Proof Idea

The Iterated Carmichael Lambda Function

Nick Harland University of British Columbia

CNTA XII University of Lethbridge June 21, 2012

Background
000000

Definitions

Known Results

Proof Idea

Definition of Carmichael Lambda Function

$\lambda(n)$ is the smallest natural number *m* such that

 $a^m \equiv 1 \pmod{n}$

for all (a, n) = 1.

Recall the Euler Totient function $\phi(n)$ is the multiplicative function defined on prime powers to be $\phi(p^k) = p^k(p-1)$.

Background	
00000	

Definitions

Definition of Carmichael Lambda Function

 $\lambda(n)$ is the smallest natural number *m* such that

 $a^m \equiv 1 \pmod{n}$

for all (a, n) = 1.

Recall the Euler Totient function $\phi(n)$ is the multiplicative function defined on prime powers to be $\phi(p^k) = p^k(p-1)$.

Background
000000

Proof Idea

Calculating $\lambda(n)$

Euler's Theorem states

Theorem (Euler)

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

for all (a, n) = 1.

Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some *a* such that $a^m \neq 1$ for all $0 < m < \phi(n)$.

Background
000000

Proof Idea

Calculating
$$\lambda(n)$$

Euler's Theorem states

Theorem (Euler)

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

for all (a, n) = 1.

Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some *a* such that $a^m \not\equiv 1$ for all $0 < m < \phi(n)$.

Background
000000

Proof Idea

Calculating
$$\lambda(n)$$

Euler's Theorem states

Theorem (Euler)

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

for all (a, n) = 1.

Hence we know that $\lambda(n) \mid \phi(n)$. The two are equal when there exists some *a* such that $a^m \neq 1$ for all $0 < m < \phi(n)$.

Background
000000

Therefore we get the following calculations.

On odd prime powers, $\lambda(p^k) = \phi(p^k) = (p-1)p^{k-1}$. On the odder prime powers

$$\lambda(2) = 1, \lambda(4) = 2 \text{ and } \lambda(2^k) = \frac{1}{2}\phi(2^k) = 2^{k-2}$$

for $k \geq 3$.

Question

Background
000000

Therefore we get the following calculations. On odd prime powers, $\lambda(p^k) = \phi(p^k) = (p-1)p^{k-1}$. On the odder prime powers

$$\lambda(2) = 1, \lambda(4) = 2 \text{ and } \lambda(2^k) = \frac{1}{2}\phi(2^k) = 2^{k-2}$$

for $k \geq 3$.

Question

Background oo●ooo	Proof Idea

Therefore we get the following calculations. On odd prime powers, $\lambda(p^k) = \phi(p^k) = (p-1)p^{k-1}$. On the odder prime powers

$$\lambda(2) = 1, \lambda(4) = 2 \text{ and } \lambda(2^k) = \frac{1}{2}\phi(2^k) = 2^{k-2}$$

for $k \geq 3$.

Question

Background oo●ooo	Known Results 0000000	Proof Idea

Therefore we get the following calculations. On odd prime powers, $\lambda(p^k) = \phi(p^k) = (p-1)p^{k-1}$. On the odder prime powers

$$\lambda(2) = 1, \lambda(4) = 2 \text{ and } \lambda(2^k) = \frac{1}{2}\phi(2^k) = 2^{k-2}$$

for $k \geq 3$.

Question

Background
000000

By the Chinese Remainder Theorem we can get that for (a,b) = 1, $\lambda(ab) = \operatorname{lcm}\{\lambda(a),\lambda(b)\}.$

Example 1

What is $\lambda(547808)$?

 $547808 = (2^5)(17)(19)(53)$, so

 $\lambda(547808) = \operatorname{lcm}\{\lambda(2^5), \lambda(17), \lambda(19), \lambda(53)\} \\ = \operatorname{lcm}\{2^3, 16, 18, 52\} = (2^4)(3^2)(13) = 1872.$

Background
000000

By the Chinese Remainder Theorem we can get that for (a,b) = 1, $\lambda(ab) = \operatorname{lcm}\{\lambda(a),\lambda(b)\}.$

Example 1

What is $\lambda(547808)$?

 $547808 = (2^5)(17)(19)(53)$, so

$$\lambda(547808) = \operatorname{lcm}\{\lambda(2^5), \lambda(17), \lambda(19), \lambda(53)\}$$
$$= \operatorname{lcm}\{2^3, 16, 18, 52\} = (2^4)(3^2)(13) = 1872.$$

Background
000000

Proof Idea

Calculating $\lambda(n)$

Example b

What is $\lambda_2(547808) = \lambda\lambda(547808)$?

$$\begin{split} \lambda_2(547808) &= \lambda((2^4)(3^2)(13)) = \operatorname{lcm}\{\lambda(2^4),\lambda(3^2),\lambda(13)\} \\ &= \operatorname{lcm}\{2^2,6,12\} = 12. \end{split}$$

Background
000000

Proof Idea

Calculating $\lambda(n)$

Example b

What is $\lambda_2(547808) = \lambda\lambda(547808)$?

$$\begin{split} \lambda_2(547808) &= \lambda((2^4)(3^2)(13)) = \operatorname{lcm}\{\lambda(2^4),\lambda(3^2),\lambda(13)\} \\ &= \operatorname{lcm}\{2^2,6,12\} = 12. \end{split}$$

Background
000000

Calculating $\lambda(n)$

Example iii

What is L(547808), where L(n) is the smallest k such that $\lambda_k(n) = 1$?

 $\lambda_3(547808) = \lambda(12) = 2.$ $\lambda_4(547808) = \lambda(2) = 1 \Rightarrow L(547808) = 4.$

That's Typical

Question

What is the "typical" value of $\lambda(n)$?

Theorem (Erdős, Pomerance, Schmutz (1991))

There exists a set *S* of asymptotic density 1, where for all $n \in S$

$$\lambda(n) = n/(\log n)^{\log \log \log n + A + o(1)}$$

where A = 0.2269688...

Background	Known Results o●ooooo	Proof Idea
2 > 1		

Question

What about $\lambda_2(n) = \lambda(\lambda(n))$?

Theorem (Martin, Pomerance (2005))

As $n \to \infty$ through a set of asymptotic density 1

$$\lambda_2(n) = n \exp\left(-(1+o(1))(\log\log n)^2 \log\log\log n\right)$$

Question

What happens for more iterations?!?!?!

Background	Known Results ○●○○○○○	Proof Idea
2 > 1		

Question

What about $\lambda_2(n) = \lambda(\lambda(n))$?

Theorem (Martin, Pomerance (2005))

As $n \to \infty$ through a set of asymptotic density 1

$$\lambda_2(n) = n \exp\left(-(1+o(1))(\log\log n)^2 \log\log\log n\right)$$

Question

What happens for more iterations?!?!?!

Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following conjecture, which has since been proved.

Theorem (H. (2012))

For any fixed $k \ge 1$,

$$\lambda_k(n) = n \exp\left(-\left(\frac{1}{(k-1)!} + o_k(1)\right) (\log \log n)^k \log \log \log n\right)$$

for almost all n.

L(n)

As for L(n), very little is known. It can be show that there exists n such that $L(n) > c \log n$ for some c > 0, but these are likely very rare. It is more likely in light of the theorem on $\lambda_k(n)$ that L(n) is usually around $\log \log n$. Although some results are known including a decent lower bound and an awful upper bound.

Background	
000000	

L(n)

Theorem (Martin, Pomerance (2005))

There exists an infinite number of n such that

$$L(n) < \left(\frac{1}{\log 2} + o(1)\right) \log \log n.$$

Theorem (H. (2012))

For all $c < \left(\frac{1}{e^{-1} + \log 2}\right)$,

 $L(n) \ge c \log \log n,$

for almost all n.

Background	
000000	

L(n)

Theorem (Martin, Pomerance (2005))

There exists an infinite number of n such that

$$L(n) < \left(\frac{1}{\log 2} + o(1)\right) \log \log n.$$

Theorem (H. (2012))

For all $c < \left(\frac{1}{e^{-1} + \log 2}\right)$,

 $L(n) \ge c \log \log n,$

for almost all n.

As for an upper bound, until recently, the best known upper bound was the trivial upper bound $L(n) \ll \log n$. However a recent result is

Theorem (H. (2012))

For almost all *n*,

 $L(n) \leq (\log n)^{\gamma}$

where the γ can be taken around 0.9503.

As for an upper bound, until recently, the best known upper bound was the trivial upper bound $L(n) \ll \log n$. However a recent result is

Theorem (H. (2012))

For almost all *n*,

 $L(n) \leq (\log n)^{\gamma}$

where the γ can be taken around 0.9503.

It should be noted that under the Elliot–Halberstam conjecture, the constant $1/(e^{-1} + \log 2)$ can just be replaced with *e*. This is noteworthy because it's likely the upper bound as well.

Conjecture

L(n) has normal order $e \log \log n$.

In other words, the lower bound is close, and the upper bound is way way off.

It should be noted that under the Elliot–Halberstam conjecture, the constant $1/(e^{-1} + \log 2)$ can just be replaced with *e*. This is noteworthy because it's likely the upper bound as well.

Conjecture

L(n) has normal order $e \log \log n$.

In other words, the lower bound is close, and the upper bound is way way off.

Background	Known Results	Proof Idea ●○○
A Few Details		

The way we establish the normal order of $\lambda_k(n)$ is to show

$$\log (n/\lambda_k(n)) \approx \log (\phi_k(n)/\lambda_k(n))$$

$$\approx \sum_{q \le (\log \log x)^k} \nu_q(\phi_k(n)) \log q$$

$$\approx h_k(n)$$

$$:= \sum_{p_1|n} \sum_{p_2|p_1-1} \cdots \sum_{p_k|p_{k-1}-1} \sum_{q \le (\log \log x)^k} \nu_q(p_k-1) \log q.$$

Background
000000

A Few Details

We then use Turan-Kubilius and Euler summation on

$$\sum_{p \le t} h_k(p) = \sum_{p \le t} \sum_{p_2 \mid p-1} \cdots \sum_{p_k \mid p_{k-1}-1} \sum_{q \le (\log \log x)^k} \nu_q(p_k - 1) \log q$$
$$\approx \sum_{q \le (\log \log x)^k} \log q \sum_{a \in \mathbb{N}} \sum_{p_k \in \mathcal{P}_{q^a}} \sum_{p_{k-1} \in \mathcal{P}_{p_k}} \cdots \sum_{p_2 \in \mathcal{P}_{p_3}} \pi(t; p_2, 1)$$

A Few Details

We then use Bombieri–Vinogradov to replace π by li and then partial summation to recover π . Continuing this recursion yields our result

$$\log(n/\lambda_k(n)) \approx h_k(n) \approx \frac{1}{(k-1)!} (\log\log x)^k \log\log\log\log x$$

for almost all $n \leq x$.

The end

Thanks for your attention. These slides and more detailed proofs are available at my website at www.nickharland.com