| DATE: Oct. 26, 1999 | Midterm EXAMINATION | | | | |--|---|--|--|--| | PAPER NO.: | PAGE NO.: 1 of 8 | | | | | DEPARTMENT & COURSE NO.: 2.277/60.277 | Time: 2 HOURS | | | | | EXAMINATION: Elem. Of Biochemistry I | EXAMINER: <u>Drs. Burton & Scoot</u> | | | | | GENERAL INSTRUCTION | <u>DNS</u> | | | | | You must mark the answer sheet with pencil (not pe Put your name and enter your student number on the The examination consists of multiple choice questions answer and record your choice on the answer sheet. This exam will count for 25% of your final mark. | e answer sheet. Choose what you think is the best, correct | | | | | Which of the following amino acids has a methyl (-CH ₃) gro | up in its side-chain? | | | | | A) arginine B) glutamine C) leucine D) lysine E) serine | | | | | | Which of the following amino acids contains a sulfur atom? | | | | | | A) proline B) tryptophan C) methionine D) isoleucine E) tyrosine | | | | | | Which of the following amino acids does NOT possess a hydrophobic (non-polar) side chain? | | | | | | A) threonine B) leucine C) valine D) phenylalanine E) isoleucine | | | | | | Which of the following amino acids does NOT contain a nitrogen atom in its side-chain? | | | | | | A) asparagine B) alanine C) lysine D) arginine E) histidine | | | | | | The pH of a 0.005M solution of NaOH is: | | | | | | A) 4.5 B) 11.7 C) 12.4 D) 14.0 E) 8.8 | | | | | | To 100 mL of a 0.1M solution of alanine at pH=pK, for its an The new pH was found to be equal to the pK, for its carboxy | | | | | | A) 100 mL B) 50 mL C) 200 mL D) 75 mL E) the prob pK_{\bullet} values. | olem cannot be solved without knowing the | | | | | 0.05 mol of NaOH were added to a solution containing 0. conjugate base. After mixing, the pH of the solution was fou acid? | | | | | 1. 2. 3. 4. 5. 6. 7. A) 4.22 B) 4.40 C) 4.70 D) 5.04 E) 5.18 DATE: Oct. 26, 1999 Midterm EXAMINATION PAPER NO.: ___ PAGE NO.: 2 of 8 DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS EXAMINATION: Elem. Of Biochemistry I EXAMINER: Drs. Burton & Scoot Which of the forms of aspartate shown below CANNOT exist in solution at any pH? 8. - Which pair of the forms of aspartate shown in question 8 will predominate in solution at pH 4.5? (pK. 9. values for aspartate are 1.88, 3.65 (R-group) and 9.60) - A) A & E - B) A & D - C) B&C - D) D&E - E) A&C - The ratio of the concentrations of the conjugate base and weak acid forms of aspartate predominating in 10. solution at pH 4.5 is close to ? (pK, values for aspartate are given in question 9). - A) 1:3 - B) 1:1 - C) 3:1 - D) 7:1 - E) 10:1 - 11. Which one of the following tetrapeptides has zero net charge at pH 7? - A) gly-thr-ser-glu B) lys-val-ala-arg C) lys-ile-phe-gln D) arg-ser-leu-asp - E) trp-pro-asp-gly - The regular folding pattern of adjacent (contiguous) portions of the polypeptide chain is called _? 12. - A) primary structure B) secondary structure C) tertiary structure - D) quaternary structure E) covalent structure - The linear sequence of peptide-bonded amino acids in a polypeptide is called ? 13. - A) primary structure B) secondary structure C) tertiary structure - D) random coil structure E) alpha-helical structure - 14. The peptide bond is planar because _? - A) the large >C=O group causes steric hindrance - B) the H in the >N-H group is small - C) free rotation is possible around the bond between the alpha carbon and the carbonyl (>C=O) carbon - D) the C-N bond has partial double bond character - E) H-bonds can form with polar amino acid R-groups DATE: Oct. 26, 1999 Midterm EXAMINATION PAPER NO.: __ PAGE NO.: _3 of 8 DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS EXAMINATION: Elem, Of Biochemistry I EXAMINER: Drs. Burton & Scoot - 15. In the alpha helix, the R-groups of the amino acids _?_ - A) are found on the outside of the helix - B) generate H-bonds to stabilize the helix - C) stack within the interior of the helix - D) cause only right-handed helices to form - E) alternate between the inside and outside of the helix - 16. Which of the following correctly depicts interchain H-bonding in the β -sheet? - A) >N-H //// H-N< - B) >C=O //// H-C- - C) >C=O //// H-N< - D) >N-H //// H-R- - E) >C=O //// O=C< - 17. Which of the following statements about multisubunit (oligomeric) proteins is true? - A) all subunits must be identical - B) all subunits must be different - C) oligomeric proteins are more stable than other proteins - D) all oligomeric proteins contain an even number of subunits - E) the subunits in most oligomeric proteins are held together by weak, non-covalent forces - 18. Which of the following statements about protein structure is true? - A) proteins are generally loosely structured - B) In water-soluble proteins, hydrophobic (non-polar) amino acid side chains are usually buried and not exposed to water - C) In water-soluble proteins, hydrophilic (polar) amino acid side chains are usually buried and not exposed to water - D) proteins that contain alpha helical regions never contain regions of β -sheet - E) fibrous proteins are always exclusively alpha helical - 19. Which of the following does NOT contribute to the formation and stability of tertiary structure in proteins? - A) electrostatic interaction between amino acid R-groups - B) entropy increase resulting from a decrease in the number of ordered water molecules forming a solvent shell ("cage") around non-polar amino acid R-groups - C) formation of disulfide bonds - D) van der Waal's forces - E) formation of covalent bonds between amino acid R-groups containing -OH groups - 20. Which of A), B), C), D) and E) in question 19 above makes the biggest single contribution to the formation and stability of tertiary structure in proteins? | | DATE: Oct. 26, 1999 | Midterm EXAMINATION | |--|--|---| | | PAPER NO.: | PAGE NO.: <u>4 of 8</u> | | | DEPARTMENT & COURSE NO.: 2.277/60.277 | Time: 2 HOURS | | | EXAMINATION: Elem. Of Biochemistry I | EXAMINER: Drs. Burton & Scoot | | 21. | The polypeptide backbone in the β-sheet conformation is _ | ? | | | A) in an extended zig-zag structure B) an alpha D) a lest-handed helix D) a randomly coiled structure | · | | 22. | True (A) or False (B): Hair is composed mainly of protein | s with a β-sheet conformation | | 23. | The amino acid most likely to disrupt alpha helical structur | re is _?_ | | | A) arginine B) proline C) isoleucine D) threonine B | E) tryptophan | | 24. | Many glutamate residues occuring in a cluster in an alpha because: | nelix destabilize the helix at physiological pH | | A) negatively charged R-groups of adjacent glutamate residues rep B) positively charged R-groups of adjacent glutamate residues rep C) non-polar R-groups of adjacent glutamate residues repel one an D) glutamate has no functional group in its R-group E) glutamate is too large to fit into an alpha helix | | dues repel one another | | 25. | Which TWO of the following statements are BOTH UNT | RUE? | | | H-bonding between amino acid side chains (R-groups) stabilizes the alpha helix The >C=O and >N-H groups of peptide bonds are involved in H-bonding that stabilizes the alpha helix The H-bonds that stabilize the alpha helix are parallel to the axis of the helix About half the peptide bonds in an alpha helix are involved in H-bonding All the peptide bonds in an alpha helix are involved in H-bonding | | | | A) 1 & 2 B) 1 & 3 C) 2 & 4 D) 3 & 5 E) 1 & | | | 26. | Weak acids are? ionized (dissociated) in aqueous sol | lution: | | | A) completely B) only slightly C) not at all D) about 50% | 6 E) none of the above | | 27. | When a weak acid loses a proton (H') it becomes: | | | | A) a strong acid B) a conjugate base C) a conjugate acid E) an acid anhydride | D) an ammonium ion | | 28. | The role of the enzyme in an enzyme-catalyzed reaction is | to: | | | A) ensure the product is more stable than the substrate B) make the overall free energy change for the reaction mc C) increase the rate of conversion of substrate to product D) ensure all the substrate is converted to product E) increase the equilibrium constant for the reaction | ore favourable . | DATE: Oct. 26, 1999 Midterm EXAMINATION PAPER NO.: PAGE NO.: 5 of 8 DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS EXAMINATION: Elem. Of Biochemistry I EXAMINER: Drs. Burton & Scoot #### 29. Enzymes are potent catalysts. They: - A) drive reactions to completion while other catalysts drive reactions to equilibrium - B) are consumed in the reactions they catalyze - C) can prevent the conversion of products back to substrate - D) increase the equilibrium constants for the reactions they catalyze - E) lower the activation energy for the reactions they catalyze #### 30. Which of the following statements about enzymes is UNTRUE? - A) weak, non-covalent forces are important in the binding between enzyme and substrate - B) optimal catalysis occurs when the active site binds most strongly with the transition state between the substrate and product - C) formation of an enzyme-substrate complex increases the entropy of substrates - D) amino acid R-groups in the active site often participate in enzyme-catalyzed reactions - E) their catalytic activity is affected by pH #### 31. V_{max} for an enzyme-catalyzed reaction: - A) usually increases when pH increases - B) increases in the presence of a competitive inhibitor - C) is unchanged in the presence of a non-competitive inhibitor - D) is twice the velocity observed when $[S] = K_m$ - E) is limited only by the amount of substrate supplied #### Which of the following is a correct statement about K_m for an enzyme-catalyzed reaction showing a 32. hyperbolic v versus [S] curve? - A) the enzyme's active site is saturated with substrate when $[S] = K_m$ - B) If two different substrates can bind to the same active site, the substrate with the smaller K_m will bind more strongly - C) the rate of reaction is equal to K_m multiplied by V_{max} D) $$K_m = \frac{V_{max}}{2}$$ E) the units of K_m are sec⁻¹ #### 33. The kinetic data in the table below were obtained using an enzyme known to follow Michaelis-Menten kinetics: | 1 | [S] mM | 0.8 | 2.0 | 4.0 | 6.0 | 500.0 | 1000.0 | |---|----------------------|-----|-----|-----|-----|-------|--------| | | Velocity
µmol/min | 217 | 325 | 433 | 488 | 635 | 647 | The K_m for the substrate of this enzyme is approximately: - A) 1 mM B) 2 mM - C) 3 mM D) 4 mM - E) 500 mM | | DATE: <u>Oct. 26, 1999</u> | Midterm EXAMINATION | | | | | |-----|--|---|--|--|--|--| | | PAPER NO.: | PAGE NO.: 6 of 8 | | | | | | | DEPARTMENT & COURSE NO.: 2.277/60,277 | Time: 2 HOURS | | | | | | | EXAMINATION: Elem. Of Biochemistry I | EXAMINER: <u>Drs. Burton & Scoot</u> | | | | | | 34. | In another study on the same enzyme and substrate, but in the presence of an inhibitor, the following data were obtained: | | | | | | | | K_m for the substrate = 4 mM and V_{max} = 650 μ mol/min | | | | | | | | The inhibitor is _?_ | | | | | | | | A) competitive B) uncompetitive C) a weak base D) Allosteric E) non-competitive | | | | | | | 35. | For an enzyme which follows simple Michaelis-Menten kinetics, what is the V_{max} if $\nu=35$ µmoles/min when [S] = K_m ? | | | | | | | | A) 50 μmoles/min B) 70 μmoles/min C) 90 μmoles/min D) 110 μmoles/min E) 130 μmoles/min | | | | | | | 36. | For the enzyme mentioned in the previous question (#35), what is the value of K_m if $\nu = 35$ µmoles/min at [S] = 20 µM? | | | | | | | | Α) 20 μΜ Β) 22 μΜ C) 25 μΜ D) 27 μΜ E) 30 μΜ | | | | | | | 37. | An uncompetitive inhibitor will change the kinetic parameters in an enzyme-catalyzed reaction showing simple Michaelis-Menten kinetics as follows: | | | | | | | | | e both K_m and V_{max} se V_{max} leaving K_m unchanged | | | | | | 38. | Allosteric enzymes: | | | | | | | | A) usually have only one active site B) usually have more than one polypeptide chain (subunit) C) usually show strictly hyperbolic ν versus [S] curves D) usually catalyze several different reactions in the same metabolic pathway E) usually are active only at acidic pH | | | | | | | 39. | A compound that <u>decreases</u> the activity of an enzyme by bi site is called: | inding to a site other than the catalytic or active | | | | | | | A) an alternative inhibitor B) an allosteric inhibitor C D) a transition-state analogue E) an allosteric activate | | | | | | | 40. | The glycolytic enzyme phosphofructokinase (PFK) is | By ATP | | | | | | | A) allosterically activated B) competitively in C) unaffected D) allosterically inh | | | | | | ---- | | DATE: Oct. 20 | <u>6. 1999 </u> | | Midterm E | XAMINATION | |------------|--|---|---|--|---| | | PAPER NO.: | - | | PAGE NO.: | 7 of 8 | | | DEPARTMENT | & COURSE NO. | : 2,277/60.277 | Time: 2 H | OURS | | | EXAMINATION | : Elem. Of Bioch | emistry I | EXAMINER | : Drs. Burton & Scoot | | LAB | SECTION (QUEST) | IONS 41 to 50) | | | | | ethai | | | | | with a solvent containing aspartate (Asp), isoleucine | | 41. | Which of the amino | o acids would be | found closest to the | solvent front? | | | | A) Asp B) I
E) Cannot be deter | | r D) Ile and | Ser equally close | | | 42. | Which of the amino | o acids would hav | e the largest Rf? | | | | | A) Asp B) I
E) Cannot be deter | , | r D) Ile and | Ser equal and large | est . | | 43. | ength = 1 cm. | | | | | | | If the absorbance h
for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M | B) 7.28 x 10 ⁻⁶
E) Cannot be | ¹ M C) 4.55 x | | of vit D, that could be used | | | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M | B) 7.28 x 10 ⁻²
E) Cannot be | M C) 4.55 x
determined | 10 ³ M | | | | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance h | B) 7.28 x 10 ⁻²
E) Cannot be | determined determined delow what is the hi M C) 4.67 x | 10 ³ M
ghest concentration | | | 44.
45. | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻⁵ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M | B) 7.28 x 10 ⁻¹ E) Cannot be as to be 0.85 or to B) 2.14 x 10 ⁴ E) Cannot be | determined clow what is the him C) 4.67 x determined | 10 ³ M
ghest concentration
10 ⁻⁵ M | of vit D ₂ that could be used | | 44. | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance he for analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M | B) 7.28 x 10 ⁻⁶ E) Cannot be as to be 0.85 or b B) 2.14 x 10 ⁻⁶ E) Cannot be ving are required ons Cu ²⁺ cid and base a calibration cur | determined celow what is the him C) 4.67 x determined conditions for mean | 10 ³ M ghest concentration 10 ⁻⁵ M suring protein by the | of vit D ₂ that could be used | | 44. | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻⁵ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M Which of the follow 1) Alkaline condition 2) The presence of 3) Titration with ac 4) Establishment of | B) 7.28 x 10°E) Cannot be as to be 0.85 or b B) 2.14 x 10°E) Cannot be ving are required ons Cu²* cid and base a calibration cure complex whose ab | determined celow what is the him C) 4.67 x determined conditions for mean | 10 ³ M ghest concentration 10 ⁻⁵ M suring protein by the | of vit D_2 that could be used | | 44. | for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M Which of the follow 1) Alkaline condition 2) The presence of 3) Titration with act 4) Establishment of 5) Formation of a condition A) All of the abundance of the solution was according to | B) 7.28 x 10° E) Cannot be as to be 0.85 or to B) 2.14 x 10° E) Cannot be wing are required ons Cu²+ cid and base f a calibration curve omplex whose above B) 1, 200 ethod, the absorbus found to be 0.30 ontaining 6 mg BS | determined relow what is the him M C) 4.67 x determined conditions for mean ve expression and a C) ance of a tube core 3A/mL, gave an ab | ghest concentration 10 ⁻⁵ M suring protein by the termined 1, 2, 4 and 5 taining 0.2 mL of a ze cuvette, 1.5 mL | | continued on next need DATE: Oct. 26, 1999 Midterm EXAMINATION PAPER NO.: ___ PAGE NO.: 8 of 8 DEPARTMENT & COURSE NO.: 2,277/60,277 Time: 2 HOURS EXAMINATION: Elem. Of Biochemistry I EXAMINER: Drs. Burton & Scoot - 47. Which of the following would result in a 1 in 50 dilution of an original solution Y? - 1. A 5 mL aliquot of Y was diluted with 20 mL of buffer. This was further diluted by taking a 2 mL aliquot and adding 18 mL buffer. - 2. A 10 mL aliquot of Y was diluted by adding 40 mL of buffer. - 3. A 0.5 mL aliquot of Y was diluted with 9.5 mL of buffer. This was further diluted by taking a 0.3 mL aliquot and adding 8.7 mL buffer. - 4. All of the above. - 5. None of the above. # For questions 48, 49 and 50 please refer to the following: Glutamate can be schematically represented in the following way: The pka values for glutamate are 2.2, 4.2 and 9.7 - 48. Which species would exist at pH 11.0? - A) 1 - B) 2 - C) 3 - D) 4 - E) 5 - 49. Which species would not exist in solution? - A) 1 - B) 2 - C) 3 - D) 4 - E) 5 - 50. Which species would exist at pH 4.2? - A) 1 & 2 - B) 2 & 3 - C) 2 & 4 - D) 3 & 5 - E) 2 *** # 2.277/60.277 Elements of Biochemistry I | 1999/2000 (00R) | Midterm Exam Answers | October 26, 1999 | | | |-----------------|----------------------|------------------|--|--| | 1. C | 21. A | 41. B | | | | 2. C | 22. B | 42. B | | | | 3. A | 23. B | 43. D | | | | 4. B | 24. A | 44. C | | | | 5. B | 25. E | 45. C | | | | 6. B | 26. B | 46. E | | | | 7. C | 27. B | 47. A | | | | 8. B | 28. C | 48. D | | | | 9. D | 29 . E | 49. A | | | | 10. D | 30. C | 50. B | | | | | | | | | | 11. D | 21 D | | | | | 11. B | 31. D
32. B | | | | | 13. A | | | | | | 14. D | 33. B
34. A | | | | | 15. A | | | | | | 16. C | 35. B | | | | | 17. E | 36. A | | | | | | 37. B | | | | | 18. B | 38. B | | | | | 19. E | 39. B | | | | | 20. B | 40. D | | | |