THE UNIVERSITY OF MANITOBA

October 23, 2007

Mid-Term EXAMINATION

 PAPER NO: _____
 LOCATION: 100 / 225 St. Paul's College
 PAGE NO: 1 of 4

 DEPARTMENT & COURSE NO: CHEM / MBIO 2770
 TIME: 1 HOUR

EXAMINATION: <u>Elements of Biochemistry I</u> EXAMINER: <u>J. O'Neil</u>

Instructions

- Please mark the Answer Sheet using PENCIL ONLY.
- Enter your NAME and STUDENT NUMBER on the Answer Sheet.
- The exam consists of multiple-choice questions. Enter your answers on the Answer Sheet.
- *There is only 1 correct answer for each question.*
- PLEASE READ ALL QUESTIONS CAREFULLY!
- 1. Virtually all life on earth depends on energy <u>ULTIMATELY</u> from:
 - A) Hydroelectric power
 - B) Activation energy.
 - C) The Greenhouse effect.
 - D) The sun.
 - E) Enthalpy
- 2. The major essential atoms found in all life forms are:
 - A) Hydrogen, calcium, oxygen, and sodium
 - B) Hydrogen, helium, carbon, oxygen, iron and calcium
 - C) Hydrogen, carbon, nitrogen, oxygen, phosphorus, and sulphur
 - D) Carbon, oxygen, iron, sodium, and nitrogen
 - E) Oxygen, silicon, calcium, beryllium, and nitrogen
- 3. All are true about hydrophobic interactions EXCEPT:
 - A) Hydrophobic interactions result from the strong tendency of water to exclude non-polar groups or molecules.
 - B) Hydrophobic interactions are important in the formation of detergent micelles and the folding of proteins.
 - C) Hydrophobic interactions result from hydrogen bonds between water and the hydrophobic molecules.
 - D) The preferential interactions between water molecules "exclude" hydrophobic substances from aqueous solution and drive the tendency of non-polar molecules to cluster together.
 - E) Hydrophobic interactions result in non-polar regions of biological molecules being buried in the molecule's interior to exclude them from the aqueous milieu.
- 4. A definition of pH is:
 - A) The negative logarithm to the base 10 of the hydrogen ion concentration.
 - B) The power of H.
 - C) $pH = -\ln_e[H^+].$
 - D) H is enthalpy, the heat energy at constant temperature, pressure, and volume.
 - $E) \qquad pK_A = -\log_{10}[K_A]$
- 5. Buffers have all of the following characteristics EXCEPT:
 - A) They have relatively flat titration curves at the pH(s) where they buffer.
 - B) They resist changes in their pH as acid or base is added.
 - C) They are typically composed of a weak acid and its conjugate base.
 - D) They buffer best for polyprotic acids halfway between the two pK_a values.
 - E) They buffer where the amounts of conjugate base are nearly equivalent to the amounts of weak acid.

- 6. To 80 mL of a 0.1 M solution of isoleucine at $pH = pK_a$ for its carboxyl group was added X mL of 0.25M NaOH. The new pH was found to be equal to the pK_a for its amino group. What is the value of X?
 - A) 32 mL
 - B) 0.025 mL
 - C) 8.0 mL
 - D) 40 mL
 - E) The problem cannot be solved without knowing the pK_a value.
- 7. Which of the forms of aspartate shown below CANNOT exist in solution at any pH?

- 8. Glutamic acid has pK_as at 2.2, 4.3 and 9.7. Calculate the isoelectric point for glutamic acid.
 - A) 3.25
 - B) 5.90
 - C) 6.50
 - D) 7.00
 - E) 8.60
- - A) Equal to
 - B) Less than half of
 - C) More than half of
 - D) About six times
 - E) About twice

10. What is the approximate fractional concentrations of $HPO_4^{2-}/H_2PO_4^{-}$ (pK_a = 7.2) at pH 7.5?

- A) 1/1
- B) 1/2
- C) 2/1
- D) 1/10
- E) 3/1
- 11. Which of the following pairs would be the best buffer at pH 10.0?
 - A) Acetic acid and sodium acetate $(pK_a = 4.76)$
 - B) H_2CO_3 and NaHCO₃ (pK_as are 3.77 and 10.4)
 - C) Lactic acid and sodium lactate $(pK_a = 3.86)$
 - D) NaH_2PO_4 and Na_2HPO_4 (pK_as are 2.1, 7.2, 12.4)
 - E) Sodium succinate and succinic acid $(pK_a = 4.21)$
- 12. All of the statements about the classification of these amino acids are correct EXCEPT:
 - A) Aspartic acid and asparagine are acidic amino acids.
 - B) Alanine and valine are neutral, non-polar amino acids.
 - C) Serine and glutamine are polar, uncharged amino acids.
 - D) Lysine and arginine are basic amino acids.
 - E) Tyrosine and phenylalanine are aromatic amino acids.
- 13. Which of the following amino acids has more than one chiral carbon?
 - A) Serine
 - B) Lysine
 - C) Threonine
 - D) Cysteine
 - E) Aspartic acid

- 14. Explain which results would be expected for the breaking of hydrogen bonds and the exposure of hydrophobic groups from the interior during the unfolding process of a protein.
 - A) Entropy change, ΔS , is zero
 - B) Enthalpy change, ΔH , is positive
 - C) The reaction is spontaneous
 - D) Enthalpy change, ΔH , is negative
 - E) Entropy change, ΔS , is positive
- 15. α -Helix and β -strand are components of ______ structure.
 - A) Primary
 - B) Secondary
 - C) Tertiary
 - D) Quaternary
 - E) Pentanary
- 16. Where C_{α} is the α -carbon, N represents the amide nitrogen and C_{o} is the carbonyl carbon of amino acids in a peptide, the peptide backbone of a protein consists of the repeated sequence:
 - A) $-C_{\alpha}$ -N-C₀-
 - B) $-N-C_0-C_{\alpha}-$
 - C) $-N-C_{\alpha}-C_{0}-$
 - D) $-C_0-C_{\alpha}-N-$
 - E) None of the above
- 17. In the beta pleated-sheet, the R-groups of the amino acids ____?
 - A) Are found above and below the plane of the sheet.
 - B) Cause only anti-parallel sheets to form.
 - C) Lie in the plane of the sheet.
 - D) Generate H-bonds to stabilize the sheet.
 - E) Stack within the interior of the helix.
- 18. Which reagent is specific in hydrolyzing only peptide bonds in which the carboxyl function is contributed by a Trp, Tyr, or Phe residue?
 - A) Chymotrypsin
 - B) Carboxypeptidase
 - C) Trypsin
 - D) CNBr
 - E) None of the above.
- 19. Which amino acid acts as a helix breaker due to steric interactions between its side-chain and the carbonyl of the preceding amino acid?
 - A) Histidine
 - B) Proline
 - C) Arginine
 - D) Serine
 - E) Tyrosine
- 20. The unique composition of collagen is accommodated in a structure called a(n):
 - A) Triple helix.
 - B) Helix-turn-helix motif.
 - C) Coiled-coils.
 - D) Fibroin
 - E) β -pleated sheet.
- 21. All of the following functions of an enzyme are true EXCEPT:
 - A) Enzymes help to catalyze nearly all metabolic reactions.
 - B) Enzyme activity is sensitive to enzyme and substrate concentration.
 - C) Enzymes are sensitive to temperature and pH changes.
 - D. An increased activity of an enzyme increases the amount of energy produced.
 - E) Enzymes are used as a catalyst to increase reaction rates many orders of magnitude.

- 22. AMP is an activator of allosteric Phosphofructokinase. It:
 - A) Causes a shift to the right in the sigmoid V_0 vs. [S] curve.
 - B) Increases the number of T conformations.
 - C) Decreases the cooperativity of the substrate.
 - D) Stabilizes the T-state, increasing $S_{0.5}$, and making the curve less sigmoid
 - E) Stabilizes the R-state, decreasing $S_{0.5}$, and making the curve more sigmoid.
- 23. The specific site on the enzyme where _____ binds and catalysis occurs is called the ______ site.
 - A) Coenzyme; substrate
 - B) Substrate; active
 - C) Coenzyme; regulatory
 - D) Regulatory; active
 - E) None of the above
- 24. All are true for inhibitor I if it is a competitive inhibitor EXCEPT:
 - A) It is structurally similar to the substrate.
 - B) EI does not give rise to E + P.
 - C) For a given [I], V_0 decreases.
 - D) At some point S can displace all of I on E.
 - E) It binds a site other than the active site.
- 25. The following data were obtained in a study of an enzyme known to follow Michaelis-Menten kinetics:

V ₀ (mmol/min)	Substrate added (mM)
2	1
12	5
25	10
35	50
44	200
48	500

The $K_{\rm m}$ for this enzyme is approximately:

A)	1 mM.
B)	25 M.
C)	10 mM.
-	

- D) 50 mM.
- E) 25 mM.