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Definitions

Definition of Carmichael Lambda Function
λ(n) is the smallest natural number m such that

am ≡ 1 (mod n)

for all (a, n) = 1.

Definition of Euler Totient Function
φ(n) = #{1 ≤ a ≤ n|(a, n) = 1}.
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Calculating φ(n)

Facts about φ(n).
φ(n) is multiplicative. (i.e. if (a, b) = 1 then
φ(ab) = φ(a)φ(b).)
φ(pk) = pk − pk−1.

These allow us to evaluate φ(n) for any natural number n. We
also have the following theorem.

Theorem (Euler)

aφ(n) ≡ 1 (mod n)

for all (a, n) = 1.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea Applications Open Problems

Calculating φ(n)

Facts about φ(n).
φ(n) is multiplicative. (i.e. if (a, b) = 1 then
φ(ab) = φ(a)φ(b).)
φ(pk) = pk − pk−1.

These allow us to evaluate φ(n) for any natural number n. We
also have the following theorem.

Theorem (Euler)

aφ(n) ≡ 1 (mod n)

for all (a, n) = 1.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea Applications Open Problems

Calculating φ(n)

Facts about φ(n).
φ(n) is multiplicative. (i.e. if (a, b) = 1 then
φ(ab) = φ(a)φ(b).)
φ(pk) = pk − pk−1.

These allow us to evaluate φ(n) for any natural number n. We
also have the following theorem.

Theorem (Euler)

aφ(n) ≡ 1 (mod n)

for all (a, n) = 1.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea Applications Open Problems

Calculating λ(n)

Recall the definition of λ(n) says that λ(n) is the smallest such
exponent. Therefore we know that λ(n) ≤ φ(n). In fact we know
that λ(n) | φ(n).

The two are equal when there exists some a such that am 6≡ 1
for all 1 ≤ m < φ(n) which is the definition of there being a
primitive root modulo n.

It is well known that a primitive root exists modulo n if and only
if n = 2, 4, pk or 2pk where p is an odd prime power.
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Calculating λ(n)

Therefore we get the following calculations.

On odd prime powers, λ(pk) = φ(pk) = (p− 1)pk−1.

On the other prime powers

λ(2) = 1, λ(4) = 2 and λ(2k) =
1
2
φ(2k) = 2k−2

for k ≥ 3.

Question
What if n is not a prime power?
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Calculating λ(n)

By the Chinese Remainder Theorem we can get that

λ(lcm{a, b}) = lcm{λ(a), λ(b)}.

Example 1
What is λ(547808)?

547808 = (25)(17)(19)(53), so

λ(547808) = lcm{λ(25), λ(17), λ(19), λ(53)}
= lcm{23, 16, 18, 52} = (24)(32)(13) = 1872.
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Calculating λ(n)

Example 2
What is λ2(547808) = λλ(547808)?

λ2(547808) = λ((24)(32)(13)) = lcm{λ(24), λ(32), λ(13)}
= lcm{22, 6, 12} = 12.
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Calculating L(n)

Definition of L(n)
Let L(n) be the smallest k such that λk(n) = 1.

Example 3
What is L(547808)?

λ3(547808) = λ(12) = 2. λ4(547808) = λ(2) = 1. So
L(547808) = 4.
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Upper Bound for λ(n)

λ(n) has a trivial upper bound of 2
n

n−1∑
i=1

i which is reached

whenever n is prime.
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Lower Bound for λ(n)

Theorem (Erdős, Pomerance, Schmutz (1991))
For any increasing sequence (ni), for sufficiently large i

λ(ni) > (log ni)
c0 log log log ni

for any constant 0 < c0 < 1/ log 2.

They also showed that this can be acheived with some different
effective constant in place of c0.

The Iterated Carmichael Lambda Function Nick Harland



Background Known Results Proof Idea Applications Open Problems

Lower Bound for λ(n)
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That’s Typical

Question
What is the "typical" value of λ(n)?

Theorem (Erdős, Pomerance, Schmutz (1991))
There exists a set S of asymptotic density 1, where for all n ∈ S

λ(n) = n/(log n)log log log n+A+o(1)

where A = 0.2269688...
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2 > 1

Question
What about λ2(n) = λ(λ(n))?

Theorem (Martin, Pomerance (2005))
As n→∞ through a set of asymptotic density 1

λ2(n) = n exp
(
− (1 + o(1))(log log n)2log log log n

)
.

Question
What happens for more iterations?!?!?!
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Why do 2 when you can do them all?

In the same paper, Martin and Pomerance gave the following
conjecture, which I proved.

Theorem (H. (2012))
For any fixed k ≥ 1,

λk(n) = n exp
(
−
(

1
(k − 1)!

+ o(1)
)
(log log n)k log log log n

)
for almost all n.
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How long to get to 1?

Let k(n) be the smallest number k such that φk(n). Bounds on
k(n) can be shown to be

Theorem (Pillai (1929))⌈
log n
log 3

⌉
≤ k(n) ≤

⌈
log n
log 2

⌉
and that both sides can be obtained infinitely often. See if you
can guess how.
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L(n)

As for L(n), very little is known. It can be shown that there
exists n such that L(n) > c log n for some c > 0, but these are
likely very rare. It is more likely in light of the theorem on λk(n)
that L(n) is usually around log log n. Although some results are
known including a decent lower bound and an awful upper
bound.
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L(n)

Theorem (Martin, Pomerance (2005))
There exists an infinite number of n such that

L(n) <
(

1
log 2

+ o(1)
)

log log n.

The ni can be defined by ni = lcm{1, 2, . . . , i}.
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Useful Theorems and Conjectures

Let π(x, q, a) be the number of primes p less than or equal to x
such that p ≡ a modulo q. The prime number theorem for
arithmetic progressions says that

π(x, q, a) ≈ π(x)
φ(q)

for q ≤ (log x)A.

The error in this calculation is
x

(log x)A although under the

Generalized Riemann Hypothesis, it can be improved to
x1/2 log2 x.
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Useful Theorems and Conjectures

The Elliot–Halberstam conjecture says that the combined error
for all q up to a certain point is not too large.∑

q≤xθ

∣∣∣∣π(x, q, a)− π(x)
φ(q)

∣∣∣∣� x
logA x

for all θ < 1.

The Bombieri–Vinogradov Theorem is unconditional and says
the above is true for all θ < 1/2. Note that this implies the error
bound from GRH is true on average.
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L(n)

For an lower bound we have the following.

Theorem (H. (2012))
For almost all n,

L(n) ≥
(

1
e−1 + log 2

)
log log n.
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L(n)

As for an upper bound, until recently, the best known upper
bound was the trivial upper bound L(n)� log n. However a
recent result is

Theorem (H. (2012))
For almost all n,

L(n) ≤ (log n)γ

where the γ can be taken around 0.9503.
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L(n)

It should be noted that under the Elliot–Halberstam conjecture,
that the constant 1/(e−1 + log 2) can just be replaced with e.
This is noteworthy because it’s likely the upper bound as well.

Conjecture
L(n) has normal order e log log n.

In other words, the lower bound is close, and the upper bound
is way way off.
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Wussing out

The following is a sketch of the proof of the normal order of
log
(
n/λk(n)

)
when k = 1. It should be noted that the ideas

begin in the same way for general k, however the details get
about 35 pages more messy.
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λ(n) and φ(n) are friends

We are looking for the normal order of log(n/λ(n)). However the
relationship between n and λ(n) is hard to see. It would be
easier to look at the relationship between λ(n) and φ(n). We do
this by

log
(

n
λ(n)

)
= log

(
n

φ(n)

)
+ log

(
φ(n)
λ(n)

)
.

The first term is O(log log log n) and get sucked into the error.
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Why have one log when you can have many sums?

Let q be a prime and a = vq(n) be the largest power of q such
that qa | n. Let y = log log x. Then

log
(
φ(n)
λ(n)

)
=

∑
q>y

νq(φ(n))=1

(νq(φ(n))− νq(λ(n))) log q

+
∑
q>y

νq(φ(n))≥2

(νq(φ(n))− νq(λ(n))) log q

+
∑
q≤y

νq(φ(n)) log q−
∑
q≤y

νq(λ(n)) log q.
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Which sum matters?

Of the 4 summations, only one matters enough to give us our
main term. That summation is

h(n) :=
∑
q≤y

νq(φ(n)) log q

Regardless, in light of the appearance of vq, it’s very important
to see how primes divide φ(n) and λ(n).
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Turán-Kubilius

The strategy is to use the Turán–Kubilius inequality for the
strongly additive function h(n) which says that

∑
n≤x

(
h(n)−

∑
p≤x

h(p)
p

)2

� x
∑
p≤x

h(p)2

p

The Iterated Carmichael Lambda Function Nick Harland
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h(p)

Using that vq(p− 1) =
∑

a≥1
∑

p≤x
p≡1(qa)

1 we get

∑
p≤x

h(p)
p

=
∑
q≤y

log q
∑
p≤x

νq(φ(p))
p

=
∑
q≤y

log q
∑
a≥1

∑
p≤x

p≡1(qa)

1
p

=
∑
q≤y

log q
∑
a≥1

y
φ(qa)

+ error
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h(p)

=
∑
q≤y

log q
∑
a≥1

y
φ(qa)

+ error

=
∑
q≤y

log q
q− 1

∑
a≥1

y
qa−1 + ERror

= y
∑
q≤y

log q
q

+ ERROr

= y log y + ERROR.

The error can be shown to be O(y log log y)
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h(p)

Similarly we can show

∑
p≤x

h(p)2

p
� y log2 y.

Hence we obtain
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h(p)

∑
n≤x

(
h(n)−

∑
p≤x

h(p)
p

)2

� xy log2 y.

This implies that the number of n for which
|h(n)− y log y| > y log log y is

O
(

xy log2 y
(y log log y)2

)
= o(x).
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YAY!

Hence for almost all n ≤ x

log
(

n
λ(n)

)
≈ h(n) ≈ y log y = log log x log log log x
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Obstacles for larger k

The first major obstacle is replacing log
(
φk(n)/λk(n)

)
by∑

q≤yk

vq(φk(n)) log q.

The other terms are

−
∑
q≤yk

vq(λk(n)) log q,
∑
q>yk

(
vq(φk(n))− vq(λk(n))

)
log q
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Obstacles for larger k

Showing the second term is small involves a complex
description of how prime powers can divide φk(n).
This was done by splitting off easier cases, for example q2 | n,
and then splitting the remaining cases into an array.
After that I showed that there is a way of organizing those cases
there aren’t too many, and in any individual case the number of
n such that qa | n is small enough to make the sum small.
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Obstacles for larger k

The second major obstacle is when trying to approximate hk(n).
The idea is to use the Bombieri–Vinogradov Thereom on a
multiple sum over primes of π(t, p, 1). Unfortunately the
theorem only allows the use of q up to some power of x less
than 1/2. Hence we need to split off the larger primes. Splitting
off those primes involves sieve techniques. Using Brun’s Sieve
turns the error into multiples sums involving the totient function
φ. Repeatedly using induction and Cauchy–Schwarz can bound
these sums giving us our result.
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Power Generator

The power generator is

un+1 ≡ ul
n (mod m)

where 0 ≤ un ≤ m− 1, n = 1, 2, . . . .
The power generator has many features that are important in
crytography. An important question in cryptography is the
largest possible period of the power generator. It can be shown
that the largest period is λλ(m). Hence the result of Martin and
Pomerance can be used to give an estimate on the longest
period.
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Power Generator

Let x0 be such that gcd(x0, n) = 1. The power generator
generates a purely periodic cycle. A natural question is how
many cycles are there? Martin and Pomerance’s estimate can
be used to say something non–trivial about the number of
cycles.

Theorem (Martin, Pomerance (2005))
The number of cycles of the power generator is

exp
(
(1 + o(1))(log log n)2 log log log n

)
.
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Carmichael Conjecture

Question
For what values of m does there exist n such that φ(n) = m.
How many n are there?

The short answer is not many, and probably more than 1.
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Carmichael Conjecture

Let p be a prime, then it’s clear that p− 1 is a totient for all
primes p. Hence there must be at least π(x) totients less than x.
In fact, Kevin Ford has shown there is not much more.

Theorem (Ford (1998))
The number of totients less than x is

x
log x

exp(O(log3 x)2)
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Carmichael Conjecture

An interesting question is how many n are there with φ(n) = m.
Since φ(2n) = φ(n), whenever there is an odd n, there must be
a corresponding even one. There is enough evidence to
suggest that it is never just one.

Conjecture (Carmichael Conjecture)
If φ(n) = m, there exists n′ 6= n such that φ(n′) = m.
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Carmichael Conjecture

While the conjecture is still open, any counterexample is pretty
big. For example it’s true for all n ≤ 101010

. It’s also known that n
must have lots of divisors of 2 and 3.

What about λ(n)?
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Carmichael Conjecture for λ

An equivalent conjecture has been made for λ(n).

Conjecture (Carmichael Conjecture)
If λ(n) = m, there exists n′ 6= n such that λ(n′) = m.

This conjecture seems like it’s closer to an answer.

Theorem (Banks, Friedlander, Luca, Pappalardi,
Shparlinski (2006))
Any counterexample n must be a multiple of some smallest
counterexample n0.
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Carmichael Conjecture for λ

It’s also elementary to show that if a counterexample exists,
then (i)24 | n0 and (ii) if p− 1 | λ(n0) for a prime p, then p2 | n0.
This is useful since we know 4 | λ(n0), then 32, 52 | n0.
However that means 60 | λ(n0) and so 72, 112, 132, 312, 612 | n0.
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Carmichael Conjecture for λ

Therefore if this process can continue indefinitely (which is
conjectured), then no n0 can exist, proving Carmichael’s
conjecture for λ(n).
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The end

Thanks for your attention. These slides and more detailed
proofs are available at my website at www.nickharland.com
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