	E NUMBER: Chemistry 2.277 & Microbi	
EXAMINATION: Elements of	Biochemistry	EXAMINERS: Drs. F. Hruska & A. Scoo
2. Put your name and en3. The examination conscorrect and record you	GENERAL INSTRUCTI swer sheet with pencil (not pen). ter your student number on the answ ists of multiple choice questions. Cour choice on the answer sheet. Therefor 25% of your final mark.	ver sheet.
	MULTIPLE CHOICE QUE	<u>STIONS</u>
	g amino acids has a hydroxyl group sine C) asparagine D) isoleucine	
	acids does <u>not</u> have 2 or more meth ne C) lysine D) methionine E)	ylene (CH ₂) groups in its side chain? proline
	H_5 belongs to which amino acid? oline C) phenylalanine D) histidi	ine E) methionine
	owing amino acids has two chiral can han C) aspartate D) leucine E) two chiral atoms	
an aqueous solution of	of D-alanine (2 g/mL) rotates the profile of L-alanine (3 g/mL) will rotate the profile (2 g/mL) of the profile	•
? times as large as the	•	te is 2.4, the [H+] in the lemon juice 00 G) 10,000
The resulting solution	re added to 6 mL of 0.2 M lactic act has a pH which is closest to: 6.8 D) 6.3 E) 5.8 F) 5.3	id. Ka of lactic acid is 7.94 x 10-5.
0 I.,	ne conjugate acid of the anionic forn	n of alanine is
8. in aqueous solution, tr		

тн	E UNIVERSITY OF	MANITOBA		
Tues October 29, 1996		Midterm_EX	KAMINATION	
Paper NO: P	AGE NO.: 2 of 7		TIME: 2_HOU	RS
DEPARTMENT & COURSE NUMBER	Chemistry 2.277 & 1	Microbiology 60.277	•	
EXAMINATION: Elements of Biochemistr	y	EXAMINER	S; Drs. F. Hrus	ka & A. Scoot
9. You wish to make a solution that see five bottles, each containing a have Ka values 3 x10 ⁻² , 5 x 10 ⁻² , would you select in your prepara pH5? A) acid1 B) acid2 C) acid3	a different acid—ac 3 , 9×10^{-4} , 9×10^{-1} tion of the solution	sid1, acid2, acid3 6, and 1 x 10 ⁻⁷ , that would give t	, acid4 and actespectively.	id5—which Which acid
10. The predominant form/aspartic	acid at pH 7 is:			
A B	C	D	E	F
C00- C40	cH ₂	CHO	CHO	CHO
A B COO- CH2 CH2 H3-CH-COOH NH3-CH-COO- NH	13-CH-COO- NH-	-CH-COO	-cH-cno	+ 1 X
11. The chemical formula for the zv A) C ₃ H ₆ O ₃ N B) C ₃ H ₇ O ₃ N E) C ₄ H ₉ O ₂ N F) C ₄ H ₉ O ₃ N	vitterionic form of	threonine is		J
12. We have 10 mL of a 0.1 M phe must be added to this solution to are 1.83 and 9.13.	make the pH equa	l to the pI for Phe		
A) 0.5 B) 1.5 C) 2.5 D)	3.5 E) 4.5 F) 5.5		
13. True (A) or False (B): A pentage	eptide has 5 peptic	le bonds.		
14. If a biochemistry laboratory has dipeptides could be make?A) 8 B) 16 C) 24 D) 32			ids, how many	y different
15. What is the molecular weight of (Atomic weights: H = 1; C = 12 A) 158 B) 159 C) 160 D) 2	2; N = 14; O = 16;	S = 32)	ng glycine and	proline?

16. Which one of the following tetrapeptides has a zero net charge at pH 7?

E) trp-pro-asp-gly F) Each has a net positive charge at pH 7.

A) gly-thr-ser-glu B) lys-val-ala-arg C) lys-ile-phe-gln D) arg-ser-leu-asp

Tues October 29, 1996

Midterm EXAMINATION

Paper NO: ____

PAGE NO.: 3 of 7

TIME: 2 HOURS

DEPARTMENT & COURSE NUMBER: Chemistry 2.277 & Microbiology 60.277

EXAMINATION: Elements of Biochemistry

'EXAMINERS: Drs. F. Hruska & A. Scoot

- 17. Which of the statements about the peptide group is correct? If each one of A-E is incorrect, the answer is F.
 - A) It contributes +1 to the overall charge on a polypeptide in aqueous solution at pH 7.
 - B) There is a high degree of freedom of rotation about the peptide bond.
 - C) The peptide bond is denoted by the Greek symbol ϕ (phi)
 - D) Differences in the 3-dimensional structure of polypeptide chains can usually be traced to changes in the torsion angles about the ψ (psi) and ω (omega) bonds.
 - E) The peptide groups in an α-helix have the cis coplanar orientation.
 - F) The above statements are all incorrect.
- 18. Which of the following statements about the naturally occurring α -helix is incorrect?
 - A) It is stabilized by hydrogen bonds between N-H and C=O groups on the backbone of a polypeptide chain.
 - B) It has a right-hand twist if constructed with L-amino acids.
 - C) It has a regular shape because the ϕ , ψ , and ω angles are identical for each residue in an ideal α -helix.
 - D) All R groups protrude out from an α -helix.
 - E) The plane of the peptide group is essentially perpendicular to the helix axis.
 - F) A carbonyl group of residue 1 of the helix is hydrogen bonded to an N-H of residue 5 in the helix.
- 19. True (A) or False (B): Hair is composed mainly of proteins with a β -sheet conformation.
- 20. True (A) or False (B): The most important factor stabilizing the tertiary structure of globular proteins is the hydrophobic association of the polar side chains of the amino acid residues.
- 21. Which one of the following statements about myoglobin (Mb) is CORRECT?
 - A) An O2 molecule can bind to Mb by associating with a pair of lysine residues.
 - B) Since Mb is a globular protein, only a small fraction of its amino acid residues (<50%) exist in α -helical regions.
 - C) Its structure is useful for illustrating protein quaternary structure.
 - D) Mb is an example of a protein that does not need a cofactor for activity.
 - E) A mutation leading to a replacement of a specific glutamate residue by a valine residue in the amino acid sequence of Mb leads to sickle-cell anemia.
 - F) Mb is an example of a conjugated protein.
- 22. Which of the following statements about carboxypeptidase A is incorrect?
 - A) It is an example of a metalloenzyme.
 - B) The mechanism of its action involves a water molecule.
 - C) It is made in the adrenal glands and secreted into the intestines.
 - D) It is involved in the digestion of dietary protein.
 - E) It shortens a polypeptide chain by cleaving the C-terminal amino acid residue from the chain.

Tues October 29, 1996				<u>Midterm</u> E	XAMINATION	ī		
Paper NO: PAGE NO.: 4 of 7 TIME: 2 HOURS								
DEPARTMENT & COURSE NUMBER: Chemistry 2,277 & Microbiology 60,277								
EXAMINATION: Elements of	Biochemistry		•	EXAMINE	RS: Drs. F. Hru	iska & A. Sc	<u>oot</u>	
23. Which is a correct stat hyperbolic v versus [S]		t the Km fo	or a reaction	n catalyzed b	y an enzyme	that shows	s a	
A) If two substrates can more strongly bound		e same activ	ve site, the	substrate wit	th the smalle	st Km is the	ð	
B) The enzyme active s to the Km.		ırated with	substrate v	when the subs	strate concen	tration is ea	qual	
C) It is also called the ID) The rate of the react E) Enzyme saturation of	ion is equal	to the prod	luct of Km	and Vmax.				
F) $Km = 1/2 \times Vmax$.								
24. For an enzyme which (μmoles/min) if v = 35 A) 50 B) 70 C) 90	µmoles/mi	n when [S]		n kinetics, w	hat is the Vm	nax		
25. For the enzyme in the when $[S] = 2 \times 10^{-5} \text{ M}$		uestion (#2	4), what is	the value of	Km if $v = 3$	5 μmoles/n	nin	
Α) 20 μΜ Β) 22 μΝ		μM D) 2	27 μΜ σ	e) 30 μM				
26. The kinetic data in the Michaelis-Menten kine		w were obta	ained in a s	tudy of an er	nzyme know	n to follow		
Substrate added (mM)	0.05	0.3	1.0	4.0	12.0	100.0		
Product formed μmol/min	22.9	110.8	240.0	384.0	443.1	475.3		
The Km for this enzyme i A) 0.05 mM B) 0.3			D) 4.0 mM	E) 12.0 n	nM F) 100) mM		
	nore than or They are of	ne active si ligomeric p	te. 2) Bo proteins.	oth substrate	and allosteri ally have on		bind	
A) 1 & 2 B) 2 & 3	•		-	5 F)3&		5		
28. When the linear form A) a disaccharide B)		-		-	-		et.	
29. A ketopentose in its n A) 0 B) 1 C) 2	oncyclic, c D) 4 E)		nas <u>?</u> st	ereoisomerio	forms.			

	THE UNIVER	SITY OF MANITOB	A
Tues October 29, 1996		Midte	EXAMINATION
Paper NO:	PAGE NO.:	5 of 7	TIME: 2 HOURS
DEPARTMENT & COURSE	NUMBER: Chemistry	2.277 & Microbiology	60.277
EXAMINATION: Elements of	Biochemistry	EXA	MINERS: Drs. F. Hruska & A. Scoot
30. True (A) or False (B) configuration of its and	_	a sugar to the D or to	o the L family is based on the
31. Which of the followin A) D-Mannose and D- C) D-glucose and D-fr	galactose B) D-ma	nnose and D-maltos	se E) D-glucose and D-ribose
32. The molecule shown A) α-D-glucopyranose C) α-D-galactopyranose E) α-D-mannopyranose	e B) β-D-glucopyra se D) β-D-galactop	yranose	СH ₂ OH OH
33. An aqueous solution A) D-galactose B) D D) D-mannose E) m		C) D-glucose	
		-	e twice as much Cu ₂ O as a 1 M ess of Benedict's solution.
35. Which of the stateme your answer is "F".A) It is a non-reducing C) The two units are juty D) One of the units is E) One unit is a pentos F) None of these states	g sugar. B) It conta oined by an α1β2 gly an aldose, the other i se sugar and the othe	ins a pyranose ring ycosidic bond.	think that they are all correct, and a furanose ring.
36. Given the atomic wei A) 375 B) 360	ghts (H= 1; C = 12; C) 351 D) 342		ne molecular weight of cellobios e of these answers is correct.
37. Which one of the foli A) amylose & glycog D) amylose & cellulo	gen B) cellulose &	amylopectin C) g	lly found in plant starches? lycogen & amylopectin
38. True (A) or False (B) group per molecule.	: Glucose, amylose a	nd amylopectin eac	h contain a single hemiacetal
39. Which one of the foll of amylopectin: A) maltose & sucrose D) sucrose & cellobic	e B) mannose & is	omannose C) mal	med in the <u>incomplete</u> hydrolysis
40. The types of glycosid A) α-1,4 only B)		· -	pectin are α -1,4 and β-1,6

E) β -1,4 and α -1,6

			PAGE NO.: 6 6 7
	NT & COURSE NO.: 2.2		TIME: HOURS
MINATI	ON: Elements of B	lochemistry I	EXAMINER: Drs. Hruska & Scoot
)S		<u>L</u> A	AB SECTION
etha			llowing: Paper chromatography with a solvent containing separate the three amino acids; aspartate (Asp), isoleucine
41.	Which of the amin	o acids would be fou	nd closest to the solvent front?
	a) Asp b) II	e c) Ser	d) He and Ser equally close
ļ	e) Cannot be deter	mined	
42.	Which of the amin	o acids would have the	he smallest Rf?
	a) Asp b) I	le c) Ser	d) He and ser equal and smallest
	e) Cannot be deter	mined	
43.	The Biuret method	for measuring protei	n relies upon one or more of the following:
	(iv) Establishme (v) Formation	ce of Cu ²⁺ ith acid and base ent of a calibration cu	absorbance can be determined.
		-	
	•	e b) (i), (ii), (iv) and (iv) d) (
İ	c) (i), (ii), (iii) and	(1V) u) \	(iv) and (v)
mea			lowing: When the absorbance of vitamin D_2 (calciferol) is er a wide range of concentrations. $E = 18,200 \text{ M}^{-1}\text{cm}^{-1}$ and
44.	If the absorbance I for analysis?	has to be above 0.25 v	what is the lowest concentration of vit D_2 that could be used .
			c) $4.55 \times 10^3 M$
	a) $1.45 \times 10^{-2} M$	b) 7.28 x 10 ⁴ M	ŕ
	a) 1.45 x 10 ⁻² M d) 1.37 x 10 ⁻⁵ M	b) 7.28 x 10 M e) Cannot be dete	
45.	d) 1.37 x 10 ⁻⁵ M	e) Cannot be dete	rmined
45.	d) 1.37 x 10 ⁻⁵ M If the absorbance h	e) Cannot be dete	

	October 29	19_	96 M	idterm	EXAMINATION
ER NO.:ARTMENT & COU				TIME:2	7 of 7 HOURS Drs. Hruska & Scoot
titrated with on the graph	1 M NaOH sol shown. The k	ution. During tey points in the	the titration the ne titration are d tey point(s) in the	pH was monitesignated I to the titration.	of 0.1M glycine at pH 1.72 watered and the results were plots V on the graph. For each of the state of the st
	hat point is the	average net ch	narge of glycine	+ 1/2? e) V	£,
a) I 47. At w			u) Iv qual to the pK _{as} ?		
	and III and IV	b) III and IV e) I and V	с) Ш		
48. At w	hat point is the	amino group	of half the mole	cules ionized?	
a) I	b) II	c) III	d) IV	e) V	
49. At w	hat point(s) doe	es glycine have	e its maximum g	eneral bufferir	ng capacity?

b) III and V c) II and IV

d) IV

e) V

e) III

At what point would glycine be unable to buffer protons?

b) II c) III

a) I and III

a) I

50.

d) I, III and V

-108-

Answers	for	2 277/60	277	Exams	96/97	97/98 at	h	98/99
2 113 W CI 3	IOI .	<i>2.2111</i> 00.			20121,	JIIJO ai	ıu	フロノフス

Question Number	27	77 Midte	rm	277 Final		
	96/97	97/98	98/99	96/97	97/98	98/99
1.	В	E	D	D	E	D
2.	В	С	В	В	E	E
3.	С	С	Α	В	Α	Α
4.	F	E	Α	D	C	В
5.	Α	С	C	В	В	D
6.	G	В	В	C	E	D
7 .	G	В	В	A.	D	Α
8.	С	В	В	E	Α	В
9.	D	Α	C	В	В	D
10.	В	D	D	Α	В	E
11.	F	D	Α	F	Α	Α
12.	C	С	В	Α	В	C
13.	В	В	В	Α	C	Α
14.	H	E	Α	D	D	E
15.	D	E	Α	D	В	C
16.	D	D	С	D	C	Α
17.	F	Α	Α	C	Α	E
18.	E	E	A	Α	E	D
19.	В	В	D	E	Α	С .
20.	В	E	E	Α	D	C
21.	F	В	В	C	D	D
22.	C	E	D	В	D	C
23.	Α	Α	Α	D	C	C
24.	В	Α	E	A	E	Α
25.	A	C	В	C	E	E

Question Number	27	7 Midte	rm	277 Final			
	96/97	97/98	98/99	96/97	97/98	98/99	
26.	C	В	Α	С	Α	В	
27.	D	C	Α	В	С	E	
28.	E	D	Α	E	E	Α	
29 .	D	D	Α	В	C	С	
30.	В	В	C	C	Α	В	
31.	D	С	Α	E	С	\mathbf{B}	
32.	E	E	В	E	E	E	
33.	В	E	В	Α	В	Α	
34.	В	Α	Α	В	E	В	
35.	E	В	В	С	D	D	
36.	D	В	В	D	Α	E	
37.	E	Α	Α	C	Α	В	
38.	Α	C	Α	E	В	С	
39.	С	C	С	С	E	В	
40.	C	В	В	D	В	Α	
41.	В	В	Α	Α	D	D	
42.	Α	С	C	E	В	С	
43.	В	Α	В	D	E	В	
44.	D	В	C	D	Α	В	
45.	C	C	E	C	Α	В	
46.	В	В	Α	Α	В	E	
47.	D	Α	D	\mathbf{E}	E	D	
48.	D	D	В	Α	C	В	
49.	C	Α	E	В	Α	Α	
50.	Α	В	E	В	В	E	