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Definitions

Definition of Carmichael Lambda Function
λ(n) is the smallest natural number m such that

am ≡ 1 (mod n)

for all (a, n) = 1.

Recall the Euler Totient function φ(n) is the multiplicative
function defined on prime powers to be φ(pk) = pk(p− 1).
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Calculating λ(n)

Euler’s Theorem states

Theorem (Euler)

aφ(n) ≡ 1 (mod n)

for all (a, n) = 1.

Hence we know that λ(n) | φ(n). The two are equal when there
exists some a such that am 6≡ 1 for all 0 < m < φ(n).
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Calculating λ(n)

Therefore we get the following calculations.
On odd prime powers, λ(pk) = φ(pk) = (p− 1)pk−1.
On the odder prime powers

λ(2) = 1, λ(4) = 2 and λ(2k) =
1
2
φ(2k) = 2k−2

for k ≥ 3.

Question
What if n is not a prime power?
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Calculating λ(n)

By the Chinese Remainder Theorem we can get that for
(a, b) = 1,

λ(ab) = lcm{λ(a), λ(b)}.

Example 1
What is λ(547808)?

547808 = (25)(17)(19)(53), so

λ(547808) = lcm{λ(25), λ(17), λ(19), λ(53)}
= lcm{23, 16, 18, 52} = (24)(32)(13) = 1872.
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Calculating λ(n)

Example b
What is λ2(547808) = λλ(547808)?

λ2(547808) = λ((24)(32)(13)) = lcm{λ(24), λ(32), λ(13)}
= lcm{22, 6, 12} = 12.
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Calculating λ(n)

Example iii
What is L(547808), where L(n) is the smallest k such that
λk(n) = 1?

λ3(547808) = λ(12) = 2.
λ4(547808) = λ(2) = 1⇒ L(547808) = 4.
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That’s Typical

Question
What is the "typical" value of λ(n)?

Theorem (Erdős, Pomerance, Schmutz (1991))
There exists a set S of asymptotic density 1, where for all n ∈ S

λ(n) = n/(log n)log log log n+A+o(1)

where A = 0.2269688...
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2 > 1

Question
What about λ2(n) = λ(λ(n))?

Theorem (Martin, Pomerance (2005))
As n→∞ through a set of asymptotic density 1

λ2(n) = n exp
(
− (1 + o(1))(log log n)2log log log n

)
.

Question
What happens for more iterations?!?!?!
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Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following
conjecture, which has since been proved.

Theorem (H. (2012))
For any fixed k ≥ 1,

λk(n) = n exp
(
−
(

1
(k − 1)!

+ ok(1)
)
(log log n)k log log log n

)
for almost all n.
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L(n)

As for L(n), very little is known. It can be show that there exists
n such that L(n) > c log n for some c > 0, but these are likely
very rare. It is more likely in light of the theorem on λk(n) that
L(n) is usually around log log n. Although some results are
known including a decent lower bound and an awful upper
bound.
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L(n)

Theorem (Martin, Pomerance (2005))
There exists an infinite number of n such that

L(n) <
(

1
log 2

+ o(1)
)

log log n.

Theorem (H. (2012))

For all c <
( 1

e−1+log 2

)
,

L(n) ≥ c log log n,

for almost all n.
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L(n)

As for an upper bound, until recently, the best known upper
bound was the trivial upper bound L(n)� log n. However a
recent result is

Theorem (H. (2012))
For almost all n,

L(n) ≤ (log n)γ

where the γ can be taken around 0.9503.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea

L(n)

As for an upper bound, until recently, the best known upper
bound was the trivial upper bound L(n)� log n. However a
recent result is

Theorem (H. (2012))
For almost all n,

L(n) ≤ (log n)γ

where the γ can be taken around 0.9503.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea

L(n)

It should be noted that under the Elliot–Halberstam conjecture,
the constant 1/(e−1 + log 2) can just be replaced with e. This is
noteworthy because it’s likely the upper bound as well.

Conjecture
L(n) has normal order e log log n.

In other words, the lower bound is close, and the upper bound
is way way off.
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A Few Details

The way we establish the normal order of λk(n) is to show

log
(
n/λk(n)

)
≈ log

(
φk(n)/λk(n)

)
≈

∑
q≤(log log x)k

vq(φk(n)) log q

≈ hk(n)

:=
∑
p1|n

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤(log log x)k

νq(pk − 1) log q.
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A Few Details

We then use Turan–Kubilius and Euler summation on∑
p≤t

hk(p) =
∑
p≤t

∑
p2|p−1

· · ·
∑

pk|pk−1−1

∑
q≤(log log x)k

νq(pk − 1) log q

≈
∑

q≤(log log x)k

log q
∑
a∈N

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

π(t; p2, 1)
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A Few Details

We then use Bombieri–Vinogradov to replace π by li and then
partial summation to recover π. Continuing this recursion yields
our result

log
(
n/λk(n)

)
≈ hk(n) ≈

1
(k − 1)!

(log log x)k log log log x

for almost all n ≤ x.
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The end

Thanks for your attention. These slides and more detailed
proofs are available at my website at www.nickharland.com
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