# The Iterated Carmichael Lambda Function 

Nick Harland<br>University of British Columbia

CNTA XII<br>University of Lethbridge June 21, 2012

## Definitions

## Definition of Carmichael Lambda Function

$\lambda(n)$ is the smallest natural number $m$ such that

$$
a^{m} \equiv 1(\bmod n)
$$

for all $(a, n)=1$.
Recall the Euler Totient function $\phi(n)$ is the multiplicative function defined on prime powers to be $\phi\left(p^{k}\right)=p^{k}(p-1)$

## Definitions

## Definition of Carmichael Lambda Function

$\lambda(n)$ is the smallest natural number $m$ such that

$$
a^{m} \equiv 1(\bmod n)
$$

for all $(a, n)=1$.
Recall the Euler Totient function $\phi(n)$ is the multiplicative function defined on prime powers to be $\phi\left(p^{k}\right)=p^{k}(p-1)$.

## Calculating $\lambda(n)$

## Euler's Theorem states

## Theorem (Euler)

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

for all $(a, n)=1$.
Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some $a$ such that $a^{m} \not \equiv 1$ for all $0<m<\phi(n)$.

## Calculating $\lambda(n)$

## Euler's Theorem states

## Theorem (Euler)

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

for all $(a, n)=1$.
Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some $a$ such that $a^{m} \not \equiv 1$ for all $0<m<\phi(n)$.

## Calculating $\lambda(n)$

## Euler's Theorem states

## Theorem (Euler)

$$
a^{\phi(n)} \equiv 1(\bmod n)
$$

for all $(a, n)=1$.
Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some $a$ such that $a^{m} \not \equiv 1$ for all $0<m<\phi(n)$.

## Calculating $\lambda(n)$

Therefore we get the following calculations.

for $k \geq 3$.

## Question

What if $n$ is not a prime power?

## Calculating $\lambda(n)$

Therefore we get the following calculations.
On odd prime powers, $\lambda\left(p^{k}\right)=\phi\left(p^{k}\right)=(p-1) p^{k-1}$.
On the odder prime powers
for $k \geq 3$
Question
What if $n$ is not a prime power?

## Calculating $\lambda(n)$

Therefore we get the following calculations.
On odd prime powers, $\lambda\left(p^{k}\right)=\phi\left(p^{k}\right)=(p-1) p^{k-1}$.
On the odder prime powers

$$
\lambda(2)=1, \lambda(4)=2 \text { and } \lambda\left(2^{k}\right)=\frac{1}{2} \phi\left(2^{k}\right)=2^{k-2}
$$

for $k \geq 3$.
Question
What if $n$ is not a prime power?

## Calculating $\lambda(n)$

Therefore we get the following calculations.
On odd prime powers, $\lambda\left(p^{k}\right)=\phi\left(p^{k}\right)=(p-1) p^{k-1}$.
On the odder prime powers

$$
\lambda(2)=1, \lambda(4)=2 \text { and } \lambda\left(2^{k}\right)=\frac{1}{2} \phi\left(2^{k}\right)=2^{k-2}
$$

for $k \geq 3$.

## Question

What if $n$ is not a prime power?

## Calculating $\lambda(n)$

By the Chinese Remainder Theorem we can get that for $(a, b)=1$,

$$
\lambda(a b)=\operatorname{lcm}\{\lambda(a), \lambda(b)\} .
$$

## Example 1

What is $\lambda(547808)$ ?
$547808=\left(2^{5}\right)(17)(19)(53)$, so

$$
\begin{aligned}
\lambda(547808) & =\operatorname{lcm}\left\{\lambda\left(2^{5}\right), \lambda(17), \lambda(19), \lambda(53)\right\} \\
& =\operatorname{lcm}\left\{2^{3}, 16,18,52\right\}=\left(2^{4}\right)\left(3^{2}\right)(13)=1872 .
\end{aligned}
$$

## Calculating $\lambda(n)$

By the Chinese Remainder Theorem we can get that for $(a, b)=1$,

$$
\lambda(a b)=\operatorname{lcm}\{\lambda(a), \lambda(b)\} .
$$

## Example 1

What is $\lambda(547808)$ ?
$547808=\left(2^{5}\right)(17)(19)(53)$, so

$$
\begin{aligned}
\lambda(547808) & =\operatorname{lcm}\left\{\lambda\left(2^{5}\right), \lambda(17), \lambda(19), \lambda(53)\right\} \\
& =\operatorname{lcm}\left\{2^{3}, 16,18,52\right\}=\left(2^{4}\right)\left(3^{2}\right)(13)=1872 .
\end{aligned}
$$

## Calculating $\lambda(n)$

## Example b

What is $\lambda_{2}(547808)=\lambda \lambda(547808)$ ?

$$
\begin{aligned}
\lambda_{2}(547808)=\lambda\left(\left(2^{4}\right)\left(3^{2}\right)(13)\right) & =\operatorname{lcm}\left\{\lambda\left(2^{4}\right), \lambda\left(3^{2}\right), \lambda(13)\right\} \\
& =\operatorname{lcm}\left\{2^{2}, 6,12\right\}=12
\end{aligned}
$$

## Calculating $\lambda(n)$

## Example b

What is $\lambda_{2}(547808)=\lambda \lambda(547808)$ ?

$$
\begin{aligned}
\lambda_{2}(547808)=\lambda\left(\left(2^{4}\right)\left(3^{2}\right)(13)\right) & =\operatorname{lcm}\left\{\lambda\left(2^{4}\right), \lambda\left(3^{2}\right), \lambda(13)\right\} \\
& =\operatorname{lcm}\left\{2^{2}, 6,12\right\}=12
\end{aligned}
$$

## Calculating $\lambda(n)$

## Example iii

What is $L(547808)$, where $L(n)$ is the smallest $k$ such that
$\lambda_{k}(n)=1$ ?
$\lambda_{3}(547808)=\lambda(12)=2$.
$\lambda_{4}(547808)=\lambda(2)=1 \Rightarrow L(547808)=4$.

## That's Typical

## Question

What is the "typical" value of $\lambda(n)$ ?

## Theorem (Erdős, Pomerance, Schmutz (1991))

There exists a set $S$ of asymptotic density 1, where for all $n \in S$

$$
\lambda(n)=n /(\log n)^{\log \log \log n+A+o(1)}
$$

where $A=0.2269688 \ldots$

## $2>1$

## Question

What about $\lambda_{2}(n)=\lambda(\lambda(n))$ ?

## Theorem (Martin, Pomerance (2005))

As $n \rightarrow \infty$ through a set of asymptotic density 1

$$
\lambda_{2}(n)=n \exp \left(-(1+o(1))(\log \log n)^{2} \log \log \log n\right) .
$$

Question
What happens for more iterations?!?!?!

## Question

What about $\lambda_{2}(n)=\lambda(\lambda(n))$ ?

## Theorem (Martin, Pomerance (2005))

As $n \rightarrow \infty$ through a set of asymptotic density 1

$$
\lambda_{2}(n)=n \exp \left(-(1+o(1))(\log \log n)^{2} \log \log \log n\right) .
$$

## Question

What happens for more iterations?!?!?!

## Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following conjecture, which has since been proved.

## Theorem (H. (2012))

For any fixed $k \geq 1$,

$$
\lambda_{k}(n)=n \exp \left(-\left(\frac{1}{(k-1)!}+o_{k}(1)\right)(\log \log n)^{k} \log \log \log n\right)
$$

for almost all $n$.

As for $L(n)$, very little is known. It can be show that there exists $n$ such that $L(n)>c \log n$ for some $c>0$, but these are likely very rare. It is more likely in light of the theorem on $\lambda_{k}(n)$ that $L(n)$ is usually around $\log \log n$. Although some results are known including a decent lower bound and an awful upper bound.

## Theorem (Martin, Pomerance (2005))

There exists an infinite number of $n$ such that

$$
L(n)<\left(\frac{1}{\log 2}+o(1)\right) \log \log n .
$$

## Theorem (H. (2012))

For all $c<\left(\frac{1}{e^{-1}+\log 2}\right)$

$$
L(n) \geq c \log \log n,
$$

for almost all $n$.

## Theorem (Martin, Pomerance (2005))

There exists an infinite number of $n$ such that

$$
L(n)<\left(\frac{1}{\log 2}+o(1)\right) \log \log n .
$$

Theorem (H. (2012))
For all $c<\left(\frac{1}{e^{-1}+\log 2}\right)$,

$$
L(n) \geq c \log \log n,
$$

for almost all $n$.

As for an upper bound, until recently, the best known upper bound was the trivial upper bound $L(n) \ll \log n$. However a recent result is

Theorem (H. (2012))
For almost all $n$,

where the $\gamma$ can be taken around 0.9503 .

As for an upper bound, until recently, the best known upper bound was the trivial upper bound $L(n) \ll \log n$. However a recent result is

## Theorem (H. (2012))

For almost all $n$,

$$
L(n) \leq(\log n)^{\gamma}
$$

where the $\gamma$ can be taken around 0.9503 .

It should be noted that under the Elliot-Halberstam conjecture, the constant $1 /\left(e^{-1}+\log 2\right)$ can just be replaced with $e$. This is noteworthy because it's likely the upper bound as well.

Conjecture
$L(n)$ has normal order $e \log \log n$.
In other word's, the lower bound is close, and the upper bound is way way off.

It should be noted that under the Elliot-Halberstam conjecture, the constant $1 /\left(e^{-1}+\log 2\right)$ can just be replaced with $e$. This is noteworthy because it's likely the upper bound as well.

## Conjecture

$L(n)$ has normal order $e \log \log n$.
In other words, the lower bound is close, and the upper bound is way way off.

## A Few Details

The way we establish the normal order of $\lambda_{k}(n)$ is to show

$$
\begin{aligned}
\log \left(n / \lambda_{k}(n)\right) & \approx \log \left(\phi_{k}(n) / \lambda_{k}(n)\right) \\
& \approx \sum_{q \leq(\log \log x)^{k}} v_{q}\left(\phi_{k}(n)\right) \log q \\
& \approx h_{k}(n) \\
& :=\sum_{p_{1} \mid n} \sum_{p_{2} \mid p_{1}-1} \cdots \sum_{p_{k} \mid p_{k-1}-1} \sum_{q \leq(\log \log x)^{k}} \nu_{q}\left(p_{k}-1\right) \log q
\end{aligned}
$$

## A Few Details

We then use Turan-Kubilius and Euler summation on

$$
\begin{aligned}
\sum_{p \leq t} h_{k}(p) & =\sum_{p \leq t} \sum_{p_{2} \mid p-1} \cdots \sum_{p_{k} \mid p_{k-1}-1} \sum_{q \leq(\log \log x)^{k}} \nu_{q}\left(p_{k}-1\right) \log q \\
& \approx \sum_{q \leq(\log \log x)^{k}} \log q \sum_{a \in \mathbb{N}} \sum_{p_{k} \in \mathcal{P}_{q^{a}}} \sum_{p_{k-1} \in \mathcal{P}_{p_{k}}} \cdots \sum_{p_{2} \in \mathcal{P}_{p_{3}}} \pi\left(t ; p_{2}, 1\right)
\end{aligned}
$$

## A Few Details

We then use Bombieri-Vinogradov to replace $\pi$ by li and then partial summation to recover $\pi$. Continuing this recursion yields our result

$$
\log \left(n / \lambda_{k}(n)\right) \approx h_{k}(n) \approx \frac{1}{(k-1)!}(\log \log x)^{k} \log \log \log x
$$

for almost all $n \leq x$.

## The end

Thanks for your attention. These slides and more detailed proofs are available at my website at www.nickharland.com

