. For more details

of the Matuszewska indices, see Bingham et al. (1987, Chapter 2.1) and Cline and
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Samorodnitsky (1994). Trivially, for a distribution F on (−∞,∞) its Matuszewska

indices J±F satisfy 0 ≤ J−F ≤ J+
F ≤ ∞. The following lemma is very useful:

Lemma 2.16 (Proposition 2.2.1 of Bingham et al. (1987)). Let F be a distribution

on (−∞,∞). Then,

(i) for every α′, 0 < α′ < J−F ≤ ∞, there are positive constants c1 and d1 such

that the inequality

F (y)

F (x)
≤ c1

(y
x

)−α′

(2.19)

holds whenever y ≥ x ≥ d1;

(ii) for every β′, 0 ≤ J+
F < β′ <∞, there are positive constants c2 and d2 such

that the inequality

F (y)

F (x)
≥ c2

(y
x

)−β′

(2.20)

holds whenever y ≥ x ≥ d2.

For a distribution F ∈ ERV(−α,−β), it is easy to see that J−F ≥ α and J+
F ≤ β.

Hence, inequalities (2.19) and (2.20) apply to F ∈ ERV(−α,−β).

Corollary 2.17. If F ∈ ERV(−α,−β) for some 0 < α ≤ β <∞, then for arbitrarily

chosen 0 < α′ < α ≤ β <β′ <∞, there are some c > 0 and x0 > 0 such that

F (y)

F (x)
≤ cmax

{(y
x

)−α′

,
(y
x

)−β′
}

for all x, y ≥ x0.

Corollary 2.17 is very similar to the well-known Potter’s bound for distributions

in the class R.
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Lemma 2.18 (Theorem 1.5.6 of Bingham et al. (1987)). If F ∈ R−α for some α ≥ 0,

then for arbitrarily chosen c > 1, δ > 0, there exists x0 > 0 such that

F (y)

F (x)
≤ cmax

{(y
x

)−α+δ

,
(y
x

)−α−δ
}

for all x, y ≥ x0.

2.3.5 Other Properties

The following interrelations hold for heavy-tailed distribution classes:

(a) R ⊂ ERV ⊂ L ∩ D ⊂ S ⊂ L ⊂ K;

(b) D 6⊂ S and S 6⊂ D.

The inclusions R ⊂ ERV ⊂ L ∩ D are immediate consequences of their definitions.

For the other interrelations above, see Embrechts et al. (1997) and Embrechts and

Omey (1984) for detailed discussions. Figure 2.1 below clearly shows the interrelations

between these heavy-tailed distribution classes.

Subexponential distributions are good candidates for modeling large claim

sizes in insurance. Suppose that X1, . . . , Xn are i.i.d. random variables with distri-

bution F . Denote the partial sum by Sn = X1 + · · · + Xn and the maximum by

Mn = max (X1, . . . , Xn). Then for every n = 2, 3, . . .,

P (Sn > x) = F n∗(x),

P (Mn > x) = F n(x) = F (x)
n−1∑
k=0

F k(x) ∼ nF (x).

If F ∈ S, then by relation (2.11), we have

P (Sn > x) ∼ P (Mn > x) , (2.21)
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Figure 2.1: Classes of heavy-tailed distributions

which is called the principle of a single big jump in the literature. Actually, relation

(2.21) is one of the intuitive notions of large claims in insurance business stating that

extreme event occurs due to an unusually big jump.

This feature has been discussed in many publications. For instance, when

doing a case study on the accumulated loss in the most severe storms encountered

by a Swedish insurance group over the period 1982-1993, Rootzén and Tajvidi (1997)

wrote that: “It can be seen that the most costly storm contributes about 25% of the

total amount for the period, that it is 2.7 times bigger than the second worst storm,

and that four storms together make up about half of the claims.” Also, the 20-80

rule-of-thumb used by practicing actuaries when large claims are involved states that

20% of the individual claims are responsible for more than 80% of the total claim

amount in a well defined portfolio.
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Next we will present several properties of the distribution classes introduced

in Subsection 2.3.1 that are to be used in the following chapters. The following two

lemmas are for heavy-tailed distributions:

Lemma 2.19 (Theorem 1.5.2 of Bingham et al. (1987)). If a distribution F ∈ R−α

for some α > 0, then for every 0 < a <∞, the convergence

lim
x→∞

F (vx)

F (x)
= v−α

holds uniformly in v on [a,∞), where the uniformity of the convergence means

lim
x→∞

sup
v≥a

∣∣∣∣F (vx)

F (x)
− v−α

∣∣∣∣ = 0.

Lemma 2.20 (Theorem 3.1 of Su and Tang (2003)). Consider a distribution F on

[0,∞) with finite mean. If either F ∈ L or F ∈ D, then the relation

lim
x→∞

F (x)∫∞
x
F (y)dy

= α (2.22)

holds with α = 0.

Then we give some properties of the classes L(α) and S(α):

Lemma 2.21 (Lemma 3.1 of Tang (2007a)). For each α > 0, the following three

assertions are equivalent:

(i) F ∈ L(α); (ii) lim
x→∞

F (x)∫∞
x
F (y)dy

= α; (iii) Fe ∈ L(α).

Lemma 2.22. Assume that F on (−∞,∞) satisfies 0 <
∫∞

0
F (y)dy <∞. For each

α ≥ 0, Fe ∈ L(α) if and only if relation (2.22) holds.
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Proof. For α > 0, see Lemma 2.21. For α = 0, observe that

0 ≤ Fe(x)− Fe(x+ 1)

Fe(x)
≤ F (x)∫∞

x
F (y)dy

≤ Fe(x− 1)− Fe(x)

Fe(x)
,

from which the desired equivalence follows.

Lemma 2.23. If F ∈ L(α) for some α ≥ 0, then for every β > α,

(i) there exist some positive constants c0 and x0 such that, for all x ≥ y ≥ x0,

F (y)

F (x)
≤ c0e

β(x−y);

(ii) e−βx = o
(
F (x)

)
.

Proof. (i) Note that F ∈ L(α) if and only if F (lnx) is regularly varying of index −α.

Thus, the desired conclusion is a straightforward consequence of Lemma 2.18.

(ii) For some β′, α < β′ < β, by item (i) there exist some positive constants

c0 and x0 such that, for all x ≥ x0,

F (x0)

F (x)
≤ c0e

β′(x−x0).

Hence, the relation e−βx = o
(
F (x)

)
holds.

Lemma 2.24. Let F , G, G1, G2 be distributions on (−∞,∞).

(i) If F ∈ L(α) for some α ≥ 0 and
∫∞
−∞ eβyG(dy) <∞ for some β > α, then

lim
x→∞

F ∗G(x)

F (x)
=

∫ ∞

−∞
eαyG(dy).

(ii) If F ∈ S(α) for some α ≥ 0 and the limit ci = limGi(x)/F (x) exists and

belongs to [0,∞) for i = 1, 2, then

lim
x→∞

G1 ∗G2(x)

F (x)
= c1

∫ ∞

−∞
eαyG2(dy) + c2

∫ ∞

−∞
eαyG1(dy).
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Proof. (i) See Lemma 2.1 of Pakes (2004). Notice that, under the current condi-

tions, the relation G(x) = o
(
F (x)

)
, as required in Lemma 2.1 of Pakes (2004), holds

automatically by Lemma 2.23(ii).

(ii) See Proposition 2 of Rogozin and Sgibnev (1999).

Finally, we give two analogous upper bound properties of the distribution class

S(α) and the density class Sd(α).

Lemma 2.25. If F ∈ S(α) for some α ≥ 0, then for every n = 1, 2, . . .,

lim
x→∞

F n∗(x)

F (x)
= n

(∫ ∞

−∞
eαyF (dy)

)n−1

. (2.23)

Furthermore, for every ε > 0 there exists some Kε > 0 such that for all n = 1, 2, . . .

and x > 0,

F n∗(x) ≤ Kε

(
ε+

∫ ∞

−∞
eαyF (dy)

)n

F (x). (2.24)

Proof. For F on [0,∞), relations (2.23) and (2.24) are known in Cline (1986, Corollary

1) and Embrechts and Goldie (1980). For extension to F on (−∞,∞), see Lemma

3.2 of Tang and Tsitsiashvili (2003b) for the proof of (2.23) and Lemma 5.3 of Pakes

(2004) for the proof of (2.24).

Lemma 2.26 (Chover et al. (1973); Klüppelberg (1989)). If f ∈ Sd(α) for some

α ≥ 0, then for every n = 1, 2, . . .,

lim
x→∞

fn?(x)

f(x)
= n

(∫ ∞

0

eαyf(y)dy

)n−1

.

Furthermore, if f is bounded, then for every ε > 0 there exists some Kε > 0 such that
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for all n = 1, 2, . . . and x > 0,

fn?(x) ≤ Kε

(
ε+

∫ ∞

0

eαyf(y)dy

)n

f(x).
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CHAPTER 3
DISCOUNTED AGGREGATE CLAIMS WITH HEAVY TAILS

In this chapter, we introduce a constant force of interest in the renewal risk

model and study the tail probability of discounted aggregate claims. Since it is usu-

ally not possible to get closed-form expressions except for few ideal cases, we instead

aim at asymptotic formulas. The question is of much practical interest in insurance

risk management. The study can provide an easy and precise approximation when

measuring the risk of large losses via Value-at-Risk or Conditional Tail Expectation.

Also, such an approximation usually plays a crucial role in pricing some insurance

products. We derive for the tail probability of discounted aggregate claims an asymp-

totic formula, which holds uniformly for all time horizons. A key assumption in our

model is that the claim-size distribution is subexponential. This chapter is based on

the joint research paper Hao and Tang (2008).

3.1 Introduction

Consider the renewal risk model in which claim sizes Xk, k = 1, 2, . . . , consti-

tute a sequence of i.i.d. nonnegative random variables with common distribution F ,

while their arrival times τk, k = 1, 2, . . . , independent of Xk, k = 1, 2, . . . , constitute

a renewal counting process

Nt = #{k = 1, 2, . . . : τk ≤ t}, t ≥ 0. (3.1)

According to Definition 2.2, the inter-arrival times θ1 = τ1, θk = τk−τk−1, k = 2, 3, . . . ,

constitute another sequence of i.i.d., nonnegative, and not-degenerate-at-zero random
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variables. If (Nt)t≥0 is a Poisson process, then this model reduces to the commonly

used compound Poisson model. Aggregate claims form a random sum St =
∑Nt

k=1Xk,

t ≥ 0. Regarding to the distribution of St, we have the following lemma connecting

subexponentiality and compound distributions:

Lemma 3.1 (Theorem A3.20 of Embrechts et al. (1997)). Suppose pn, n = 0, 1, . . .,

form a probability measure on the set of nonnegative integers such that for some ε > 0,

∞∑
n=0

pn(1 + ε)n <∞,

and set

G(x) =
∞∑

n=0

pnF
n∗(x), x ≥ 0.

(i) If F ∈ S, then G ∈ S, and

lim
x→∞

G(x)

F (x)
=

∞∑
n=1

npn. (3.2)

(ii) Conversely, if (3.2) holds and there exists n ≥ 2 such that pn > 0, then F ∈ S.

For example, if (Nt)t≥0 is a Poisson process with rate λ, then for fixed t > 0, the tail

probability of St is equivalent to λF as long as F is subexponential.

We want to investigate the impact of interest rate on the tail behavior of the

aggregate claims process. Suppose that there is a constant force of interest r > 0.

The discounted (actuarial present value of) aggregate claims are expressed as the

stochastic process

Dr(t) =

∫ t

0−
e−rsdSs =

∞∑
k=1

Xke
−rτk1(τk≤t), t ≥ 0. (3.3)
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From (3.3) we see that (Dr(t))t≥0 corresponds to a special case of the stochastic

integral

Zt =

∫ t

0−
e−RsdPs, t ≥ 0,

where (Rt)t≥0 and (Pt)t≥0 are two independent stochastic processes fulfilling certain

requirements so that Z∞ is well defined; see Subsection 2.2.3 for stochastic integral.

When both of them are Lévy processes, Gjessing and Paulsen (1997) gave a wealth of

examples showing the exact distribution or asymptotic tail probability of Z∞. Related

discussions on the distribution of Z∞ can also be found in Dufresne (1990), Paulsen

(1993, 1997), and Nilsen and Paulsen (1996), among others. However, we notice that

all these references did not pay particular attention to the important case that (Pt)t≥0

has heavy-tailed jumps.

In this chapter, we are interested in the asymptotic tail behavior of Dr(t) for

all t for which the renewal function

λt = ENt =
∞∑

k=1

P (τk ≤ t)

is positive. Define Λ = {t : λt > 0} ∪ {∞} = {t : P (τ1 ≤ t) > 0} ∪ {∞} for later use.

For two positive bivariate functions a (·, ·) and b (·, ·), we say the asymptotic

relation a (x, t) ∼ b (x, t) holds uniformly over all t in a nonempty set ∆ if

lim
x→∞

sup
t∈∆

∣∣∣∣a (x, t)

b (x, t)
− 1

∣∣∣∣ = 0.

Tang (2007b) investigated the tail probability of the stochastic process Dr(t) in (3.3)

and gave the following result:
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Proposition 3.2 (Theorem 1.1 of Tang (2007b)). Consider the renewal risk model

introduced above. If F ∈ ERV, then the relation

P (Dr(t) > x) ∼
∫ t

0−
F (xers)dλs (3.4)

holds uniformly for all t ∈ Λ.

Formula (3.4) transparently captures all stochastic information of the claim sizes

and their arrival times. However, we point out that the assumption F ∈ ERV un-

fortunately excludes some important distributions such as lognormal and Weibull

distributions. In the context of ruin theory, Tang (2005) and Wang (2008) obtained

some similar asymptotic results as (3.4) for the finite-time ruin probability with a

fixed time horizon t ∈ Λ.

Our goal in this chapter is to extend Proposition 3.2 from the class ERV to

the subexponential class S so that lognormal and heavy-tailed Weibull distributions

are included. The class ERV enjoys some favorable properties like inequalities (2.19)

and (2.20), which play a crucial role in establishing Proposition 3.2, but the class S

does not possess such properties. Therefore, to achieve the desired extension we have

to employ different approaches.

The rest of this chapter consists of three sections: Section 3.2 presents our main

results, Section 3.3 proves them, in turn, after preparing some necessary lemmas, and

Section 3.4 gives a simulation result.

3.2 Main Results

The first main result of this chapter is given below:
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Theorem 3.3. Consider the discounted aggregate claims described in relation (3.3).

If F ∈ S, then relation (3.4) holds uniformly for all t ∈ ΛT = Λ∩ [0, T ] for arbitrarily

fixed finite T ∈ Λ.

In the next two main results below, we extend the set over which relation (3.4)

holds uniformly to the maximal set Λ.

Theorem 3.4. Consider the discounted aggregate claims described in relation (3.3).

If F ∈ A and P (θ1 > δ) = 1 for some δ > 0, then relation (3.4) holds uniformly for

all t ∈ Λ.

Recalling the structure of Dr(t) in (3.3), the purpose of the technical assump-

tion on the distribution of θ1 in Theorem 3.4 is to let the series Dr(t) converge more

easily. Though not nice-looking, it causes no trouble for real applications since δ can

be arbitrarily close to 0. Nevertheless, we can get rid of this assumption if we slightly

reduce the scope of the claim-size distribution F , as shown below:

Theorem 3.5. Consider the discounted aggregate claims described in relation (3.3).

If F ∈ S ∩ R−α for some 0 < α ≤ ∞ and θ1 is positive, then relation (3.4) holds

uniformly for all t ∈ Λ.

Our last main result is given below:

Theorem 3.6. Consider the discounted aggregate claims described in relation (3.3),

in which (Nt)t≥0 is a Poisson process with intensity λ > 0. If F ∈ S and Fe ∈ A,

then the relation

P (Dr(t) > x) ∼ λ

∫ t

0

F (xers)ds (3.5)
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holds uniformly for all t ∈ (0,∞].

We remark that the assumptions F ∈ S and Fe ∈ A in Theorem 3.6 are

satisfied by almost all useful heavy-tailed distributions such as Pareto (with finite

expectation), lognormal, and heavy-tailed Weibull distributions.

Let us illustrate the usefulness of the uniformity of (3.5). Denote by

τ(x) = inf{t ≥ 0 : Dr(t) > x}, x > 0,

the time when Dr (t) first up-crosses the level x. Clearly, τ(x) is a defective random

variable with total mass P (τ(x) <∞) = P (Dr(∞) > x) < 1.

Let all conditions of Theorem 3.6 hold. We first consider the asymptotic

behavior of the Laplace transform of τ (x). For every u > 0, use integration by parts

and the identity P (τ(x) ≤ t) = P (Dr(t) > x) for all t ≥ 0 to get

Ee−uτ(x) = u

∫ ∞

0

P (Dr(t) > x) e−utdt.

Substituting the uniform asymptotic relation (3.5) into the above then changing the

order of integrals, we have

Ee−uτ(x) ∼ λ

∫ ∞

0

e−usF (xers)ds.

This gives an explicit asymptotic expression for the Laplace transform of τ (x).

We then consider the limiting distribution of τ (x) conditional on (τ (x) <∞).

For every fixed t > 0, by Theorem 3.6,

P (τ (x) ≤ t| τ (x) <∞) =
P (Dr (t) > x)

P (Dr (∞) > x)
∼
∫ t

0
F (xers)ds∫∞

0
F (xers)ds

. (3.6)
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If F ∈ R−α for some α > 0, then using Lemma 2.19 we see that the convergence

F (xers)

F (x)
→ e−αrs (3.7)

holds uniformly for all s ∈ [0,∞). Therefore, dividing both integrands on the right-

hand side of (3.6) by F (x) then plugging (3.7), we obtain

P (τ (x) ≤ t| τ (x) <∞) → 1− e−αrt,

meaning that the limiting distribution under discussion is exponential.

3.3 Proofs

3.3.1 Proof of Theorem 3.3

Lemma 3.7. Let X1, . . . , Xn be n independent random variables, each Xk distributed

by Fk. If there are n positive constants l1, . . . , ln, and a distribution F ∈ S such that

Fk (x) ∼ lkF (x) holds for k = 1, . . . , n, then for arbitrarily fixed numbers a and b,

0 < a ≤ b <∞, the relation

P

(
n∑

k=1

ckXk > x

)
∼

n∑
k=1

Fk (x/ck)

holds uniformly for all (c1, . . . , cn) ∈ [a, b]× · · · × [a, b] .

Proof. The proof can be given by going along the same lines of the proof of Proposition

5.1 of Tang and Tsitsiashvili (2003a) with some obvious modifications.

Lemma 3.8 (Lemma 2.2 of Cai and Kalashnikov (2000)). Consider the renewal

counting process (Nt)t≥0 defined in (3.1). For any t1 ≥ 0, t2 ≥ 0, there exists a

random variable N̂t2 such that N̂t2 and Nt1 are independent, N̂t2
d
= Nt2, and

Nt1+t2 ≤ Nt1 + N̂t2 + 1.
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Lemma 3.9. Consider the renewal counting process (Nt)t≥0 defined in (3.1). There

exists some h > 0 such that EehNt <∞ holds for all t ≥ 0.

Proof. It is shown in Stein (1946) that, for arbitrarily fixed t0 > 0, there exists some

h > 0 such that EehNt0 < ∞. For every t ≥ 0, we can find a positive integer k

such that (k − 1) t0 ≤ t < kt0. Inductively applying Lemma 3.8, we can obtain i.i.d.

random variables N̂t0 (1) , . . . , N̂t0 (k) with common distribution as that of Nt0 such

that

Nt ≤ Nkt0

d

≤
k∑

i=1

N̂t0 (i) + k − 1,

where for two random variables X and Y, the relation X
d

≤ Y means that P(X >

x) ≤ P(Y > x) for all x. Therefore, EehNt <∞, as claimed.

Now we are ready to give the proof for Theorem 3.3.

Proof of Theorem 3.3. Arbitrarily choose some positive integer N . Clearly, for

t ∈ ΛT ,

P (Dr(t) > x) =

(
N∑

n=1

+
∞∑

n=N+1

)
P

(
n∑

k=1

Xke
−rτk > x,Nt = n

)
= I1 (x, t,N) + I2 (x, t,N) .



44

First consider I2 (x, t,N). We have

I2(x, t,N) ≤
∞∑

n=N+1

P

(
n∑

k=1

Xke
−rτ1 > x, τn ≤ t < τn+1

)

=
∞∑

n=N+1

∫ t

0−
P

(
n∑

k=1

Xke
−rs > x, τn − τ1 ≤ t− s < τn+1 − τ1

)
P (τ1 ∈ ds)

=
∞∑

n=N+1

∫ t

0−
P

(
n∑

k=1

Xk > xers

)
P (Nt−s = n− 1) P (τ1 ∈ ds)

≤
∞∑

n=N

∫ t

0−
P

(
n+1∑
k=1

Xk > xers

)
P (Nt−s = n) dλs.

Applying Lemma 2.25 to the above, for every ε > 0 and some cε > 0,

I2 (x, t,N) ≤ cε (1 + ε)

∫ t

0−
F (xers)E(1 + ε)Nt−s1{Nt−s≥N}dλs

≤ cε (1 + ε) E(1 + ε)NT 1{NT≥N}

∫ t

0−
F (xers)dλs.

By Lemma 3.9, we can choose some ε sufficiently small such that E(1 + ε)NT < ∞.

It follows that E(1 + ε)NT 1{NT≥N} → 0 as N →∞. Therefore, for all x > 0,

lim
N→∞

sup
t∈ΛT

I2 (x, t,N)∫ t

0− F (xers) dλs

= 0. (3.8)

Next consider I1 (x, t,N). Using Lemma 3.7, it holds uniformly for all t ∈ ΛT that

I1 (x, t,N) ∼

(
∞∑

n=1

n∑
k=1

−
∞∑

n=N+1

n∑
k=1

)
P
(
Xke

−rτk > x,Nt = n
)

= I11 (x, t)− I12 (x, t,N) .

Clearly, for all t ∈ ΛT ,

I11 (x, t) =
∞∑

k=1

P
(
Xke

−rτk > x,Nt ≥ k
)

=

∫ t

0−
F (xers) dλs. (3.9)
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For I12 (x, t,N), similarly to the derivation for I2 (x, t,N), we have

I12 (x, t,N) ≤
∞∑

n=N+1

n∑
k=1

P
(
Xke

−rτ1 > x,Nt = n
)

≤
∞∑

n=N

n+1∑
k=1

∫ t

0−
F (xers) P (Nt−s = n) dλs

≤
∫ t

0−
F (xers) dλs

∞∑
n=N

(n+ 1) P (NT ≥ n) .

It follows that, for all x > 0,

lim
N→∞

sup
t∈ΛT

I12 (x, t,N)∫ t

0− F (xers) dλs

= 0. (3.10)

From (3.8), (3.9), and (3.10) we conclude that the asymptotic relation (3.4) holds

uniformly for all t ∈ ΛT .

3.3.2 Proof of Theorem 3.4

Lemma 3.10. If a distribution F on [0,∞) satisfies (2.12) for some v > 1, then

lim
t→∞

lim sup
x→∞

∫∞
t
F (xers) dλs∫ t

0
F (xers) dλs

= 0, (3.11)

where the positive constant r and the renewal function λs, s ≥ 0, are the same as

introduced in Section 3.1.

Proof. For every t ∈ Λ, apply inequality (2.19) to obtain that, for x ≥ x0,∫∞
t
F (xers) dλs∫ t

0
F (xers) dλs

=

∫∞
t
F (xers) /F (xert) dλs∫ t

0
F (xers) /F (xert) dλs

≤ c2
∫∞

t
e−pr(s−t)dλs∫ t

0
epr(t−s)dλs

= c2
∫∞

t
e−prsdλs∫ t

0
e−prsdλs

.

This implies (3.11).
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Lemma 3.11 (Corollary 3.1 of Chen et al. (2005)). Let Xk, k = 1, 2, . . ., be a

sequence of i.i.d. nonnegative random variables with common distribution F ∈ A. If

∞∑
k=1

ωδ
k <∞, for some 0 < δ <

J−F
1 + J−F

,

where J−F is the lower Matuszewska index of F , then

P

(
∞∑

k=1

ωkXk > x

)
∼

∞∑
k=1

P (ωkXk > x) .

Before presenting the following lemmas, we need to define the association of

random variables. We use the definition given by Esary et al. (1967) here:

Definition 3.12. Random variables X1, . . . , Xn are associated if

Cov(f(X), g(X)) ≥ 0, where X = (X1, . . . , Xn) ,

for all nondecreasing functions f and g for which Ef(X), Eg(X), and Ef(X)g(X)

exist.

Lemma 3.13 (Theorem 2.1 of Esary et al. (1967)). Independent random variables

are associated.

Lemma 3.14. Under the conditions of Theorem 3.4, we have

P (Dr(∞) > x) .
∫ ∞

0

F (xers)dλs. (3.12)

Proof. Arbitrarily choose some positive integerN such thatNδ ∈ Λ. Since P (θ1 > δ) =

1, we have

P (Dr(∞) > x) ≤ P

(
N∑

k=1

Xke
−rτk +

(
∞∑

k=N+1

Xke
−r(k−N)δ

)
e−rτN > x

)
. (3.13)
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Write Σδ =
∑∞

k=N+1Xke
−r(k−N)δ, whose distribution does not depend onN . Applying

Lemma 3.11,

P (Σδ > x) = P

(
∞∑

k=1

Xke
−rkδ > x

)
∼ F (x)

∞∑
k=1

F
(
xerkδ

)
F (x)

.

Hence, by inequality (2.19), there is some constant c∗ > 0 such that P (Σδ > x) ≤

c∗F (x) for all x ∈ [0,∞). Next we come back to (3.13). Introduce a new ran-

dom variable Σ̃δ independent of {Xk, k = 1, 2, . . .} and {τk, k = 1, 2, . . .} with a tail

satisfying

P
(
Σ̃δ > x

)
= min

{
C∗F (x) , 1

}
, x ≥ 0.

Therefore, Σδ

d

≤ Σ̃δ, and

P (Dr(∞) > x) ≤ P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
. (3.14)

To apply Lemma 3.7, we choose some M1 > 0 and derive

P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
= P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x,
N⋃

i=1

(θi ≥M1)

)

+P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x,
N⋂

i=1

(θi < M1)

)
= J1 (x,N,M1) + J2 (x,N,M1) . (3.15)

Since θ1, . . . , θN are i.i.d. random variables, by Lemma 3.13 they are associated. By

the definition of association we have

J1 (x,N,M1) ≤ P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
P

(
N⋃

i=1

(θi ≥M1)

)
. (3.16)

Substituting (3.16) into (3.15) and rearranging the resulting inequality, we have

P

(
N∑

k=1

Xke
−rτk + Σ̃δe

−rτN > x

)
≤ J2 (x,N,M1)

1− P
(⋃N

i=1 (θi ≥M1)
) .
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Further substituting this into (3.14), applying Lemma 3.7 to J2 (x,N,M1), and letting

M1 →∞, we obtain that

P (Dr(∞) > x) .
N∑

k=1

P
(
Xke

−rτk > x
)

+ P
(
Σ̃δe

−rτN > x
)

≤
∞∑

k=1

P
(
Xke

−rτk > x
)

+

∫ ∞

Nδ

P
(
Σ̃δ > xers

)
P (τN ∈ ds)

≤
∫ ∞

0

F (xers)dλs + c∗

∫ ∞

Nδ

F (xers) P (τN ∈ ds) . (3.17)

Apply inequality (2.19) again to obtain that, for some M2 ∈ Λ∩ (0, Nδ] and all large

x,

∫∞
Nδ
F (xers) P (τN ∈ ds)∫∞

0
F (xers)dλs

≤
cF
(
xerM2

)
Ee−pr(τN−M2)∫M2

0
F (xers)dλs

≤ c

λM2

Ee−pr(τN−M2) → 0, (3.18)

as N → ∞. From (3.17) and (3.18), the asymptotic relation (3.12) follows immedi-

ately.

Now we are ready to give the proof for Theorem 3.4.

Proof of Theorem 3.4. According to Lemma 3.10, for every ε > 0 there exists

some T0 > 0 such that the inequality

∫ ∞

T0

F (xers) dλs ≤ ε

∫ T0

0

F (xers) dλs (3.19)

holds for all large x. By Theorem 3.3 and inequality (3.19), it holds uniformly for all
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t ∈ (T0,∞] that

P (Dr (t) > x) ≥ P (Dr (T0) > x)

∼
∫ T0

0

F (xers) dλs

≥
(∫ t

0

−
∫ ∞

T0

)
F (xers) dλs

≥ (1− ε)

∫ t

0

F (xers) dλs.

Likewise, by Lemma 3.14 and inequality (3.19), it holds uniformly for all t ∈ (T0,∞]

that

P (Dr (t) > x) ≤ P (Dr (∞) > x)

.
∫ ∞

0

F (xers) dλs

≤
(∫ t

0

+

∫ ∞

T0

)
F (xers) dλs

≤ (1 + ε)

∫ t

0

F (xers) dλs.

Hence, for all t ∈ (T0,∞] and all large x,

(1− 2ε)

∫ t

0

F (xers) dλs ≤ P (Dr (t) > x) ≤ (1 + 2ε)

∫ t

0

F (xers) dλs. (3.20)

By Theorem 3.3 again, the inequalities in (3.20) also hold for all t ∈ ΛT0 (hence for

all t ∈ Λ) and all large x. As ε > 0 is arbitrary, we complete the proof.

3.3.3 Proof of Theorem 3.5

For a distribution F ∈ R−α for some 0 < α ≤ ∞, relation (2.12) obviously

holds. Hence, Lemma 3.10 still works under the conditions of Theorem 3.5. We need

to prepare the following lemma to replace Lemma 3.14:
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Lemma 3.15. Consider the discounted aggregate claims described in relation (3.3).

If F ∈ S ∩R−α for some 0 < α ≤ ∞ and θ1 is positive, then we have

P (Dr(∞) > x) ∼
∫ ∞

0

F (xers)dλs. (3.21)

Proof. When F ∈ R−α for some 0 < α <∞, relation (3.21) holds by Proposition 3.2.

We only need to consider the case F ∈ S ∩R−∞.

The following proof is based on the work of Konstantinides and Tang (2009).

Denote Yk = e−rθk , k = 1, 2, . . .. Then (Xk, Yk), k = 1, 2, . . ., are i.i.d. random copies,

say, of the generic random pair (X, Y ). It is clear that

Dr(∞) =
∞∑

k=1

Xk

k∏
i=1

Yi. (3.22)

Furthermore, Dr(∞) satisfies the random functional equation

R
d
= Y (X +R) (3.23)

where R is a random variable independent of (X, Y ).

We turn to find out the asymptotic tail probability of the solution R for the

random equation (3.23). From (3.22) it is obvious that

P (R > x) ≥ P (X1Y1 > x) , −∞ < x <∞. (3.24)

For the upper bound, we consider the random difference equation

Rn+1 = Yn+1(Xn+1 +Rn), n = 0, 1, 2, . . . ,

where R0 is independent of {(Xk, Yk), k = 1, 2, . . .}. Since Y ∈ (0, 1), Rn converges

in distribution as n → ∞ to R, the unique solution of the random equation (3.23).
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Moreover, the convergence does not depend on R0. See Theorem 1.5 of Vervaat (1979)

for more details.

Let X ′ be independent of (X, Y ) and have the same distribution of X. We

have

P (Y (X +X ′) > x) =

∫ 1

0

P
(
X +X ′ >

x

y

)
P(Y ∈ dy)

∼ 2

∫ 1

0

F

(
x

y

)
P(Y ∈ dy)

= o(1)F (x),

where we used F ∈ S in the second step and F ∈ R−∞ and θ1 > 0 in the last step.

Thus, there exists some x0 > 0 large enough such that for all x > x0,

P (Y (X +X ′) > x) ≤ F (x). (3.25)

Letting R0 = X ′|X ′ > x0, we claim that

Y (X +R0)
d

≤ R0. (3.26)

Actually, when x ≤ x0, it is clear that P (Y (X +R0) > x) ≤ 1 = P (R0 > x). When

x ≤ x0, by (3.25) we have

P (Y (X +R0) > x) =
P (Y (X +X ′) > x,X ′ > x0)

P(X ′ > x0)

≤ P (Y (X +X ′) > x)

P(X ′ > x0)

≤ F (x)

P(X ′ > x0)

= P(R0 > x).

Hence, relation (3.26) holds for each case. From (3.26) it is clear that

Rn

d

≤ Rn−1, n = 1, 2, . . . .
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Therefore,

R
d

≤ Rn
d
= R0

n∏
i=1

Yi +
n∑

k=1

Xk

k∏
i=1

Yi, n = 0, 1, 2, . . . .

When n = 2, the above random inequality gives that, for all x,

P (R > x) ≤ P (R0Y1Y2 +X1Y1 +X2Y1Y2 > x)

=

∫ 1

0

P
(
R0Y2 +X1 +X2Y2 >

x

y

)
P (Y1 ∈ dy) . (3.27)

By Lemma 2.24(ii),

P (R0Y2 +X2Y2 > x) =

∫ 1

0

P
(
R0 +X2 >

x

y

)
P (Y2 ∈ dy)

∼
(

1

F (x0)
+ 1

)∫ 1

0

F

(
x

y

)
P (Y2 ∈ dy)

= o(1)F (x).

Then, applying Lemma 2.24(ii) again to (3.27) yields that

P (R > x) .
∫ 1

0

F

(
x

y

)
P (Y1 ∈ dy) = P (X1Y1 > x) . (3.28)

A combination of (3.24) and (3.28) gives that

P (R > x) ∼ P (X1Y1 > x) . (3.29)

It remains to prove that∫ ∞

0

F (xers)dλs ∼ P (X1Y1 > x) . (3.30)

Since Y1 ∈ (0, 1), it is easy to verify that the distribution of X1Y1 still belongs to the

class R−∞. By relation (2.19), for arbitrarily chosen p > 0 there are x0 > 0 and c > 0

such that, uniformly for all k = 1, 2, . . . and x ≥ x0,

1

P (X1Y1 > x)
P

(
Xk

k∏
i=1

Yi > x

)
≤ cE

(
k∏

i=2

Yi

)p

= c (EY p
1 )k−1 .
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Therefore, by the dominated convergence theorem,

lim
x→∞

∫∞
0
F (xers)dλs

P (X1Y1 > x)
= lim

x→∞

∑∞
k=1 P

(
Xk

∏k
i=1 Yi > x

)
P (X1Y1 > x)

= 1 +
∞∑

k=2

lim
x→∞

P
(
Xk

∏k
i=1 Yi > x

)
P (X1Y1 > x)

= 1.

From (3.29) and (3.30) we obtain relation (3.21).

Proof of Theorem 3.5. The proof can be given by copying the proof of Theorem

3.4 with the only modification that we use Lemma 3.15 instead of Lemma 3.14.

3.3.4 Proof of Theorem 3.6

Konstantinides et al. (2002) investigated the asymptotic behavior of the ruin

probability of the compound Poisson model. In their model, the surplus process is

expressed as

Sr (t) = xert + p

∫ t

0

er(t−s)ds−
∞∑

k=1

Xke
r(t−τk)1(τk≤t), t ≥ 0,

where x ≥ 0 is the initial surplus, p > 0 is the constant premium rate, and {Xk, k =

1, 2, . . .}, {τk, k = 1, 2, . . .}, and r are the same as appearing in relation (3.3). The

counting process (Nt)t≥0 generated by {τk, k = 1, 2, . . .} is a Poisson process with

intensity λ > 0. The ruin probability is defined as

ψr (x) = P
(

inf
0<t<∞

Sr (t) < 0
)
.

Theorem 2.1 of Konstantinides et al. (2002) shows that, if Fe ∈ A, then

ψr (x) ∼ λ

r

∫ ∞

x

F (y)

y
dy. (3.31)
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Based on relation (3.31) we produce the following result:

Lemma 3.16. Consider the discounted aggregate claims described in relation (3.3),

in which (Nt)t≥0 is a Poisson process with intensity λ > 0. If Fe ∈ A, then

P (Dr(∞) > x) ∼ λ

r

∫ ∞

x

F (y)

y
dy. (3.32)

Proof. In terms of the model of Konstantinides et al. (2002),

ψr (x) = P
(

sup
0<t<∞

(
Dr (t)− p

∫ t

0

e−rsds

)
> x

)
.

It follows that

ψr (x) ≤ P (Dr (∞) > x) ≤ ψr (x− p/r) . (3.33)

By (3.31) and integration by parts,

ψr (x) ∼ µλ

r

(
Fe (x)

x
−
∫ ∞

x

Fe (y)

y2
dy

)
=
µλ

r
(K11 (x)−K12 (x)) .

Changing x into x− p/r in the above yields that

ψr (x− p/r) ∼ µλ

r

(
Fe (x− p/r)

x− p/r
−
∫ ∞

x−p/r

Fe (y)

y2
dy

)
=
µλ

r
(K21 (x)−K22 (x)) .

Since Fe ∈ A ⊂ L,

K11 (x) ∼ K21 (x) , K12 (x) ∼ K22 (x) .

In order to infer ψr (x) ∼ ψr (x− p/r), it suffices to show that

lim sup
x→∞

K12 (x)

K11 (x)
< 1. (3.34)



55

Since Fe ∈ A, there exist some v and ε, v > 1 and 0 < ε < 1, such that Fe (vx) /Fe (x) ≤

1− ε holds for all large x. Hence, for all large x,

K12 (x)

K11 (x)
=

∞∑
n=1

∫ xvn

xvn−1

Fe (y)

Fe (x)

x

y2
dy ≤

∞∑
n=1

∫ xvn

xvn−1

Fe (xvn−1)

Fe (x)

x

y2
dy

≤
∞∑

n=1

(1− ε)n−1

∫ xvn

xvn−1

x

y2
dy =

v − 1

v − 1 + ε
.

This proves (3.34). Therefore by (3.31) and (3.33), relation (3.32) follows immediately.

Lemma 3.17. For a distribution F on [0,∞) with a finite positive expectation, if

relation (2.12) with F replaced by Fe holds for some v > 1, then

lim
t→∞

lim sup
x→∞

∫∞
t
F (xers) ds∫∞

0
F (xers) ds

= 0. (3.35)

Proof. Clearly,

∫∞
t
F (xers) ds∫∞

0
F (xers) ds

=
−
∫∞

xert
1
y
dFe (y)

−
∫∞

x
1
y
dFe (y)

=

Fe(xert)
xert −

∫∞
xert

Fe(y)
y2 dy

Fe(x)
x
−
∫∞

x
Fe(y)

y2 dy
.

By (3.34), there is some constant c∗ > 0 such that, uniformly for all t > 0,

∫∞
t
F (xers) ds∫∞

0
F (xers) ds

≤ c∗
Fe(xert)

xert

Fe(x)
x

≤ c∗e−rt.

Therefore, (3.35) holds.

Proof of Theorem 3.6. The proof can be given by copying the proof of Theorem

3.4 with the only modification that we use Lemmas 3.16 and 3.17 instead of Lemmas

3.10 and 3.14.
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3.4 Simulation

In this section, we simulate the uniform convergence in (3.5) on a finite time

interval (0, T ]. Set T = 60, i.e., the maximum horizon we consider is 60 years.

Assume that the constant force of interest is r = 0.1, claims arrive according to a

Poisson process with intensity λ = 5, and the claim sizes are i.i.d. with common

Pareto distribution F satisfying F (x) = 1/ (1 + x)2 for x ≥ 0. It is obvious that

F ∈ S and Fe ∈ A.

For each x, we find the supremum

sup
t∈(0,T ]

∣∣∣∣∣ P (Dr(t) > x)

λ
∫ t

0
F (xers)ds

− 1

∣∣∣∣∣ . (3.36)

Then we let x increase to see whether, as predicted by relation (3.5), the above

supremum goes to 0 and how fast the convergence is. We execute our simulation in

R software. The simulation result is shown in Figure 3.1 below.

Figure 3.1: Uniform convergence on (0, T ] with Pareto F
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From Figure 3.1 we see that as x increases the supremum given in (3.36)

converges to 0. The convergence speed is reasonable seeing that the expected claim

size is 1. Indeed, the supremum is very close to 0 when x comes up to 100.
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CHAPTER 4
THE MAXIMUM EXCEEDANCE OVER A RANDOM WALK

In this chapter, we consider a problem in the field of probability. Motivated by

the observations that many problems in applied fields, including corporate finance,

insurance risk, and production systems, can be reduced to the study of the distribu-

tion of the maximum exceedance of a sequence of random variables over a renewal

threshold, we derive a unified asymptotic formula for the tail probability of such a

maximum exceedance for both light-tailed and heavy-tailed cases. An application

of the main result to corporate finance is proposed in Section 4.2. The main result

will play an important role in the proofs of two light-tailed cases in Chapter 5. This

chapter is based on the joint research paper Hao et al. (2009).

4.1 Introduction and Main Result

Let {Yn, n = 1, 2, . . .} be a sequence of i.i.d. random variables with generic

random variable Y , common distribution F on (−∞,∞), and 0 < νF =
∫∞

0
F (y)dy <

∞. For every constant µ > 0, the maximum

M0 = sup
n≥1

(Yn − (n− 1)µ)

is finite almost surely. If the equilibrium distribution Fe is long tailed, then it is easy

to check that

lim
x→∞

P (M0 > x)∫∞
x
F (y)dy

=
1

µ
. (4.1)
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Actually, on the one hand,

P (M0 > x) ≤
∞∑

n=1

F (x+ (n− 1)µ) ≤ 1

µ

∫ ∞

x−µ

F (y)dy ∼ 1

µ

∫ ∞

x

F (y)dy.

On the other hand,

P (M0 > x) ≥
∞∑

n=1

F (x+ (n− 1)µ)−
∑

1≤n<m<∞

F (x+ (n− 1)µ)F (x+ (m− 1)µ)

≥
∞∑

n=1

F (x+ (n− 1)µ)−

(
∞∑

n=1

F (x+ (n− 1)µ)

)2

≥ 1

µ

∫ ∞

x

F (y)dy −
(

1

µ

∫ ∞

x−µ

F (y)dy

)2

∼ 1

µ

∫ ∞

x

F (y)dy.

Hence, relation (4.1) holds.

Motivated by the observation above, in this chapter we study the tail proba-

bility of the maximum exceedance of the sequence {Yn, n = 1, 2, . . .} over a random

walk with positive drift. Precisely, let {(Xn, Yn) , n = 1, 2, . . .} be a sequence of i.i.d.

random pairs with generic random pair (X, Y ). Assume that EX = µ > 0 and that

Y follows a distribution F on (−∞,∞). Then, the maximum

M = sup
n≥1

(Yn − Sn−1) , (4.2)

with Sn−1 =
∑n−1

i=1 Xi, is finite almost surely.

For the sake of consistency, for a random variable X with mean µ > 0 we

make a convention that

α

1− Ee−αX

∣∣∣∣
α=0

=
1

µ
.

The main result of this chapter is given below:
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Theorem 4.1. Consider the i.i.d. sequence {(Xn, Yn) , n = 1, 2, . . .} and the maxi-

mum M defined in (4.2), where EX = µ > 0 and Y is distributed by F . Then, the

relation

lim
x→∞

P (M > x)∫∞
x
F (y)dy

=
α

1− Ee−αX
(4.3)

holds under one of the following groups of conditions:

(i) Fe ∈ L(α) for some α ≥ 0, EX2 <∞, and Ee−βX < 1 for some β > α;

(ii) Fe ∈ S(α) for some α ≥ 0, P(−X > x) = o(F (x)), and Ee−αX < 1

provided α > 0.

Clearly, Ee−γX , as a function of γ, is convex over all γ for which Ee−γX is

finite. Hence for case (i), Ee−γX < 1 for every γ ∈ (0, β].

As shown in Lemma 2.22, for every α ≥ 0, the condition Fe ∈ L(α) is equiva-

lent to relation (2.22), i.e.,

lim
x→∞

F (x)∫∞
x
F (y)dy

= α.

In particular, the condition Fe ∈ L (or, equivalently, relation (2.22) with α = 0) is ful-

filled by most cited heavy-tailed distributions including all long-tailed or dominatedly-

varying-tailed distributions with finite mean; see Lemma 2.20.

It is worth mentioning that Theorem 4.1 allows X and Y to be arbitrarily

dependent. However, the asymptotic relation for P (M > x) completely eliminates

impact of the dependence of (X, Y ).

Some closely related works are summarized as follows:

(i) Robert (2005) considered a special case of our Theorem 4.1(i) with α = 0

andX positive and proposed an application to ruin theory in the presence of dividends



61

paid out at a sequence of random epochs. He considered the renewal risk model for

an insurance company. Assume that the insurance company uses a stopping time

τ1 to decide when the surplus Sτ1 > 0 is sufficiently large that a part f (Sτ1) is

distributed to the shareholders and the other part Sτ1 − f (Sτ1) kept to reinforce the

solvency margin. At this time, the surplus reduces to 0. The same rule is then used

to define τ2. In this way, we obtain a sequence of stopping times {τn, n = 1, 2, . . .}

and a sequence of dividends
{
f
(
Sτn − Sτn−1

)
, n = 1, 2, . . .

}
, where τ0 = 0. If we set

Xn = Sτn −Sτn−1 − f
(
Sτn − Sτn−1

)
and Yn = supτn−1≤t<τn

(
Sτn−1 − St

)
, then the ruin

probability, i.e., the probability that the surplus process S goes below 0 sometime is

ψ(x) = P (M > x), where M is defined in (4.2). According to Theorem 4.1(i), we can

give an explicit asymptotic expression for the ruin probability ψ(x) as

ψ(x) ∼ 1

EX1

∫ ∞

x

P (Y > y) dy.

(ii) Araman and Glynn (2006) systematically studied the same problem in

the framework of a perturbed random walk for various cases. Their Theorem 3

corresponds to a special case of our Theorem 4.1(i) with α > 0, X, Y independent,

and F exponential, but under the condition Ee−αX < 1, which is slightly weaker than

our condition Ee−βX < 1 for some β > α. Their Theorem 4, assuming that F has

a continuous hazard rate function converging to 0, corresponds to a special case of

our Theorem 4.1(i) with α = 0 and X, Y independent. Indeed, by L’Hôspital’s rule

the assumption that F has a continuous hazard rate function converging to 0 implies

that Fe ∈ L(0).

(iii) Palmowski and Zwart (2007) also studied the same problem but in the
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framework of a regenerative process. In terms of their model in which the regenera-

tive process S = (St)t≥0 has renewal epochs 0 = T0 < T1 < · · · , the random variables

Xn and Yn in our theorems correspond to STn−1 − STn and supTn−1≤t<Tn
St − STn−1 ,

respectively. In particular, their Theorem 1 corresponds to our Theorem 4.1(ii)

with α = 0 under the assumption that the equilibrium distribution of (−X) ∨ Y

is subexponential and their Theorem 2 corresponds to our Theorem 4.1 with α > 0

under the following three assumptions: (1) F ∈ L(α), (2) Ee−αX < 1, and (3)

P(Y − X̃ > x) ∼ P(Y > x)Ee−α eX with X̃ identically distributed as X and inde-

pendent of (X, Y ). We need to point out that the assumptions they used in their

Theorem 2 are slightly more general than ours.

The rest of this chapter is organized as follows: Section 4.2 proposes an ap-

plication to corporate finance, Section 4.3 prepares several lemmas, Sections 4.4 and

4.5 respectively prove cases (i) and (ii) of Theorem 4.1, and at last Section 4.6 gives

two simulation results.

4.2 Application to Corporate Finance

Consider an incorporated firm whose profit during the nth fiscal year is denoted

by Zn, n = 1, 2, . . .. At the end of each fiscal year, the firm will pay out to shareholders

a part of its profit as dividend if it earns money in that year; otherwise, it will issue new

equity to raise money. More precisely, introduce two constants ∆ and ε, 0 < ∆ < 1

and ε > 0, such that the amount ∆Zn will be paid out if Zn > 0 and the amount

−εZn will be raised otherwise. We assume that at the end of each fiscal year the firm
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liquidates its capital and restarts operation in the very beginning of the next fiscal

year. For each real number a, write a+ = a ∨ 0 and a− = − (a ∧ 0). Then, the

increment of capital amount during the nth fiscal year after liquidation will be

Xn = Zn −∆Z+
n + εZ−

n , n = 1, 2, . . . ,

and the capital amount up to the end of the nth fiscal year before liquidation will be

Rn = x+
n−1∑
i=1

Xi + Zn, n = 1, 2, . . . ,

with R0 = x > 0 being the initial capital of the firm.

We are interested in the probability of the so-called bankrupt event. Such an

event describes that the financial situation of the firm becomes too bad to survive

from budget deficits, or, in other words, the capital surplus of the firm goes below

some critical level b. Denote this probability by ψ (x, b), which, when b = 0, is called

the ruin probability in risk theory. Then,

ψ (x, b) = P
(

inf
n≥1

Rn < b

∣∣∣∣R0 = x

)
.

In order to use Theorem 4.1 to derive an asymptotic estimate for ψ (x, b), assume that

{Zn, n = 1, 2, . . .} is a sequence of i.i.d. random variables, implying that the operation

of the firm in each year does not depend on its financial situation in the beginning of

that year. Let Yn = −Zn for n = 1, 2, . . .. Therefore, (Xn, Yn), n = 1, 2, . . ., constitute

a sequence of i.i.d. random pairs, and

ψ (x, b) = P

{
sup
n≥1

(
Yn −

n−1∑
i=1

Xi

)
> x− b

}
.
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Denote by Z, X, and Y the generic random variables for Zn, Xn, and Yn, respectively,

and denote by F the distribution of Y . Then under the conditions of Theorem 4.1,

we have

lim
x−b→∞

ψ (x, b)∫∞
x−b

F (y) dy
=

α

1− Ee−αX
. (4.4)

To illustrate the conditions of Theorem 4.1(i), assume that Z follows the dis-

tribution

P (Z ≤ z) =


1− α

α̃+α
e−α̃z, z ≥ 0,

α̃
α̃+α

eαz, z < 0,

(4.5)

for some α > α̃ > 0. Recall X = Z −∆Z+ + εZ− and Y = −Z. Clearly, F ∈ L (α)

and 0 <
∫∞

0
F (y)dy <∞. If ε ≥ 1, then all conditions of Theorem 4.1 are obviously

satisfied. As for 0 < ε < 1, choose ∆ and ε satisfying

0 < ∆ < 1 and
α̃2 + α̃α (1−∆)

α̃2 + α̃α (1−∆) + α2 (1−∆)
< ε < 1. (4.6)

Then,

EX =
(1−∆)α2 − (1− ε) α̃2

α̃α (α̃+ α)
> 0,

and for all β ∈
(
α, (1−∆)α2−(1−ε)γ̃2

(1−∆)(1−ε)(γ̃+α)

)
,

Ee−βX =
α̃α

α̃+ α

(
1

α̃+ β (1−∆)
+

1

α− β (1− ε)

)
< 1.

Therefor, all conditions of Theorem 4.1(i) are satisfied.

In sum, if Z follows the distribution given in (4.5), then for (∆, ε) belonging

to (0, 1)× [1,∞) or satisfying (4.6), by relation (4.4) we have

lim
x−b→∞

ψ (x, b)

e−α(x−b)
=

α̃2ε+ αα̃ (1−∆) ε

α2 (1−∆) ε− αα̃ (1−∆) (1− ε)− α̃2 (1− ε)
.
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It is even easier to construct a distribution for the random variable Z such

that all conditions of Theorem 4.1(ii) are satisfied.

4.3 Lemmas

Lemma 4.2 (Lemma 3.1 of Robert (2005)). Let {ξn, n = 1, 2, . . .} be a sequence of

i.i.d. random variables with generic random variable ξ satisfying −∞ < Eξ < 0 and

P (ξ > 0) > 0. Then, E (ξ+)
2
<∞ if and only if

∞∑
n=1

P

(
n∑

i=1

ξi > 0

)
<∞.

Lemma 4.3. Let {ξn, n = 1, 2, . . .} be a sequence of i.i.d. random variables with finite

mean µ. Then for arbitrarily small ε, δ > 0, there exists some constant c > 0 such

that

P

(
∞⋂

n=1

(
n (µ− δ)− c ≤

n∑
i=1

ξi ≤ n (µ+ δ) + c

))
> 1− ε. (4.7)

Proof. Follow the proof of Lemma 3.1 of Asmussen et al. (1999) with some obvious

modifications.

Lemma 4.4 (Theorem 2 of Veraverbeke (1977)). Let {ξn, n = 1, 2, . . .} be a sequence

of i.i.d. random variables with common distribution F and finite mean µ. Let −α

be the left abscissa of convergence of f(λ) =
∫∞
−∞ e−λxF (dx). Denote by W (·) the

distribution of supn≥0

∑n
i=1 ξi.

(i) Suppose α > 0. If f(−α) < 1 then W (x) = o (e−αx) and F ∈ S(α) ⇐⇒

W ∈ S(α) each of which implies that

lim
x→∞

W (x)

F (x)
= c(α)
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holds for some constant c(α) > 0.

(ii) Suppose α = 0. If µ < 0, then Fe ∈ S ⇐⇒ W ∈ S each of which implies

lim
x→∞

W (x)∫∞
x
F (y) dy

= − 1

µ
.

Lemma 4.5. Assume Fe ∈ S(α) for some α ≥ 0. Let {ξn, n = 1, 2, . . .} be a sequence

of i.i.d. random variables with generic random variable ξ satisfying −∞ < Eξ < 0,

P (ξ > x) = o(F (x)), and Eeαξ < 1 provided α > 0. Then,

P

(
sup
n≥0

n∑
i=1

ξi > x

)
= o(Fe(x)).

Proof. For arbitrarily fixed N , we have

P

(
sup
n≥0

n∑
i=1

ξi > x

)
≤ P

(
sup

0≤n≤N

n∑
i=1

ξi > x

)
+ P

(
N∑

i=1

ξi + sup
n≥N

n∑
i=N+1

ξi > x

)
= I1(x,N) + I2(x,N). (4.8)

By Lemma 2.22, P (ξ > x) = o(F (x)) = o(Fe(x)). Then by Lemma 2.24(ii),

I1(x,N) ≤ P

(
N∑

i=1

(ξi ∨ 0) > x

)
= o(Fe(x)). (4.9)

To consider I2(x,N), for arbitrarily small ε > 0, introduce a random variable η

satisfying

P(η > x) = P (ξ > x) ∨ εF (x).

Clearly, P(η > x) ∼ εF (x). Since η = η(ε) converges to ξ in distribution as ε↘ 0, for

all small ε > 0 we have Eη < 0 and Eeαη < 1 provided α > 0. Let {ηn, n = 1, 2, . . .}

be a sequence of i.i.d. copies of η independent of {ξn, n = 1, 2, . . .}. By Lemma 4.4,

it holds for some constant c(α, ε) > 0 that

P

(
sup
n≥N

n∑
i=N+1

ηi > x

)
= P

(
sup
n≥0

n∑
i=1

ηi > x

)
∼ c(α, ε)Fe(x).
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When α > 0, the expression of c(α, ε) is rather involved. However, when α = 0, we

have the transparent expression c(0, ε) = −ενF/Eη. Then by Lemma 2.24(ii),

I2(x,N) ≤ P

(
N∑

i=1

ξi + sup
n≥N

n∑
i=N+1

ηi > x

)
∼
(
Eeαξ

)N
c(α, ε)Fe(x). (4.10)

Plugging (4.9) and (4.10) into (4.8) yields that

lim sup
x→∞

1

Fe(x)
P

(
sup
n≥0

n∑
i=1

ξi > x

)
≤
(
Eeαξ

)N
c(α, ε).

If α > 0 with ε fixed we let N →∞, while if α = 0 we let ε↘ 0. Thus, in any case,

the right-hand side of the above goes to 0 and the proof is complete.

4.4 Proof of Theorem 4.1(i)

4.4.1 Preliminary Results

Proposition 4.6. Under the conditions of Theorem 4.1(i), it holds for arbitrarily

small ε > 0, all 0 < δ < 1, and all large k that

∞∑
n=k+1

P (Yn − Sn−1 > x, Sn−1 < (n− 1)µ (1− δ)) . ε

∫ ∞

x

F (y)dy. (4.11)

Proof. Let 0 < δ < 1 and D > 0 be arbitrarily fixed. For all x > D, according to the

range of Sn−1 we split the left-hand side of (4.11) into three parts as

∞∑
n=k+1

{P (Yn − Sn−1 > x, Sn−1 ∈ (0, (n− 1)µ (1− δ)))

+P (Yn − Sn−1 > x, Sn−1 ∈ (−x+D, 0])

+ P (Yn − Sn−1 > x, Sn−1 ∈ (−∞,−x+D])}

= J1 (x, k, δ) + J2 (x, k,D) + J3 (x, k,D) . (4.12)
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Using Lemmas 2.22 and 4.2, for arbitrarily small ε > 0 and all large k,

J1 (x, k, δ) ≤ F (x)
∞∑

n=k+1

P

(
n−1∑
i=1

(µ (1− δ)−Xi) > 0

)
.
ε

2

∫ ∞

x

F (y)dy. (4.13)

Furthermore, by Lemma 2.23(i), there exist some constants c0, D > 0 such that for

all x ≥ x+ y − 1 ≥ D − 1 and all large k,

J2 (x, k,D) =
∞∑

n=k+1

∫ 0

−x+D

F (x+ y)P (Sn−1 ∈ dy)

≤
∞∑

n=k+1

∫ 0

−x+D

(∫ x+y

x+y−1

F (u)du

)
P (Sn−1 ∈ dy)

≤
∫ ∞

x

F (y)dy
∞∑

n=k+1

∫ 0

−x+D

Fe(x+ y − 1)

Fe(x)
P (Sn−1 ∈ dy)

≤ c0

∫ ∞

x

F (y)dy
∞∑

n=k+1

Ee−β(Sn−1−1)

≤ ε

2

∫ ∞

x

F (y)dy. (4.14)

ForD specified in (4.14) and for all k, employ Markov’s inequality and Lemma 2.23(ii)

to obtain that

J3 (x, k,D) ≤
∞∑

n=k+1

P (Sn−1 ≤ −x+D) ≤
∞∑

n=k+1

Ee−βSn−1

eβ(x−D)
= o

(
Fe(x)

)
. (4.15)

Plugging (4.13)–(4.15) into (4.12) yields (4.11).

Proposition 4.7. Under the conditions of Theorem 4.1(i), it holds for each k =

2, 3, . . . that

∑
1≤n<m≤k

P (Yn − Sn−1 > x, Ym − Sm−1 > x) = o
(
Fe(x)

)
. (4.16)
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Proof. Let δ > 0 be a constant satisfying β (1− δ) > α. For 1 = n < m ≤ k,

P (Y1 > x, Ym − Sm−1 > x)

≤ P (−Sm−1 > (1− δ)x) + P (Y1 > x, Ym − Sm−1 > x,−Sm−1 ≤ (1− δ)x)

≤ e−β(1−δ)xEe−βSm−1 + P (Y1 > x, Ym > δx)

= o
(
Fe(x)

)
, (4.17)

where we used Markov’s inequality and Lemmas 2.22 and 2.23(ii). Similarly, for

1 < n < m ≤ k,

P (Yn − Sn−1 > x, Ym − Sm−1 > x)

≤ P (−Sn−1 > (1− δ)x) + P (Yn − Sn−1 > x, Ym − Sm−1 > x,−Sn−1 ≤ (1− δ)x)

≤ e−β(1−δ)xEe−βSn−1

+

∫ (1−δ)x

−∞
P (Yn > x− y, Ym − Sn,m−1 > x− y) P (−Sn−1 ∈ dy) ,

where Sn,m−1 =
∑m−1

i=n Xi. By (4.17), it holds uniformly for all y ≤ (1− δ)x that

P (Yn > x− y, Ym − Sn,m−1 > x− y) = o (1)Fe(x− y).

Hence by Lemmas 2.23(ii) and 2.24(i),

P (Yn − Sn−1 > x, Ym − Sm−1 > x)

= o
(
Fe(x)

)
+ o (1)

∫ (1−δ)x

−∞
Fe(x− y)P (−Sn−1 ∈ dy)

= o
(
Fe(x)

)
. (4.18)

A combination of (4.17) and (4.18) gives (4.16).
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4.4.2 Proof of Theorem 4.1(i) for α > 0

We first prove the asymptotic upper bound. For some 0 < δ < 1 and each

k = 1, 2, . . .,

P (M > x) ≤

(
k∑

n=1

+
∞∑

n=k+1

)
P (Yn − Sn−1 > x)

≤
k∑

n=1

P (Yn − Sn−1 > x) +
∞∑

n=k+1

F (x+ (n− 1)µ (1− δ))

+
∞∑

n=k+1

P (Yn − Sn−1 > x, Sn−1 < (n− 1)µ (1− δ))

= K1 (x, k) +K2 (x, k, δ) +K3 (x, k, δ) . (4.19)

By Proposition 4.6, it holds for arbitrarily small ε > 0 and all large k that

K3 (x, k, δ) .
ε

2

∫ ∞

x

F (y)dy. (4.20)

Since Fe ∈ L(α), it holds for all large k that

K2 (x, k, δ) ≤ 1

µ (1− δ)

∫ ∞

x+(k−1)µ(1−δ)

F (y)dy .
ε

2

∫ ∞

x

F (y)dy. (4.21)

With k specified in (4.20) and (4.21), by Lemma 2.24(i) and relation (2.22) we have

K1 (x, k) ∼ F (x)
k∑

n=1

Ee−αSn−1 .
α

1− Ee−αX

∫ ∞

x

F (y)dy. (4.22)

Plugging (4.20)–(4.22) into (4.19) and using the arbitrariness of ε > 0, we obtain that

lim sup
x→∞

P (M > x)∫∞
x
F (u)du

≤ α

1− Ee−αX
.

Next, we turn to prove the asymptotic lower bound. Obviously, for each

k = 1, 2, . . ., using Bonferroni’s inequality,

P (M > x) ≥ P

(
k⋃

n=1

(Yn − Sn−1 > x)

)
≥ K1 (x, k)−

∑
1≤n<m≤k

P (Yn − Sn−1 > x, Ym − Sm−1 > x) , (4.23)
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where K1 (x, k) is the same as in (4.19). Similar to (4.22), for arbitrarily small ε > 0

and all large k,

K1 (x, k) & (1− ε)
α

1− Ee−αX

∫ ∞

x

F (u)du. (4.24)

By Proposition 4.7, relation (4.16) holds. Plugging (4.24) and (4.16) into (4.23) and

using the arbitrariness of ε > 0, we have

lim inf
x→∞

P (M > x)∫∞
x
F (y)dy

≥ α

1− Ee−αX
.

4.4.3 Proof of Theorem 4.1(i) for α = 0

For α = 0, relation (4.3) becomes

lim
x→∞

P (M > x)∫∞
x
F (y)dy

=
1

µ
. (4.25)

To derive the asymptotic upper bound, we still use (4.19). By Proposition 4.6, relation

(4.20) holds for arbitrarily small ε, δ > 0 and all large k. With k specified in (4.20),

by Fe ∈ L we have

K2 (x, k, δ) ≤ 1

µ (1− δ)

∫ ∞

x+(k−1)µ(1−δ)

F (u)du ∼ 1

µ (1− δ)

∫ ∞

x

F (y)dy, (4.26)

while by Lemmas 2.24(i) and 2.22,

K1 (x, k) ∼ kF (x) = o(1)

∫ ∞

x

F (y)dy. (4.27)

Plugging (4.20), (4.26), and (4.27) into (4.19) and using the arbitrariness of ε, δ > 0,

we have

lim sup
x→∞

P (M > x)∫∞
x
F (y)dy

≤ 1

µ
.
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Next, we consider the asymptotic lower bound. For arbitrarily small ε, δ > 0,

by Lemma 4.3 there exists some constant C > 0 such that inequality (4.7) holds.

Write En = {n (µ− δ) − C ≤ Sn ≤ n (µ+ δ) + C} for n = 0, 1, . . .. Then by

Bonferroni’s inequality again,

P (M > x) ≥ P

(
∞⋃

n=1

(
(Yn − Sn−1 > x)

⋂
En−1

))

≥
∞∑

n=1

P
(
(Yn − Sn−1 > x)

⋂
En−1

)
−

∑
1≤n<m<∞

P
(
(Yn − Sn−1 > x)

⋂
(Ym − Sm−1 > x)

⋂
En−1

⋂
Em−1

)
≥ (1− ε)

∞∑
n=1

F (x+ (n− 1) (µ+ δ) + C)

−
∑

1≤n<m<∞

F (x+ (n− 1) (µ− δ)− C)F (x+ (m− 1) (µ− δ)− C)

≥ 1− ε

µ+ δ

∫ ∞

x+C

F (y)dy −
(

1

µ− δ

∫ ∞

x−(µ−δ)−C

F (y)dy

)2

.

Since Fe ∈ L, by the arbitrariness of ε, δ > 0 it follows that

lim inf
x→∞

P (M > x)∫∞
x
F (y)dy

≥ 1

µ
.

4.5 Proof of Theorem 4.1(ii)

4.5.1 Preliminary Results

We establish the counterparts of Propositions 4.6 and 4.7 for the case α > 0,

respectively.

Proposition 4.8. Under the conditions of Theorem 4.1(ii) for the case α > 0, rela-

tion (4.11) holds for arbitrarily small ε > 0, 0 < δ < 1 arbitrarily close to 1, and all

large k.
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Proof. For 0 < δ, d < 1, introduce the maximumMδ = supn≥1

∑n−1
i=1 (µ (1− dδ)−Xi),

which is finite almost surely. For every n ≥ k + 1, we derive

Sn−1 = (n− 1)µ (1− dδ)−
n−1∑
i=1

(µ (1− dδ)−Xi) ≥ (n− 1)µ (1− dδ)−Mδ.

Therefore, for every k ≥ 1,

∞∑
n=k+1

P (Yn − Sn−1 > x, Sn−1 < (n− 1)µ (1− δ))

≤
∞∑

n=k+1

P (Yn − (n− 1)µ (1− dδ) +Mδ > x,Mδ > kµ(1− d)δ)

=

∫ ∞

kµ(1−d)δ

∞∑
n=k+1

F (x− y + (n− 1)µ (1− dδ)) P (Mδ ∈ dy)

≤ 1

µ (1− dδ)

(∫ x

kµ(1−d)δ

+

∫ ∞

x

)(∫ ∞

x−y

F (u)du

)
P (Mδ ∈ dy)

≤ 1

µ (1− dδ)

(
νF

∫ x

kµ(1−d)δ

Fe(x− y) +

∫ ∞

x

(y − x+ νF )

)
P (Mδ ∈ dy) . (4.28)

To apply Lemma 4.5, we need to choose δ and d close to 1 such that Eeα(µ(1−dδ)−X) < 1.

Let F ∗ be a distribution defined as F ∗(x) = F (x− µ (1− dδ)). Then, P(µ (1− dδ)−

X > x) = o(F ∗(x)) and F ∗
e ∈ S(α). By Lemma 4.5, we have

P(Mδ > x) = o(F ∗
e (x)) = o(Fe(x)). (4.29)

By Lemma 2.24(ii) and the local uniformity of the convergence in relation (2.14), it

holds for arbitrarily fixed k ≥ 1 that

∫ x

kµ(1−d)δ

Fe(x− y)P (Mδ ∈ dy) ≤

(∫ ∞

0−
−
∫ kµ(1−d)δ

0−

)
Fe(x− y)P (Mδ ∈ dy)

∼ Fe(x)EeαMδ1{Mδ>kµ(1−d)δ}. (4.30)
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Moreover, by Lemma 2.22,

∫ ∞

x

(y − x) P (Mδ ∈ dy) =

∫ ∞

x

P (Mδ > y) dy = o(1)

∫ ∞

x

Fe(y)dy = o(Fe(x)).

(4.31)

Plugging (4.29)-(4.31) into (4.28) yields the desired assertion.

Proposition 4.9. Under the conditions of Theorem 4.1(ii) for the case α > 0, rela-

tion (4.16) holds for each k = 2, 3, . . ..

Proof. By Lemma 2.22, Fe ∈ S(α) for some α > 0 implies F ∈ S(α). When 1 = n <

m ≤ k, for arbitrarily fixed D > 0, we have

P (Y1 > x, Ym − Sm−1 > x)

≤ P (−Sm−1 > x−D) + P (Y1 > x, Ym − Sm−1 > x,−Sm−1 ≤ x−D)

≤ P (−Sm−1 > x−D) + P (Y1 > x, Ym > D) . (4.32)

By Lemma 2.24(ii),

P (−Sm−1 > x−D) = o
(
F (x−D)

)
= o

(
F (x)

)
.

Substitute this into (4.32) then notice that D can be arbitrarily large. It follows that

P (Y1 > x, Ym − Sm−1 > x) = o(F (x)) = o(Fe(x)). (4.33)

Similarly, when 1 < n < m ≤ k, for arbitrarily fixed D > 0,

P (Yn − Sn−1 > x, Ym − Sm−1 > x)

≤ P (−Sn−1 > x−D) +

∫ x−D

−∞
P (Yn > x− y, Ym − Sn,m−1 > x− y) P(−Sn−1 ∈ dy),
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where Sn,m−1 =
∑m−1

i=n Xi as before. By (4.33), for arbitrarily small ε > 0, choose

D > 0 such that

P (Yn > x, Ym − Sn,m−1 > x) ≤ εFe(x)

for 1 < n < m ≤ k and all x ≥ D. Using this inequality and Lemma 2.24(ii), we

obtain that

P (Yn − Sn−1 > x, Ym − Sm−1 > x) ≤ o(Fe(x)) + ε

∫ x−D

−∞
Fe(x− y)P(−Sn−1 ∈ dy)

. εEe−αSn−1Fe(x).

This proves that

P (Yn − Sn−1 > x, Ym − Sm−1 > x) = o(Fe(x)). (4.34)

A combination of (4.33) and (4.34) gives (4.16).

4.5.2 Proof of Theorem 4.1(ii)

The proof for the case α > 0 can be given by copying the proof of Theorem

4.1(i) for the case α > 0 with only modifications that we use Lemma 2.24(ii) and

Propositions 4.8 and 4.9 instead of Lemma 2.24(i) and Propositions 4.6 and 4.7.

Consider the case α = 0 and we aim at relation (4.25). The proof of the

asymptotic lower bound is the same as that in Theorem 4.1(i). The proof of the

asymptotic upper bound can be found in Palmowski and Zwart (2007). Nevertheless,

for the sake of self-containedness, we copy their proof here.

For some arbitrarily large but fixed ζ > 0, define

Z = (−X)1{(−X)∨Y≤ζ} + ((−X) ∨ Y ) 1{(−X)∨Y >ζ}.
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Clearly, Z = Z(ζ) converges to −X in distribution as ζ → ∞ and EZ < 0 for all

large ζ. Moreover, it is easy to see that the relation P (Z > x) ∼ F (x) holds for

arbitrarily fixed ζ. Define Zn in a similar way in terms of Xn and Yn, n = 1, 2, . . .,

so that {Zn, n = 1, 2, . . .} forms a sequence of i.i.d. copies of Z. Then, we arrive at a

key inequality of Palmowski and Zwart (2007) that

M = sup
n≥1

(Yn − Sn−1) ≤ sup
n≥1

n−1∑
i=1

Zi + ζ.

Therefore, by Lemma 4.4(ii),

P (M > x) ≤ P

(
sup
n≥1

n−1∑
i=1

Zi > x− ζ

)
∼ − 1

EZ

∫ ∞

x−ζ

F (y)dy.

Since Fe ∈ S and ζ can be arbitrarily large, it follows that

P (M > x) .
1

µ

∫ ∞

x

F (y)dy.

4.6 Simulations

In this section, we present two simulation results for Theorem 4.1, one for

light-tailed F and the other for heavy-tailed F . We want to see from the two special

cases how fast the convergence in relation (4.3) is.

(i) Light-tailed Case:

Let (X, Y ) have the following marginal density functions

fX (x) = e4x1{x<0} +
3

2
e−2x1{x≥0}, fY (y) = e−x1{x≥0}.

Then, FY ∈ L(1), EX = 5/16 > 0, EX2 < ∞, and Ee−βX < 1 for all β ∈ (1, 5/2).

Hence, all conditions of Theorem 4.1(i) are satisfied. To model the dependence struc-

ture between X and Y , we apply the so-called Farlie-Gumbel-Morgenstern copula,
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i.e., C(u1, u2) = u1u2(1 + c(1 − u1)(1 − u2)) with c ∈ [−1, 1] and u1, u2 ∈ [0, 1]. In

other words,

FX,Y (x, y) = FX(x)FY (y)
(
1 + cFX(x)FY (y)

)
,

where FX,Y (·), FX(·), and FY (·) are the corresponding joint and marginal distribu-

tions. We use the following algorithm (see Johnson (1986)) to generate random values

for FX(·) and FY (·):

1. Generate two independent uniform (0, 1) variates v1, v2;

2. Set a = 1 + c(1− 2v1), b =
√
a2 − 4(a− 1)v2;

3. Set u1 = v1, u2 = 2v2/(a+ b);

4. Then (u1, u2) is one outcome of (FX(·), FY (·)).

We set c = 1/2 and execute our simulation in R software. The simulation result is

shown in Figure 4.1 below.
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Figure 4.1: y-axis represents for each fixed x the LHS substracts the RHS in (4.3)
when Y is Exp(1) distributed.

(ii) Heavy-tailed Case:

Let (X, Y ) have the following marginal distributions

FX(x) =
1

2
ex1{x<0} +

(
1− 1

2
e−x/2

)
1{x≥0}, FY (y) =

(
1− e−

√
y
)
1{x≥0}.

Here Y follows a heavy-tailed Weibull distribution with shape parameter τ = 1/2. It

is easy to see that the equilibrium distribution of FY is subexponential (see Example

1.4.7 of Embrechts et al. (1997)), EX = 1/2 > 0, and P(−X > x) = o
(
FY (x)

)
.

Hence, all conditions of Theorem 4.1(ii) are satisfied. We use the same Farlie-Gumbel-

Morgenstern copula as above to model the dependence structure between X and Y .

The simulation result is shown in Figure 4.2 below.



79

Figure 4.2: y-axis represents for each fixed x the LHS substracts the RHS in (4.3)
when Y is heavy-tailed Weibull distributed.
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CHAPTER 5
THE LÉVY INSURANCE RISK MODEL UNDER TAXATION

In this chapter, we use a general Lévy process to model the underlying surplus

process of an insurance company in a world without economic factors. This so-called

Lévy risk model has recently attracted a lot of attention in the insurance literature.

We are particularly interested in how to capture the impact of tax payments on the

ruin probability. In a series of recent papers by Albrecher and his coauthors, it is

assumed that taxes are paid at a certain fixed rate immediately when the surplus

of the company is at a running maximum. In reality, however, taxes are usually

paid periodically (e.g. monthly, semi-annually, or annually). Therefore, we introduce

periodic taxation under which the company pays tax at a fixed rate on its net income

during each period. As main results, we derive for the ruin probability several explicit

asymptotic relations, in which the prefactor varies with the tax rate, reflecting the

impact of tax payments. This chapter is based on the joint research paper Hao and

Tang (2009).

5.1 Introduction

As mentioned in Chapter 4, the ruin probability of an insurance company is

the probability that its surplus process falls below 0 at some time. Let U = (Ut)t≥0 be

a stochastic process, with U0 = x > 0, representing the underlying surplus process in

a world without economic factors (tax, reinsurance, investment, etc.) of an insurance

company. Assuming that U is a compound Poisson process with positive drift and
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that taxes are paid at a fixed rate γ ∈ [0, 1) whenever U is at a running maximum

(called the loss-carry-forward taxation), Albrecher and Hipp (2007) and Albrecher

et al. (2009) proved the following strikingly simple relationship between ψγ(x) and

ψ0(x), the ruin probabilities with and without tax:

ψγ(x) = 1− (1− ψ0(x))
1/(1−γ) . (5.1)

Albrecher et al. (2008b) further showed that the tax identity (5.1) still holds for

a spectrally negative Lévy surplus process U under the loss-carry-forward taxation.

Also, Albrecher et al. (2008a) proved a similar tax identity for a dual surplus process

U with general inter-innovation times and exponential innovation sizes under the

same type of taxation.

All these papers cited above assume the loss-carry-forward taxation. In reality,

however, taxes are usually paid periodically (e.g. monthly, semi-annually, or annu-

ally). Furthermore, if the surplus process contains a diffusion part, then the moments

of running maxima do not form any continuous time interval. In this case, the loss-

carry-forward type taxation is rather unrealistic, as was also commented by Albrecher

and Hipp (2007). Figure 5.1 below shows how the loss-carry-forward taxation affects

the underlying surplus process in the compound Poisson model.

In this chapter, we introduce periodic taxation as well as reinsurance to the

risk model. Precisely, we assume that at each discrete moment n = 1, 2, . . ., the

company, given that it survives at that moment, pays tax at rate γ ∈ [0, 1) on its net

income during the period (n− 1, n] and it gets paid by reinsurance at rate δ ∈ [0, 1)

on its net loss during the period (n− 1, n]. We are interested in the influence of such
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Figure 5.1: Loss-carry-forward taxation

a scheme of taxation rule and reinsurance policy on the asymptotic behavior of the

ruin probability. Figure 5.2 below shows how the periodic taxation affects the same

underlying surplus process as that in Figure 5.1.

Let us briefly compare these two types of taxation. Under the loss-carry-

forward taxation, as long as the surplus does not hit its historical peak, the insurance

company can legally evade any tax payment possibly for a long time, even if it makes

profits every single period during that time. While under the periodic taxation, the

insurance company has to pay tax whenever it survives and its net income is positive

in that period. Hence, the latter imposes a more strict taxation rule and produces

more significant impact on the ruin probability than the former does. This will be

demonstrated in Section 5.2.
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Figure 5.2: Periodic taxation

It is convenient for us to look at the loss process before tax and reinsurance,

Lt = x− Ut, t ≥ 0.

For each n = 1, 2, . . ., the maximal net loss and the net loss within the period (n−1, n]

are, respectively,

Yn = sup
n−1≤t≤n

(Lt − Ln−1) , Zn = Ln − Ln−1.

After introducing the periodic taxation at rate 0 ≤ γ < 1 and reinsurance at rate

0 ≤ δ < 1, the loss of the company within the period (n− 1, n] becomes

Xn = Zn + γZ−
n − δZ+

n = (1− δ)Z+
n − (1− γ)Z−

n .
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Then, it is easy to see that the ruin probability in this situation is equal to

ψγ,δ(x) = P

(
sup
n≥1

(
n−1∑
k=1

Xk + Yn

)
> x

)
. (5.2)

Notice that we have used ψγ(x) (with only one subscript) for the ruin probability

under the loss-carry-forward taxation and used ψγ,δ(x) (with two subscripts) for the

ruin probability under the periodic taxation and reinsurance. We shall let the notation

speak for itself.

In this chapter, we shall assume that the loss process L is a Lévy process with

mean EL1 = −µ < 0 (so that it converges to −∞ almost surely). Consequently, the

random pairs (Xn, Yn), n = 1, 2, . . ., appearing in (5.2) are i.i.d. copies of the random

pair

(X, Y )
d
=

(
(1− δ)L+

1 − (1− γ)L−1 , sup
0≤t≤1

Lt

)
. (5.3)

Write µ+ = EL+
1 and µ− = EL−1 , which are assumed to be finite. Throughout this

chapter, we always choose γ ∈ [0, 1) and δ ∈ [0, 1) such that

EX = (1− δ)µ+ − (1− γ)µ− < 0, (5.4)

so that the insurance company still has positive expected profits under such a scheme

of taxation rule and reinsurance policy and that the ruin is not certain.

For a Lévy measure ρ, write ρ(x) = ρ ((x,∞)) for x ≥ 0. When ρ(1) > 0,

introduce Π(·) = (ρ(1))−1 ρ(·)1(1,∞), which is a proper probability measure on (1,∞).

We shall assume that the Lévy measure ρ has a tail ρ asymptotic to a subexponential

tail, a convolution-equivalent tail, and an exponential-like tail. These are natural

assumptions when studying the tail probability of the Lévy process. In risk theory,
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these assumptions have recently been used by e.g. Klüppelberg et al. (2004) and

Doney and Kyprianou (2006).

In the rest of this chapter we present our main results in Sections 5.2-5.4 for

the cases that the Lévy measure ρ of the loss process L has a subexponential tail, a

convolution-equivalent tail, and an exponential-like tail, respectively.

5.2 The Case of Subexponential Tails

In our first main result below we look at the case that the Lévy measure ρ has

a subexponential tail.

Theorem 5.1. Consider the Lévy insurance model introduced in Section 5.1. If both

Π and Πe belong to the class S (which are satisfied when Π ∈ S∗), then for every

0 ≤ γ < 1 and 0 ≤ δ < 1 for which relation (5.4) holds, we have

ψγ,δ(x) ∼
1

(1− γ)µ− − (1− δ)µ+

∫ ∞

x

ρ(y)dy. (5.5)

Klüppelberg et al. (2004) systematically studied the asymptotic behavior of

the ruin probability in the Lévy insurance model without tax or reinsurance. Restrict-

ing to the case that L is spectrally positive with Lévy measure ρ such that Π ∈ S∗,

we see that Theorem 6.2(i) of Klüppelberg et al. (2004) corresponds to our Theorem

5.1 with γ = δ = 0.

Clearly, the tax identity (5.1) under the loss-carry-forward taxation implies

that

ψγ(x) ∼
1

1− γ
ψ0(x); (5.6)
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see also Albrecher and Hipp (2007). While under our periodic taxation, substituting

δ = 0 to (5.5) yields that

ψγ,0(x) ∼
1

1− γ µ−
µ−−µ+

ψ0,0(x). (5.7)

Note that ψ0(x) in (5.6) and ψ0,0(x) in (5.7) are identical. The coefficients in re-

lations (5.6) and (5.7) respectively capture the impact of the two taxation rules on

the asymptotic behavior of the ruin probability. Now that µ−/(µ− − µ+) > 1 in

(5.7), comparing (5.6) with (5.7) we conclude that periodic taxation produces more

significant impact on the ruin probability than the loss-carry-forward taxation does.

To prove Theorem 5.1, we need the following two lemmas:

Lemma 5.2. Let L be a Lévy process with Lévy measure ρ such that Π ∈ S. Then,

P
(

sup
0≤t≤1

Lt > x

)
∼ ρ(x). (5.8)

Lemma 5.3 (Theorem 1 of Palmowski and Zwart (2007)). Let random pairs (Xn, Yn),

n = 1, 2, . . ., be i.i.d. copies of a random pair (X, Y ). Denote M = X ∨ Y . If

−∞ < EX < 0, EM < ∞, and
∫∞

x
P (M > y) dy is asymptotic to a subexponential

tail, then,

P

(
sup
n≥1

(
n−1∑
k=1

Xk + Yn

)
> x

)
∼ 1

|EX|

∫ ∞

x

P (M > y) dy.

Lemma 5.2 is an implication of Theorem 3.1 of Rosiński and Samorodnitsky

(1993) (see the example of Lévy motion on their page 1006).

Proof of Theorem 5.1. Recall (5.2), where the random pairs (Xn, Yn), n = 1, 2, . . .,

are i.i.d. copies of the random pair (X, Y ) given in (5.3). Use the notation M = X∨Y
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in Lemma 5.3. Since Π ∈ S, from Lemma 5.2 we have

P (Y > x) ∼ ρ(x). (5.9)

It is clear that Y ≥ L+
1 ≥ X+. Hence by (5.9) and ΠI ∈ S,

∫ ∞

x

P (M > y) dy =

∫ ∞

x

P (Y > y) dy ∼
∫ ∞

x

ρ(y)dy,

a subexponential tail. Then by Lemma 5.3, we obtain (5.5).

5.3 The Case of Convolution-equivalent Tails

Next, we consider the case that the Lévy measure ρ has a light tail such that

Π ∈ S(α) for some α > 0.

Theorem 5.4. Consider the Lévy insurance model introduced in Section 5.1. Assume

EL2
1 <∞ and Π ∈ S(α) for some α > 0. If 0 ≤ γ < 1 and 0 < δ < 1 are such that

Eeα′((1−δ)L+
1 −(1−γ)L−1 ) < 1 (5.10)

for some α′ > α, then,

ψγ,δ(x) ∼
cα

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

ρ(x), (5.11)

where the constant cα is defined as

cα = lim
x→∞

P
(
sup0≤t≤1 Lt > x

)
ρ(x)

∈ (0,∞). (5.12)

The existence of the limit cα in (5.12) was proved by Braverman and Samorod-

nitsky (1995); see the following lemma. Condition (5.10) is feasible because EeαL+
1 <

∞ and 0 < δ < 1.
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Lemma 5.5 (Theorem 3.1 of Braverman and Samorodnitsky (1995)). Let L be a

Lévy process with Lévy measure ρ such that Π ∈ S(α) for some α > 0. Then,

lim
x→∞

P
(
sup0≤t≤1 Lt > x

)
ρ(x)

= c for some c ∈ (0,∞).

By Lemma 2.21, relation (5.11) may be rewritten as

ψγ,δ(x) ∼
αcα

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

∫ ∞

x

ρ(y)dy. (5.13)

With the understanding that c0 = 1 by relation (5.8) and that the coefficient in the

right-hand side of relation (5.13) converges to ((1− γ)µ− − (1− δ)µ+)−1 as α → 0,

relation (5.5) in Theorem 5.1 indicates that relation (5.13) still holds when α = 0.

Recalling the light-tailed case of Theorem 4.1(i) in Chapter 4, we give the

proof of Theorem 5.4:

Proof of Theorem 5.4. Use the notation in (5.3). By relation (5.12) and closure

of the class S(α) under tail equivalence, the distribution of Y also belongs to the class

S(α). The moment conditions on X required in Theorem 4.1(i) are clearly satisfied.

Then, using Theorem 4.1(i) we immediately obtain (5.11).

To apply Theorem 5.4, a direct problem is how to determine the constant cα

in (5.12). This has been a very difficult problem for a Lévy process L whose Lévy

measure ρ has a convolution-equivalent tail. For related discussions see Albin and

Sundén (2009) and references therein. The following lemma gives an expression for

cα:
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Lemma 5.6. Let L be a Lévy process with Lévy measure ρ such that Π ∈ S(α) for

some α > 0. Then for all t > 0,

lim
x→∞

P (Lt > x)

ρ(x)
= tEeαLt := h(t).

There is a unique probability distribution G on [0, 1] satisfying
∫ 1

0
t−1G(dt) <∞ with

moments given by

µn(G) =
vn(n+ 1)!∫ 1

0
h(t)dt

, n = 1, 2, . . . ,

where

vn =

∫
0<t1≤···≤tn+1≤1

t1Eeα min1≤k≤n+1 Ltk dt1 · · · dtn+1. (5.14)

Finally,

lim
x→∞

P
(
sup0≤t≤1 Lt > x

)
ρ(x)

=

∫ 1

0

t−1G(dt)

∫ 1

0

h(t)dt := cα. (5.15)

Lemma 5.6 is a combination of Proposition 1.3 and Theorem 2.1 of Braverman

(1997). Here we need to point out that the constants vn defined by Braverman (1997)

are not correct. This is due to a calculation error in his Lemma 3.1. Indeed, under

his assumptions and notation, instead of his relation (3.1) we should have

P (Σk > x, 1 ≤ k ≤ n) ∼ F1(x)Eeα(min1≤k≤n Σk−X1),

where Σk =
∑k

i=1Xi, 1 ≤ k ≤ n. Therefore, to qualify his Theorem 2.1, the constants

vn should be given by our (5.14) above. However, we remark that the expression for

cα given in (5.15) is far from being explicit and can not be evaluated unless L is a

subordinator.

To pursue a more explicit expression for cα, we then restrict the Lévy process

L to a compound Poisson process with negative drift.
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Corollary 5.7. Consider the Lévy insurance model introduced in Section 5.1. Assume

Lt = Vt − pt, t ≥ 0, (5.16)

where p > 0 represents the constant premium rate and V = (Vt)t≥0 is a compound

Poisson process as given in Section 2.1, i.e., Vt =
∑Nt

k=1 ξk, where N = (Nt)t≥0 is

a Poisson process with intensity λ > 0 and ξ1, ξ2, . . . are i.i.d. random variables

independent of N and with common distribution F on (−∞,∞). Suppose that F has

a bounded density f ∈ Sd(α) for some α > 0 and that condition (5.10) holds. Then,

ψγ,δ(x) ∼
λcα

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

F (x)

with the constant cα given by

cα =eλ(Eeαξ−1)−αp+ α

∫ 1

0

(∫ t

0

P

(
Nt∑

k=1

ξk ≤ ps

)
ds

)
1− t

t
eλ(1−t)(Eeαξ−1)−αp(1−t)dt.

(5.17)

For example, if F = IG(µ, ν) with density given by (2.18), i.e.,

f(x) =
( ν

2πx3

)1/2

exp

{
−ν(x− µ)2

2µ2x

}
, µ, ν, x > 0,

then we can appropriately choose the constants p, γ, and δ such that condition (5.10)

is satisfied.

While the expression for cα defined in (5.17) is still not completely explicit,

with the only unknown part
∫ t

0
P
(∑Nt

k=1 ξk ≤ ps
)

ds for 0 < t ≤ 1, it is simple enough

for simulations, especially when ξ follows an inverse Gaussian distribution.

Next we prove Corollary 5.7. Let F (·, t) be the distribution of aggregate claims,

F (x, t) = P

(
Nt∑

k=1

ξk ≤ x

)
,
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and let f(·, t) be its density. Write Yt = sup0≤s≤t Ls. Then Y1 = Y . The lemma

below is a restatement of Theorems 2.1 and 2.2 of Asmussen (2000):

Lemma 5.8. For the compound Poisson model (5.16), we have

P (Yt ≤ 0) =
1

t

∫ t

0

F (ps, t) ds, t > 0,

and

1− P (YT > x) = F (x+ pT, T )−
∫ T

0

P (YT−t ≤ 0) f (x+ pt, t) dt, T > 0.

Proof of Corollary 5.7. By Theorem 5.4, it suffices to verify (5.17). By Lemma

5.8, we have

P (Y > x) = F (x+ p, 1) +

∫ 1

0

P (Y1−t ≤ 0) f (x+ pt, t) dt. (5.18)

Since f ∈ Sd(α) for α > 0 implies F ∈ S(α), we apply the dominated convergence

theorem justified by Lemma 2.25 to obtain that

F (x+ p, 1) =
∞∑

n=1

P

(
n∑

k=1

ξk > x+ p

)
P (N1 = n)

∼ λeλ(Eeαξ−1)F (x+ p) ∼ λeλ(Eeαξ−1)−αpF (x). (5.19)

Similarly, by Lemma 2.26, for each fixed t ∈ (0, 1],

f (x+ pt, t) ∼
∞∑

n=1

(λt)n

n!
e−λt · n

(
Eeαξ

)n−1
f(x+ pt) ∼ λteλt(Eeαξ−1)−αptf(x). (5.20)

Substitute (5.20) into the integral in (5.18). In order to apply the dominated conver-

gence theorem here, we notice that, by Lemma 2.26 again, there exists some K > 0
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such that for all x ≥ 0 for which f(x) > 0 and for all t ∈ (0, 1],

f (x+ pt, t)

f (x)
=

∞∑
n=1

(λt)n

n!
e−λt · f

n? (x+ pt)

f (x+ pt)
· f (x+ pt)

f (x)

≤
∞∑

n=1

(λt)n

n!
e−λt ·K

(
Eeαξ + 1

)n ≤ KeλtEeαξ

,

where in the last but one step we used the local uniformity of the convergence of

f(x+ y)/f(x) to e−αy. Hence,

∫ 1

0

P (Y1−t ≤ 0)
f (x+ pt, t)

f (x)
dt ≤ K

∫ 1

0

eλtEeαξ

dt <∞.

Then, using Lemma 5.8 and the dominated convergence theorem,

∫ 1

0

P (Y1−t ≤ 0) f (x+ pt, t) dt

∼ f(x)

∫ 1

0

(
1

1− t

∫ 1−t

0

F (ps, 1− t) ds

)
λteλt(Eeαξ−1)−αptdt. (5.21)

Plugging (5.19) and (5.21) into (5.18) and using the facts that ρ(·) = λF (·) and

f(x)/F (x) → α, we obtain (5.17).

5.4 The Case of Exponential-like Tails

Finally, we consider the case that the Lévy measure ρ has a light tail such that

Π ∈ L(α)\S(α) for some α > 0.

Theorem 5.9. Consider the Lévy insurance model introduced in Section 5.1. Assume

EL2
1 < ∞, Π ∈ L(α) for some α > 0, and Π(x) = o

(
Π2∗(x)

)
. If 0 ≤ γ < 1 and

0 < δ < 1 are such that condition (5.10) holds, then,

ψγ,δ(x) ∼
1

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

P(L1 > x). (5.22)
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We need the following result, which is a combination of Theorem 3.3 and

Corollary 6.2 of Albin and Sundén (2009):

Lemma 5.10. Let L be a Lévy process with Lévy measure ρ such that Π ∈ L(α) for

some α > 0 and Π(x) = o
(
Π2∗(x)

)
. Then for all t > 0, the distribution of Lt belongs

to L(α)\S(α) and

P
(

sup
0≤s≤t

Ls > x

)
∼ P (Lt > x) .

Note that the conditions on the Lévy measure ρ in Lemma 5.10 are fulfilled if

ρ is asymptotic to the tail of an exponential distribution, an Erlang distribution, or,

more generally, a Gamma distribution.

Proof of Theorem 5.9. Use the notation in (5.3). By Lemma 5.10 we know that

the distribution of L1 belongs to L(α)\S(α) and

P (Y > x) ∼ P (L1 > x) .

Hence, the distribution of Y belongs to L(α)\S(α) as well. Finally, using Theorem

4.1(i) again we obtain relation (5.22).

The asymptotic relation (5.22) is in terms of the tail of L1 instead of the tail of

the Lévy measure ρ. In case the tail of L1 is unknown, relation (5.22) is not completely

explicit. We are going to show two special, but important, cases of Theorem 5.9 in

which a completely explicit asymptotic relation for the ruin probability is given.

First, we consider a gamma process U = (Ut)t≥0 as given in Section 2.1. For

the gamma process U , it is easy to verify that Π(x) = o
(
Π2∗(x)

)
. By Theorem 5.9,

we immediately have the following:
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Corollary 5.11. Consider the Lévy insurance model introduced in Section 5.1. As-

sume

Lt = Γt − pt, t ≥ 0,

where p > 0 and Γ = (Γt)t≥0 is a gamma process as given in Section 2.1 with param-

eters α, β > 0, i.e., Γ starts from 0 with stationary and independent increments and

Γ1 has the gamma(α,β) distribution with density f(x) = αβ

Γ(β)
xβ−1e−αx for α, β, x > 0.

If 0 ≤ γ < 1 and 0 < δ < 1 are such that condition (5.10) holds, then,

ψγ,δ(x) ∼
αβ−1 (x+ p)β−1 e−α(x+p)(

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

)
Γ(β)

.

Next, we consider a compound Poisson process with negative drift again.

Corollary 5.12. Consider the Lévy insurance model introduced in Section 5.1. As-

sume

Lt = Vt − pt, t ≥ 0,

where p > 0 represents the constant premium rate and V = (Vt)t≥0 is a compound

Poisson process as given in Section 2.1. Suppose that F is an exponential distribution

with mean 1/α. If 0 ≤ γ < 1 and 0 < δ < 1 are such that condition (5.10) holds,

then,

ψγ,δ(x) ∼
2
√
λ/π

1− Eeα((1−δ)L+
1 −(1−γ)L−1 )

∫ π/2

0

Φ
(√

2λ cos θ −
√

2α(x+ p)
)

dθ, (5.23)

where Φ(·) is the standard normal distribution.

The following is an elementary result:
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Lemma 5.13. Let f(·) : [−1, 1] → (0,∞) be a nonincreasing function right continu-

ous at 1 and let c > 0 be a constant. Then,∫ π

0

ecx cos θf(cos θ)dθ ∼
∫ π/2

0

ecx cos θf(cos θ)dθ ∼ f(1)

∫ π/2

0

ecx cos θdθ. (5.24)

Proof. For every 0 < ε ≤ π/2, we split the first integral in (5.24) into two parts as∫ ε

0
+
∫ π

ε
. It is easy to see that the second part is asymptotically negligible, as∫ π

ε
ecx cos θf(cos θ)dθ∫ ε

0
ecx cos θf(cos θ)dθ

≤ πf(−1)ecx cos ε

f (1)
∫ ε/2

0
ecx cos θdθ

→ 0.

Hence, the first relation of (5.24) holds and, moreover,∫ π/2

0

ecx cos θf(cos θ)dθ ∼
∫ ε

0

ecx cos θf(cos θ)dθ. (5.25)

Note that, since f is right continuous at 1, if in (5.25) ε > 0 is chosen to be sufficiently

close to 0, then f(cos θ) is sufficiently close to f(1). Therefore, by (5.25) and the

arbitrariness of ε > 0, we obtain the second relation of (5.24).

Proof of Corollary 5.12. Clearly, EL2
1 < ∞, Π ∈ L(α), and Π(x) = o

(
Π2∗(x)

)
.

Therefore by Theorem 5.9, we only need to focus on derivation of the tail probability

P (L1 > x). Since the n-fold convolution of an exponential distribution with mean

1/α is a gamma distribution with parameters (α, n), we have

P (L1 > x) =

∫ ∞

x+p

∞∑
n=1

αn

(n− 1)!
yn−1e−αy · λ

n

n!
e−λdy

=
√
αλe−λ

∫ ∞

x+p

∞∑
n=0

(√
αλy

)2n+1

n!(n+ 1)!
y−1/2e−αydy. (5.26)

The last series in the above is of the structure of the modified Bessel function of order

1; that is,
∞∑

n=0

(√
αλy

)2n+1

n!(n+ 1)!
=

1

π

∫ π

0

e2
√

αλy cos θ cos θdθ. (5.27)
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Using Lemma 5.13 twice, as y →∞,

∫ π

0

e2
√

αλy cos θ cos θdθ ∼
∫ π/2

0

e2
√

αλy cos θdθ ∼ eλ

∫ π/2

0

e2
√

αλy cos θ−λ cos2 θdθ.

Substituting this into (5.27) then substituting (5.27) into (5.26), we obtain that

P (L1 > x) ∼
√
αλ

π
e−λ

∫ ∞

x+p

(
eλ

∫ π/2

0

e2
√

αλy cos θ−λ cos2 θdθ

)
y−1/2e−αydy

∼ 2
√
αλ

π

∫ π/2

0

(∫ ∞

√
x+p

e−αu2+2u
√

αλ cos θ−λ cos2 θdu

)
dθ

= 2

√
λ

π

∫ π/2

0

Φ
(√

2λ cos θ −
√

2α (x+ p)
)

dθ.

Substituting this into (5.22) yields (5.23).
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CHAPTER 6
THE RENEWAL RISK MODEL WITH RISKY INVESTMENT

In this chapter, we study the tail behavior of the stochastically discounted net

loss process in the renewal risk model with risky investment. Consider an insurance

company who invests its surplus into a portfolio consisting of both a riskless bond

and a risky stock. Suppose the price process of the bond grows with a constant

force of interest, while the price process of the stock is modeled by an exponential

Lévy process. The study of such a risk model has become a hot topic in the past

decade. Paulsen (2008) gave a comprehensive review on ruin in this model when

assets earn investment income. Assuming a constant mix investment strategy, i.e.,

the proportions of surplus invested into the riskless and risky assets remain constant,

Klüppelberg and Kostadinova (2008) investigated the tail behavior of the stationary

distribution for the discounted net loss process in the compound Poisson risk model.

We extend their main result by deriving an asymptotic formula for the tail probability

of the stochastically discounted net loss process under more general assumptions.

6.1 Introduction

Consider the renewal risk model in which the surplus process of an insurance

company is modeled by

Ut = u+ pt− St, t ≥ 0,

where u > 0 is the initial surplus level, p > 0 is the constant premium rate, and

S = (St)t≥0 defines the aggregate claims process. Assume St =
∑Nt

k=1Xk, t ≥ 0,
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where, the same as in Chapter 3, claim sizes Xk, k = 1, 2, . . . , constitute a sequence of

i.i.d. nonnegative random variables with generic random variable X with distribution

F and finite mean, while their arrival times τk, k = 1, 2, . . ., independent of Xk,

k = 1, 2, . . ., constitute a renewal counting process

Nt = #{k = 1, 2, . . . : τk ≤ t}, t ≥ 0.

Hence, the inter-arrival times θ1 = τ1, θk = τk − τk−1, k = 2, 3, . . ., constitute a

sequence of i.i.d., nonnegative random variables with common not-degenerate-at-zero

distribution G, which is assumed to be nonlattice and have mean 1/λ.

Following Klüppelberg and Kostadinova (2008), suppose the insurance com-

pany is allowed to invest its surplus into two assets: a bond with constant force of

interest r > 0 and a stock whose price is modeled by an exponential Lévy process.

The two assets have their price processes as, respectively,

P
(0)
t = ert, P

(1)
t = eLt , t ≥ 0, (6.1)

where L = (Lt)t≥0 is a Lévy process with characteristic exponent given by

Ψ (s) = ias+
σ2

2
s2 +

∫ ∞

−∞

(
1− eisx + isx1{|x|≤1}

)
ρ (dx)

with a ∈ (−∞,∞), σ ≥ 0, and Lévy measure ρ on (−∞,∞) satisfying ρ ({0}) = 0

and
∫∞
−∞ (x2 ∧ 1) ρ (dx) <∞. See Section 2.1 for more details of Lévy processes.

We assume the so-called constant mix investment strategy, i.e., the proportions

of surplus invested into the bond and stock remain constant through time. The

advantages of this investment strategy are discussed in Emmer et al. (2001) and
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Emmer and Klüppelberg (2004). As commented by Emmer et al. (2001, Section

2), this strategy is actually dynamic in the sense that it requires at every instance

of time a rebalancing of the investment portfolio depending on the corresponding

instantaneous price changes. From now on, we denote by π ∈ [0, 1] the fraction of the

surplus invested into the stock.

For the two price processes in (6.1), by Lemma 2.15 we write their correspond-

ing stochastic differential equations (SDEs) as

dP
(0)
t = rP

(0)
t dt, t ≥ 0,

with P
(0)
0 = 1, and

dP
(1)
t = P

(1)
t− dL̂t

= P
(1)
t−

(
dLt +

σ2

2
dt+ e∆Lt − 1−∆Lt

)
, t > 0,

with P
(1)
0 = 1, where ∆Lt = Lt − Lt− denotes the jump of the process L at time

t > 0. As explained in Subsection 2.2.3, the process L̂ is such that eLt = E
(
L̂t

)
,

t ≥ 0, where E denotes the stochastic exponential of a process. From the above two

SDEs we define the investment process:

Definition 6.1. For π ∈ [0, 1] the investment process is defined as the solution of the

SDE

dP
(π)
t = P

(π)
t−

(
(1− π)rdt+ πdL̂t

)
, t > 0, (6.2)

with P
(π)
0 = 1.
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Lemma 6.2 (Lemma 2.5 of Emmer and Klüppleberg (2004)). The SDE (6.2) has

the solution

P
(π)
t = E

(
(1− π)rdt+ πdL̂t

)
= eLπ,t , t ≥ 0,

where Lπ,t is a Lévy process with characteristic triplet (aπ, σ
2
π, ρπ) given by

aπ = aπ − (1− π)

(
r +

σ2

2
π

)
−
∫ ∞

−∞

(
log (1 + π (ex − 1)) 1{|log(1+π(ex−1))|≤1} − πx1{|x|≤1}

)
ρ (dx) ,

σ2
π = π2σ2,

ρπ(A) = ρ ({x : log (1 + π (ex − 1)) ∈ A}) for any Borel set A.

In particular, when π = 0 or 1, Lπ,t reduces to rt or Lt, respectively. We assume

ϕπ(1) < ∞ throughout this chapter so that Ee−Lπ,t = etϕπ(1) < ∞ is finite for all

t ≥ 0. By Lemma 6.7 below, the assumption ϕπ(1) <∞ is implied by ϕ(1) <∞.

6.2 The Integrated Risk Process

Suppose the insurance company invests all its surplus into the market intro-

duced in Section 6.1 following the constant mix investment strategy. Its risk process,

called integrated risk process, becomes the solution to the SDE

dUπ,t = pdt− dSt + Uπ,t−

(
(1− π)rdt+ πdL̂t

)
, t > 0, (6.3)

with Uπ,0 = u. The following lemma gives the solution for SDE (6.3). The solution

can be obtained by using the method of integrating factors; see for example Bichteler

(2002). For the sake of self-containedness, we still give the proof here.
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Lemma 6.3. The SDE (6.3) has the solution

Uπ,t = eLπ,t

(
u+

∫ t

0−
e−Lπ,v (pdv − dSv)

)
, t ≥ 0. (6.4)

Proof. Define

Zt =

∫ t

0−
e−Lπ,v− (pdv − dSv) =

∫ t

0−
e−Lπ,v (pdv − dSv) ,

where the equality holds because the processes Lπ and S are independent and hence

have no common jumps almost surely; see Proposition 5.3 of Cont and Tankov (2004).

Since P (π) is an exponential Lévy process and Z is the integral with respect to a finite

variation process, under the moment conditions mentioned in the end of Section 6.1

both processes P (π) and Z are semimartingales; see Section 2.2 for details. Hence,

the integration by parts formula gives

d
(
P

(π)
t Zt

)
= P

(π)
t− dZt + Zt−dP

(π)
t + d

[
P (π), Z

]
t
, t > 0,

where
[
P (π), Z

]
denotes the quadratic covariation process of P (π) and Z. Since S is

a finite variation process and so is Z and, once again, the processes Lπ and S have

no common jumps almost surely, by the properties introduced in Subsection 2.2.2 we

obtain [
P (π), Z

]
t
≡ 0, t ≥ 0.

Hence, for t ≥ 0,

d
(
P

(π)
t Zt

)
= P

(π)
t− dZt + Zt−dP

(π)
t

= P
(π)
t− e−Lπ,t− (pdt− dSt) + dP

(π)
t

∫ t−

0−
e−Lπ,v (pdv − dSv)

= pdt− dSt + dP
(π)
t

∫ t−

0−
e−Lπ,v (pdv − dSv) .
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From the equality above, (6.4), and (6.2), for t > 0,

dUπ,t = udP
(π)
t + d

(
P

(π)
t Zt

)
= udP

(π)
t + pdt− dSt + dP

(π)
t

∫ t−

0−
e−Lπ,v (pdv − dSv)

= pdt− dSt + P
(π)
t−

(
u+

∫ t−

0−
e−Lπ,v (pdv − dSv)

)
dP

(π)
t

P
(π)
t−

= pdt− dSt + Uπ,t−

(
(1− π)rdt+ πdL̂t

)
.

This verifies (6.3).

6.3 The Discounted Net Loss Process

Definition 6.4. The discounted net loss process is defined as

Vπ,t = u− e−Lπ,tUπ,t =

∫ t

0−
e−Lπ,v (dSv − pdv) , t ≥ 0, (6.5)

where Uπ,t is given in (6.4).

We are interested in the tail behavior of the stationary discounted net loss

process. We study Vπ via its natural discretization at claim-arrival times, Vπ,τk
, k =

0, 1, . . ., where τ0 = 0. For k = 1, 2, . . ., write

Aπ,k = Xke
−(Lπ,τk

−Lπ,τk−1) − p

∫ τk

τk−1

e−(Lπ,v−Lπ,τk−1)dv,

Bπ,k = e−(Lπ,τk
−Lπ,τk−1).

Then (Aπ,k, Bπ,k), k = 1, 2, . . ., form a sequence of i.i.d. random pairs with generic

random pair

(Aπ, Bπ) =

(
Xe−Lπ,θ − p

∫ θ

0

e−Lπ,vdv, e−Lπ,θ

)
. (6.6)
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It is obvious that

Vπ,0 = 0, Vπ,τk
=

k∑
m=1

Aπ,m

m−1∏
j=1

Bπ,j, k = 1, 2, . . . ,

where the product over an empty set of indices produces a value 1.

Denoting by −η the left abscissa of convergence of g(s) = Ee−sθ, we give the

following theorem:

Theorem 6.5. Consider the renewal risk model with risky investment introduced in

Section 6.1. Suppose EX < ∞, EL1 > 0, and the Laplace exponent of Lπ satisfies

ϕπ(1) < η.

(i) We have

Vπ,τk

a.s.−→ Vπ,∞ =
∞∑

m=1

Aπ,m

m−1∏
j=1

Bπ,j, as k →∞, (6.7)

where the series of the right-hand side converges absolutely with probability 1. More-

over, Vπ,∞ satisfies the stochastic difference equation

Vπ,∞
d
= Aπ +BπVπ,∞, (6.8)

where Vπ,∞ and (Aπ, Bπ) are independent.

(ii) Vπ,t almost surely converges to some finite random variable V c
π,∞ if and only

if Vπ,τk
almost surely converges to some finite random variable and Vπ,∞. Furthermore,

Vπ,∞
a.s.
= V c

π,∞. (6.9)

To give the proof of Theorem 6.5, we need some lemmas. The following lemma,

which was proved by Ross (1983), holds for a general renewal counting process:
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Lemma 6.6 (Proposition 3.4.5 of Ross (1983)). Consider the renewal counting process

(Nt)t≥0 given in (3.1) whose i.i.d. inter-arrival times follow a common non-lattice

distribution G with finite mean. As t → ∞, t − τNt converges in distribution to Ge,

the equilibrium distribution of G.

Lemma 6.7 (Lemma A.1 of Klüppelberg and Kostadinova (2008)). Consider L and

Lπ introduced above. We have

(i) If EL1 <∞, then ELπ,1 <∞.

(ii) If EL1 > 0, then ELπ,1 > 0.

(iii) If ϕ(s) = log Ee−sL1 <∞, then ϕπ(s) = log Ee−sLπ,1 <∞.

For a > 0, denote log+ a = max{0, log a}. We have the following lemma:

Lemma 6.8. Assume EX < ∞, EL1 > 0, and ϕπ(1) < η. Then for Aπ and Bπ

defined in (6.6), we have

E log+ |Aπ| <∞ and E logBπ < 0.

Proof. By Lemma 6.7(i), we have 0 < ELπ,1 <∞. It is clear that

E logBπ = −ELπ,θ = −ELπ,1Eθ < 0.

For the proof of E log+ |Aπ| < ∞, we use the elementary inequality log x < x

for all x > 0. Then,

E log+ |Aπ| = E log+

∣∣∣∣Xe−Lπ,θ − p

∫ θ

0

e−Lπ,vdv

∣∣∣∣
≤ E

∣∣∣∣Xe−Lπ,θ − p

∫ θ

0

e−Lπ,vdv

∣∣∣∣
≤ EXEe−Lπ,θ + pE

∫ θ

0

e−Lπ,vdv.
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In the first term, EX <∞ and, since ϕπ(1) < η,

Ee−Lπ,θ =

∫ ∞

0−
Ee−Lπ,vG(dv) =

∫ ∞

0−
evϕπ(1)G(dv) <∞.

In the second term, using ϕπ(1) < η again,

E
∫ θ

0

e−Lπ,vdv =

∫ ∞

0−

∫ t

0

Ee−Lπ,vdvG(dv) =

∫ ∞

0−

∫ t

0

evϕπ(1)dvG(dt)

=


∫∞

0− tG(dt) = Eθ = 1/λ <∞ if ϕπ(1) = 0;

1
ϕπ(1)

(∫∞
0− etϕπ(1)G(dt)− 1

)
<∞ if ϕπ(1) 6= 0.

This ends the proof.

Now we are ready to give the proof of Theorem 6.5.

Proof of Theorem 6.5. (i) In order to prove (6.7) and (6.8) we introduce random

variables V̂π,τk
, k = 0, 1, . . ., such that V̂π,0 = 0 and

V̂π,τk
= Aπ,k +Bπ,kV̂π,τk−1

=
k∑

m=1

Aπ,m

k∏
j=m+1

Bπ,j, k = 1, 2, . . . .

We observe that for every k = 1, 2, . . .,

{(Aπ,j, Bπ,j) , j = 1, 2, . . . k} d
= {(Aπ,k−j+1, Bπ,k−j+1) , j = 1, 2, . . . k},

which implies that

k∑
m=1

Aπ,m

m−1∏
j=1

Bπ,j
d
=

k∑
m=1

Aπ,m

k∏
j=m+1

Bπ,j.

Hence, Vπ,τk

d
= V̂π,τk

holds for every k = 1, 2, . . .. Applying Proposition 8.4.3 of

Embrechts et al. (1997) on V̂π,τk
we obtain (6.7) and (6.8) immediately; see also

Vervaat (1979). The conditions in that proposition are guaranteed by Lemma 6.8.
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(ii) For every t ≥ 0,

Vπ,t = Vπ,τNt
− pe−Lπ,τNt

∫ t

τNt

e−(Lπ,v−Lπ,τNt
)dv,

where in the last line the integral is independent of Vπ,τNt
. Since Nt

a.s.→∞ as t→∞,

we know from (i) that Vπ,τNt

a.s.→ Vπ,∞ as t → ∞. Moreover, as EL1 > 0, by Lemma

6.7(ii) we have that ELπ,1 > 0 and hence e−Lπ,τNt
a.s.→ 0 as t→∞. Finally,

∫ t

τNt

e−(Lπ,v−Lπ,τNt
)dv

d
=

∫ t−τNt

0

e−Lπ,vdv.

As t − τNt converges in distribution to Ge as t → ∞ by Lemma 6.6, the last inte-

gral almost surely converges to a finite random variable. Then relation (6.9) follows

immediately.

6.4 Claims with Extended-regularly-varying Tails

In this section, we assume that F ∈ ERV. Recalling λt = ENt and Λ = {t :

λt > 0} ∪ {∞}, we give an explicit expression for the asymptotic tail probability of

Vπ,T for all T ∈ Λ in the following theorem:

Theorem 6.9. Consider Vπ,t defined in (6.5). Suppose F ∈ ERV(−α,−β) for some

0 < α ≤ β < ∞, EL1 > 0, and ϕπ(β + ε) < 0 for some ε > 0. Then, it holds for

every T ∈ Λ that

P (Vπ,T > x) ∼
∫ T

0−
F
(
xeLπ,t

)
dλt. (6.10)

When α = β and T = ∞, it can be derived from relation (6.10) that

P (Vπ,∞ > x) ∼ Eeϕπ(α)θ

1− Eeϕπ(α)θ
F (x). (6.11)
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Klüppelberg and Kostadinova (2008) obtained relation (6.11) for the special case that

(Nt)t≥0 is a Poisson process by applying a key result of Grey (1994); see Theorem

4.6(a) of Klüppelberg and Kostadinova (2008). See also Heyde and Wang (2009) for

a result of the finite-time ruin probability similar to (6.11) but for (Nt)t≥0 being a

Poisson process.

To prove Theorem 6.9, we first prepare two lemmas. The following lemma was

obtained by Wang and Tang (2006):

Lemma 6.10. Let {Xk, k = 1, 2, . . .} be a sequence of i.i.d. nonnegative random vari-

ables with common distribution F on [0,∞) and {ωk, k = 1, 2, . . .} another sequence

of positive random variables. Suppose the two sequences are mutually independent. If

F ∈ ERV(−α,−β) for some 0 < α ≤ β <∞ and

E

(
∞∑

k=1

ωu
k

)v

<∞

for some 0 < u < min{1, α} and v > β/u. Then, it holds that

P

(
∞∑

k=1

ωkXk > x

)
∼

∞∑
k=1

P (ωkXk > x) .

The next lemma, obtained by Maulik and Zwart (2006), concerns the expo-

nential functional of a Lévy process:

Lemma 6.11. Let (Lt)t≥0 be a Lévy process with Laplace exponent ϕ(·) and W =∫∞
0

e−Ltdt.

(i) W <∞ almost surely if and only if Lt
a.s.→ ∞ as t→∞;

(ii) If s > 0 and ϕ(s) < 0, then EW s <∞.
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Now we are ready to give the proof of Theorem 6.9.

Proof of Theorem 6.9. Throughout this proof, 0 < t ≤ T is understood as 0 <

t <∞ when T = ∞.

First we derive an upper asymptotic bound for P (Vπ,T > x). It is clear from

the definition of Vπ,T in (6.5) that

P (Vπ,T > x) ≤ P

(
∞∑

k=1

Xke
−Lπ,τk 1(τk≤T ) > x

)
.

To apply Lemma 6.10, we see that, for all u and v such that 0 < u < min{1, α} and

β < uv < β + ε,

E

(
∞∑

k=1

e−uLπ,τk 1(τk≤T )

)v

≤ E

(
∞∑

k=1

ck−2c−1k2e−uLπ,τk

)v

, (6.12)

where c is the constant such that c
∑∞

k=1 k
−2 = 1. By Jensen’s inequality, it holds

almost surely that(
∞∑

k=1

ck−2c−1k2e−uLπ,τk

)v

≤
∞∑

k=1

ck−2
(
c−1k2e−uLπ,τk

)v
.

Since ϕπ(0) = 0, ϕπ(β + ε) < 0, and ϕπ(·) is strictly convex, ϕπ(s) < 0 for all

s ∈ (0, β + ε]. Following (6.12), we have

E

(
∞∑

k=1

e−uLπ,τk 1(τk≤T )

)v

≤ c1−v

∞∑
k=1

k2v−2Ee−uvLπ,τk

= c1−v

∞∑
k=1

k2v−2eϕπ(uv)k <∞.

Therefore, by Lemma 6.10,

P (Vπ,T > x) .
∞∑

k=1

P
(
Xke

−Lπ,τk 1(τk≤T ) > x
)

=

∫ T

0−
F
(
xeLπ,t

)
dλt.
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Then we derive the corresponding lower asymptotic bound for P (Vπ,T > x).

Since EL1 > 0, by Lemmas 6.7(ii) and 6.11(i) we know that Wπ =
∫∞

0
e−Lπ,tdt is a

finite random variable. Likewise, from (6.5) we have

P (Vπ,T > x) ≥ P

(
∞∑

k=1

Xke
−Lπ,τk 1(τk≤T ) > x+ pWπ

)
.

For arbitrarily fixed ε1 > 0, it holds that

P (Vπ,T > x) ≥ P

(
∞∑

k=1

Xke
−Lπ,τk 1(τk≤T ) > (1 + ε1)x

)
− P (pWπ > ε1x)

= I1(x)− I2(x). (6.13)

Similarly to the above,

I1(x) ∼
∫ T

0

F
(
(1 + ε1)xe

Lπ,t
)
dλt. (6.14)

Arbitrarily choose some ε2 > 0 such that the inequality

F ((1 + ε1)x)

F (x)
≥ (1 + ε1)

−β−1

holds for all x > 1/ε2. Then, uniformly for all t > 0,

F
(
(1 + ε1)xe

Lπ,t
)
≥ P

(
Xe−Lπ,t > (1 + ε1)x, e

−Lπ,t ≤ ε2x
)

& (1 + ε1)
−β−1P

(
Xe−Lπ,t > x, e−Lπ,t ≤ ε2x

)
≥ (1 + ε1)

−β−1
(
F
(
xeLπ,t

)
− P

(
e−Lπ,t > ε2x

))
≥ (1 + ε1)

−β−1

(
F
(
xeLπ,t

)
− eϕπ(β+ε)t

(ε2x)
β+ε

)
.

It follows from (6.14) that

I1(x) & (1 + ε1)
−β−1

(∫ T

0

F
(
xeLπ,t

)
dλt −

∫ T

0

eϕπ(β+ε)t

(ε2x)
β+ε

dλt

)

= (1 + ε1)
−β−1

∫ T

0

F
(
xeLπ,t

)
dλt − o

(
F (x)

)
.
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By Lemma 6.11(ii), EW β+ε
π <∞. Hence,

I2(x) = o
(
F (x)

)
.

Substitute these estimates into (6.13) to obtain that

P (Vπ,T > x) & (1 + ε1)
−β−1

∫ T

0

F
(
xeLπ,t

)
dλt − o

(
F (x)

)
.

Since it holds for arbitrarily fixed M > 0 that

∫ T

0

F
(
xeLπ,t

)
dλt ≥

∫ T

0

P
(
Xe−Lπ,t > x, sup

0<t≤T
Lπ,t ≤M

)
dλt

≥ λTF
(
xeM

)
P
(

sup
0<t≤T

Lπ,t ≤M

)
� F (x),

where a(x) � b(x) means that lim supx→∞ a(x)/b(x) <∞ and lim supx→∞ b(x)/a(x) <

∞, it follows that

P (Vπ,T > x) & (1 + ε1)
−β−1

∫ T

0

F
(
xeLπ,t

)
dλt.

Since ε1 > 0 can be arbitrarily small, it follows that

P (Vπ,T > x) &
∫ T

0

F
(
xeLπ,t

)
dλt.

This ends the proof of Theorem 6.9.



111

REFERENCES

Albin, J. M. P.; Sundén, M. On the asymptotic behaviour of Lévy processes. Part
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Lévy investment. Insurance Math. Econom. 42 (2008), no. 2, 560–577.
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Rosiński, J.; Samorodnitsky, G. Distributions of subadditive functionals of sample
paths of infinitely divisible processes. Ann. Probab. 21 (1993), no. 2, 996–
1014.

Ross, S. M. Stochastic processes. John Wiley & Sons, Inc., New York, 1983.

Seshadri, V. The inverse Gaussian distribution. Statistical theory and applications.
Springer-Verlag, New York, 1999.

Stein, C. A note on cumulative sums. Ann. Math. Statistics 17 (1946), 498–499.

Su, C.; Tang, Q. Characterizations on heavy-tailed distributions by means of hazard
rate. Acta Math. Appl. Sin. Engl. Ser. 19 (2003), no. 1, 135–142.

Tang, Q. The finite-time ruin probability of the compound Poisson model with
constant interest force. J. Appl. Probab. 42 (2005), no. 3, 608–619.

Tang, Q. The overshoot of a random walk with negative drift. Statist. Probab. Lett.
77 (2007a), no. 2, 158–165.

Tang, Q. Heavy tails of discounted aggregate claims in the continuous-time renewal
model. J. Appl. Probab. 44 (2007b), no. 2, 285–294.



116

Tang, Q.; Tsitsiashvili, G. Randomly weighted sums of subexponential random vari-
ables with application to ruin theory. Extremes 6 (2003a), no. 3, 171–188.

Tang, Q.; Tsitsiashvili, G. Precise estimates for the ruin probability in finite hori-
zon in a discrete-time model with heavy-tailed insurance and financial risks.
Stochastic Process. Appl. 108 (2003b), no. 2, 299–325.

Tang, Q.; Wang, G.; Yuen, K. C. Uniform tail asymptotics for stochastically dis-
counted aggregate claims in the renewal model. 2009, working paper.

Veraverbeke, N. Asymptotic behaviour of Wiener-Hopf factors of a random walk.
Stochastic Processes Appl. 5 (1977), no. 1, 27–37.

Vervaat, W. On a stochastic difference equation and a representation of nonnegative
infinitely divisible random variables. Adv. in Appl. Probab. 11 (1979), no. 4,
750–783.

Wang, D. Finite-time ruin probability with heavy-tailed claims and constant interest
rate. Stoch. Models 24 (2008), no. 1, 41–57.

Wang, D.; Tang, Q. Tail probabilities of randomly weighted sums of random variables
with dominated variation. Stoch. Models 22 (2006), no. 2, 253–272.


