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Definition

Definition of Carmichael Lambda Function
λ(n) is the smallest natural number m such that

am ≡ 1 (mod n)

for all (a, n) = 1.

Clearly λ(n) | φ(n) and they are equal when n has a primitive
root, i.e. when n = 2, 4, pk, 2pk for an odd prime p.
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Calculating λ(n)

On odd prime powers, λ(pk) = φ(pk) = (p− 1)pk−1.
On odder prime powers

λ(2) = 1, λ(4) = 2 and λ(2k) =
1
2
φ(2k) = 2k−2

for k ≥ 3.

Question
What if n is not a prime power?

By the Chinese Remainder Theorem we can get that

λ(lcm{a, b}) = lcm{λ(a), λ(b)}.
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Analytic Properties of λ(n)

λ(n) has a trivial upper bound of 2
n

n−1∑
i=1

i which is reached

whenever n is prime. For a lower bound,

Theorem (Erdős, Pomerance, Schmutz (1991))
For any increasing sequence (ni), for sufficiently large i

λ(ni) > (log ni)
c0 log log log ni

for any constant 0 < c0 < 1/ log 2.

They also showed that this can be acheived with some different
effective constant in place of c0.
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That’s Typical

Question
What is the "typical" value of λ(n)?

Theorem (Erdős, Pomerance, Schmutz (1991))
There exists a set S of asymptotic density 1, where for all n ∈ S

λ(n) = n/(log n)log log log n+A+o(1)

where A = 0.2269688...
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2 > 1

Question
What about λ2(n) = λ(λ(n))?

Theorem (Martin, Pomerance (2005))
As n→∞ through a set of asymptotic density 1

λ2(n) = n exp
(
− (1 + o(1))(log log n)2log log log n

)
.

Question
What happens for more iterations?!?!?!
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Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following
conjecture

Conjecture (Martin, Pomerance (2005))
For any fixed k ≥ 1,

λk(n) = n exp
(
−
(

1
(k − 1)!

+ o(1)
)
(log log n)k log log log n

)
for almost all n.
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For any fixed k ≥ 1,
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However, now it’s
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Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following
conjecture

Theorem (H. (2011))
For any fixed k ≥ 1,

λk(n) = n exp
(
−
(

1
(k − 1)!

+ o(1)
)
(log log n)k log log log n

)
for almost all n.
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λ(n) and φ(n) are friends

We are looking for the normal order of log(n/λk(n)). However
the relationship between n and λk(n) is hard to see. It would be
easier to look at the relationship between λk(n) and φk(n). We
do this by

log
(

n
λk(n)

)
= log

(
n

φ(n)

)
+ log

(
φ(n)
φ2(n)

)
+ . . .

+ log
(
φk−1(n)
φk(n)

)
+ log

(
φk(n)
λk(n)

)
.

The other terms are O(log log log n) and get sucked into our
error.
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Why have one log when you can have many sums?

Let q be a prime and a = vq(n) be the largest power of q such
that qa | n. Let y = log log x. Then

log
(
φk(n)
λk(n)

)
=

∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q

+
∑
q>yk

νq(φk(n))≥2

(νq(φk(n))− νq(λk(n))) log q

+
∑
q≤yk

νq(φk(n)) log q−
∑
q≤yk

νq(λk(n)) log q.
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Which sum matters?

Of the 4 summations, only one matters enough to give us our
main term. That summation is∑

q≤yk

νq(φk(n)) log q

Regardless, in light of the appearance of vq, it’s very important
to see how primes divide φk(n) and λk(n).
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Examples

Example 1
Fix a prime q. How many n can have q dividing φ3(n)?

The short answer is many ways. One obvious case would have

q4 | n

another would be the supersquarefree case

q | r − 1, r | s− 1, s | p− 1 where p | n

since if p | n, then s | φ(n) so r | φ2(n) leading to q | φ3(n).

How many n can have q dividing φ3(n) in these cases?
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Brun–Titchmarsh is our friend

Recall the Brun–Titchmarsh inequality

π(x;m, a) ≤ 2x
φ(m) log(x/m)

where π(x;m, a) is the number of primes up to x congruent to a
modulo m.

Using partial summation we can obtain

∑
p≤x

p∈Pm

1
p
≤ c log log x

m

where Pm is the set of primes congruent to 1 modulo m,
provided m/φ(m) is bounded.
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Counting Cases

While the number of n ≤ x such that q4 | n is clearly at most
x/q4, the number such n in our second way is

∑
n≤x

∑
r∈Pq

∑
s∈Pr

∑
p∈Ps

p|n

1 =
∑
r∈Pq

∑
s∈Pr

∑
p∈Ps

∑
n≤x
p|n

1

�
∑
r∈Pq

∑
s∈Pr

∑
p∈Ps

x
p

�
∑
r∈Pq

∑
s∈Pr

x log log x
s
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Counting Cases

�
∑
r∈Pq

x(log log x)2

r

� x(log log x)3

q

In general, we can show

Lemma
Suppose q > yk. For any such way for qa | φk(n), the number of
n ≤ x is that case is

O
(

xyak

qa

)
,

where y = log log x.
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Goodbye Sums

Let ψ(x) be a function growing to infinity where
ψ(x) = o(log log log x) = o(log y). Recall

log
(
φk(n)
λk(n)

)
=

∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q

+
∑
q>yk

νq(φk(n))≥2

(νq(φk(n))− νq(λk(n))) log q

+
∑
q≤yk

νq(φk(n)) log q−
∑
q≤yk

νq(λk(n)) log q.
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Goodbye Sums

The lemma can show∑
n≤x

∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q� xyk

which yields∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q� ykψ(x)

for all n ≤ x outside a set of size O(x/ψ(x)).
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Goodbye Sums

With enough care, we can do the same thing to get∑
q>yk

νq(φk(n))>1

(νq(φk(n))− νq(λk(n))) log q� ykψ(x)

for all n ≤ x outside a set of size O(x/ψ(x)).

and by analyzing the easier cases for qa | λk(n) we can also get∑
q≤yk

νq(λk(n)) log q� ykψ(x)

for all n ≤ x outside a set of size O(x/ψ(x)).
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Last Sum Standing

We are left with the main sum which is

∑
q≤yk

νq(φk(n)) log q.

Note that

vq(φ(m)) = max{0, vq(m)− 1}+
∑
p|m

vq(p− 1)

yielding∑
p|m

vq(p− 1) ≤ vq(φ(m)) ≤ vq(m) +
∑
p|m

vq(p− 1)
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Last Sum Standing

We would expect the sum to contribute more here. Repeatedly
using this yields

∑
p|φk−1(n)

vq(p− 1) ≤ vq(φk(n)) ≤
∑

p|φk−1(n)

vq(p− 1)

+
∑

p|φk−2(n)

vq(p− 1) + · · ·+
∑

p|φ(n)

vq(p− 1) + vq(n).
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Last Sum Standing

We can do better. The supersquarefree case is the case which
yields the most n. so we split the sum into the (ssf) case and
the non (ssf) case, we get

∑
ssf

vq(p− 1) ≤ vq(φk(n)) ≤
∑
ssf

vq(p− 1) +
∑
nssf

vq(p− 1)

+
∑

p|φk−2(n)

vq(p− 1) + · · ·+
∑

p|φ(n)

vq(p− 1) + vq(n).

Subtracting the sum on the left, multiplying by log q and
summing over q ≤ yk gives us

The Iterated Carmichael Lambda Function Nick Harland
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Subtracting the sum on the left, multiplying by log q and
summing over q ≤ yk gives us
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Last Sum Standing

0 ≤
∑
q≤yk

νq(φk(n)) log q− hk(n) ≤ Fk(x)

where hk(n) is the additive function

hk(n) =
∑
p1|n

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

and Fk(x) is the combination of a bunch of sums which can all
be shown to be small via similar techniques as before.
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Turán–Kubilius

Since hk(n) is additive, we can use the Turán–Kubilius
inequality, which says

Turán-Kubilius Inequality
If f (n) is an complex additive function, then there exists an
absolute constant C such that∑

n≤x

|f (n)−M1(x)|2 ≤ CxM2(x)

where M1(x) =
∑

p≤x
|f (p)|

p and M2(x) =
∑

p≤x
|f (p)|2

p .
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Turán–Kubilius

Since we want hk(n) to have normal order 1
(k−1)!y

k log y, we will
show it’s true for M1(x). If we can show

M1(x) =
1

(k − 1)!
yk log y + O(yk)

M2(x)� y2k−1 log2 y

then if N is the number of n ≤ x such that |hk(n)−M1(x)| > yk,
then

Ny2k � xy2k−1 log2 y⇒ N � x log2 y
y

= o(x).
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating M1(x) (Now it gets ugly)

M1(x) =
∑
p≤x

hk(p)
p

=
∑
p≤ee

hk(p)
p

+
∑

ee<p≤x

hk(p)
p

= O(1) +
∑

ee<p≤x

hk(p)
(

1
x
+

∫ x

p

dt
t2

)
= O(1) +

1
x

∑
ee<p≤x

hk(p) +
∫ x

ee

dt
t2

∑
ee<p≤t

hk(p).
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating
∑
p≤x

hk(p) (Oh so ugly)

Now using our definition of hk(n), we can get that

∑
p≤t

hk(p) =
∑
p≤t

∑
p1|p

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

=
∑
p≤t

∑
p2|p−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

∑
pk∈Pqa

a∈N

log q

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

∑
p≤t

p∈Pp2

1

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

π(t; p2, 1).
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating
∑
p≤x

hk(p) (Still ugly)

By a whole lot of estimation involving the Brun Sieve and
evaluating nasty summations involving arithmetic progressions
of the Euler phi function, we can strip off large values of the
primes leaving us with

Lemma
For all x > eee

and t > ee,∑
p≤t

hk(p) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤t1/3k−1

∑
pk−1∈Ppk

pk−1≤t1/3k−2

· · ·
∑

p2∈Pp3
p2≤t1/3

π(t; p2, 1)

+ O
(

t1−1/3k
log t(log log t)k−2yk +

t(log log t)k−2 log y
log t

)
.
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating
∑
p≤x

hk(p) (This doesn’t look so bad)

Question
Why did we strip off the large values?

We want to use the Bombieri–Vinogradov Theorem to freely
change π(t; p2, 1) to li(t)

p2−1 , then change that to li(t)
p2
, where the

errors will remain small.
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating
∑
p≤x

hk(p) (Back to ugly)

We define a similar function gk,l(u) to be

∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤u1/3l−1

∑
pk−1∈Ppk

pk−1≤u1/3l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤u1/3

π(u; pk−l+2, 1).

noting that when u = t and l = k we get the sum remaining in
the lemma. We’ll evaluate this by starting with gk,2(u) and then
recursively working our way to gk,k(u).
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating gk,2

gk,2(u) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤u1/3

π(u; pk, 1)

= li(u)
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤u1/3

1
pk

+ O(Error)

= li(u)
∑
q≤yk

log q
∑
a∈N

(
log log u1/3

φ(qa)

)
+ O(ERror)
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating gk,2

= li(u)(log log u)
∑
q≤yk

log q
q

+ O(ERROr)

=
ku log log u log y

log u
+ O(ERROR)
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating gk,l

As for the recursion, we get

gk,l(v) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3l−1

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

π(v; pk−l+2, 1).

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3l−1

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

li(v)
pk−l+2

+ O(error)
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Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Evaluating gk,l

Then using partial summation, we can get that

∑
pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

1
pk−l+2

=
π(v1/3; pk−l+3, 1)

v1/3 +

∫ v1/3

2

π(u; pk−l+3, 1)
u2 du

The first term can be estimated trivially and added to the error,
yielding the recursion
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Evaluating gk,l

Lemma
Let 3 ≤ l ≤ k, then

gk,l(v) = li(v)
∫ v1/3

2

1
u2 gk,l−1(u)du + O

(
v(log log v)l−2 log y

log v

)
.
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Evaluating gk,l

Hence
gk,2(v) =

kv log log v log y
log v

+ O(error)

gk,3(v) = li(v)
∫ v1/3

2

k log log u log ydu
u log u

+ O(error)

=
kv(log log v)2 log y

2 log v
+ O(error)

and so on to get
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Evaluating gk,l

gk,l(v) =
kv(log log v)l−1 log y

(l− 1)! log v
+ O(error)

Using v = t and l = k which implies (when we include the errors

Lemma
Let 2 ≤ k, then∑

p≤t

hk(p) =
kt(log log t)k−1 log y

(k − 1)! log t
+ O

(
t(log log t)k−1

log t

+
t(log log t)k−2 log2 y

log t
+ t1−1/3k

log t(log log t)k−2yk
)
.
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Evaluating M1(x) (Yes kids, we’re almost here)

Hence if we go back to M1(x)

M1(x) = O(1) +
1
x

∑
ee<p≤x

hk(p) +
∫ x

ee

dt
t2

∑
ee<p≤t

hk(p).

=
1
x

O
(

xyk−1 log y
log x

)
+

∫ x

ee

k(log log t)k−1 log ydt
(k − 1)!t log t

+ O(yk)

=
yk log y
(k − 1)!

+ O(yk)

HOORAY!
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Evaluating M2(x) (Just kidding)

With similar crazy sieve type lemma and evaluation of crazy
sums involving the Euler Phi function we can take care of M2(x).
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Further Questions

Question
We related n to λk(n). What about compositions of λ and φ?

The short answer is that if f (n) is k compositions of λ and φ
beginning with λ, then the relation to n is the same as λk(n).
Any deviation would be part of the error term. If it starts with φ,
then get rid of all the φ′s it starts with and ask the question
again. i.e.

log
(

n
φ(φ(λ(φ(n))))

)
∼ log

(
n

λ2(n)

)
∼ (log log x)2 log log log x.

The Iterated Carmichael Lambda Function Nick Harland



Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

Further Questions

Question
We related n to λk(n). What about compositions of λ and φ?

The short answer is that if f (n) is k compositions of λ and φ
beginning with λ, then the relation to n is the same as λk(n).
Any deviation would be part of the error term. If it starts with φ,
then get rid of all the φ′s it starts with and ask the question
again. i.e.

log
(

n
φ(φ(λ(φ(n))))

)
∼ log

(
n

λ2(n)

)
∼ (log log x)2 log log log x.

The Iterated Carmichael Lambda Function Nick Harland



Background Outline of the Proof How Primes Divide φk(n) and λk(n). Finding the Asymptotic Further Questions

The end

Thanks for your attention. These slides will be available at my
website at www.nickharland.com
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