DATE: Oct. 26, 1999	Midterm EXAMINATION			
PAPER NO.:	PAGE NO.: 1 of 8			
DEPARTMENT & COURSE NO.: 2.277/60.277	Time: 2 HOURS			
EXAMINATION: Elem. Of Biochemistry I	EXAMINER: <u>Drs. Burton & Scoot</u>			
GENERAL INSTRUCTION	<u>DNS</u>			
 You must mark the answer sheet with pencil (not pe Put your name and enter your student number on the The examination consists of multiple choice questions answer and record your choice on the answer sheet. This exam will count for 25% of your final mark. 	e answer sheet. Choose what you think is the best, correct			
Which of the following amino acids has a methyl (-CH ₃) gro	up in its side-chain?			
A) arginine B) glutamine C) leucine D) lysine E) serine				
Which of the following amino acids contains a sulfur atom?				
A) proline B) tryptophan C) methionine D) isoleucine E) tyrosine				
Which of the following amino acids does NOT possess a hydrophobic (non-polar) side chain?				
A) threonine B) leucine C) valine D) phenylalanine E) isoleucine				
Which of the following amino acids does NOT contain a nitrogen atom in its side-chain?				
A) asparagine B) alanine C) lysine D) arginine E) histidine				
The pH of a 0.005M solution of NaOH is:				
A) 4.5 B) 11.7 C) 12.4 D) 14.0 E) 8.8				
To 100 mL of a 0.1M solution of alanine at pH=pK, for its an The new pH was found to be equal to the pK, for its carboxy				
A) 100 mL B) 50 mL C) 200 mL D) 75 mL E) the prob pK_{\bullet} values.	olem cannot be solved without knowing the			
0.05 mol of NaOH were added to a solution containing 0. conjugate base. After mixing, the pH of the solution was fou acid?				

1.

2.

3.

4.

5.

6.

7.

A) 4.22 B) 4.40 C) 4.70 D) 5.04 E) 5.18

DATE: Oct. 26, 1999

Midterm EXAMINATION

PAPER NO.: ___

PAGE NO.: 2 of 8

DEPARTMENT & COURSE NO.: 2.277/60.277

Time: 2 HOURS

EXAMINATION: Elem. Of Biochemistry I

EXAMINER: Drs. Burton & Scoot

Which of the forms of aspartate shown below CANNOT exist in solution at any pH? 8.

- Which pair of the forms of aspartate shown in question 8 will predominate in solution at pH 4.5? (pK. 9. values for aspartate are 1.88, 3.65 (R-group) and 9.60)
 - A) A & E
- B) A & D
- C) B&C
- D) D&E
- E) A&C
- The ratio of the concentrations of the conjugate base and weak acid forms of aspartate predominating in 10. solution at pH 4.5 is close to ? (pK, values for aspartate are given in question 9).
 - A) 1:3
- B) 1:1
- C) 3:1
- D) 7:1
- E) 10:1
- 11. Which one of the following tetrapeptides has zero net charge at pH 7?
- A) gly-thr-ser-glu B) lys-val-ala-arg C) lys-ile-phe-gln D) arg-ser-leu-asp
- E) trp-pro-asp-gly
- The regular folding pattern of adjacent (contiguous) portions of the polypeptide chain is called _? 12.
 - A) primary structure B) secondary structure C) tertiary structure
 - D) quaternary structure E) covalent structure
- The linear sequence of peptide-bonded amino acids in a polypeptide is called ? 13.
 - A) primary structure B) secondary structure C) tertiary structure
 - D) random coil structure E) alpha-helical structure
- 14. The peptide bond is planar because _?
 - A) the large >C=O group causes steric hindrance
 - B) the H in the >N-H group is small
 - C) free rotation is possible around the bond between the alpha carbon and the carbonyl (>C=O) carbon
 - D) the C-N bond has partial double bond character
 - E) H-bonds can form with polar amino acid R-groups

DATE: Oct. 26, 1999 Midterm EXAMINATION

PAPER NO.: __ PAGE NO.: _3 of 8

DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS

EXAMINATION: Elem, Of Biochemistry I EXAMINER: Drs. Burton & Scoot

- 15. In the alpha helix, the R-groups of the amino acids _?_
 - A) are found on the outside of the helix
 - B) generate H-bonds to stabilize the helix
 - C) stack within the interior of the helix
 - D) cause only right-handed helices to form
 - E) alternate between the inside and outside of the helix
- 16. Which of the following correctly depicts interchain H-bonding in the β -sheet?
 - A) >N-H //// H-N<
- B) >C=O //// H-C-
- C) >C=O //// H-N<

- D) >N-H //// H-R-
- E) >C=O //// O=C<
- 17. Which of the following statements about multisubunit (oligomeric) proteins is true?
 - A) all subunits must be identical
 - B) all subunits must be different
 - C) oligomeric proteins are more stable than other proteins
 - D) all oligomeric proteins contain an even number of subunits
 - E) the subunits in most oligomeric proteins are held together by weak, non-covalent forces
- 18. Which of the following statements about protein structure is true?
 - A) proteins are generally loosely structured
 - B) In water-soluble proteins, hydrophobic (non-polar) amino acid side chains are usually buried and not exposed to water
 - C) In water-soluble proteins, hydrophilic (polar) amino acid side chains are usually buried and not exposed to water
 - D) proteins that contain alpha helical regions never contain regions of β -sheet
 - E) fibrous proteins are always exclusively alpha helical
- 19. Which of the following does NOT contribute to the formation and stability of tertiary structure in proteins?
 - A) electrostatic interaction between amino acid R-groups
 - B) entropy increase resulting from a decrease in the number of ordered water molecules forming a solvent shell ("cage") around non-polar amino acid R-groups
 - C) formation of disulfide bonds
 - D) van der Waal's forces
 - E) formation of covalent bonds between amino acid R-groups containing -OH groups
- 20. Which of A), B), C), D) and E) in question 19 above makes the biggest single contribution to the formation and stability of tertiary structure in proteins?

	DATE: Oct. 26, 1999	Midterm EXAMINATION
	PAPER NO.:	PAGE NO.: <u>4 of 8</u>
	DEPARTMENT & COURSE NO.: 2.277/60.277	Time: 2 HOURS
	EXAMINATION: Elem. Of Biochemistry I	EXAMINER: Drs. Burton & Scoot
21.	The polypeptide backbone in the β-sheet conformation is _	?
	A) in an extended zig-zag structure B) an alpha D) a lest-handed helix D) a randomly coiled structure	·
22.	True (A) or False (B): Hair is composed mainly of protein	s with a β-sheet conformation
23.	The amino acid most likely to disrupt alpha helical structur	re is _?_
	A) arginine B) proline C) isoleucine D) threonine B	E) tryptophan
24.	Many glutamate residues occuring in a cluster in an alpha because:	nelix destabilize the helix at physiological pH
 A) negatively charged R-groups of adjacent glutamate residues rep B) positively charged R-groups of adjacent glutamate residues rep C) non-polar R-groups of adjacent glutamate residues repel one an D) glutamate has no functional group in its R-group E) glutamate is too large to fit into an alpha helix 		dues repel one another
25.	Which TWO of the following statements are BOTH UNT	RUE?
	 H-bonding between amino acid side chains (R-groups) stabilizes the alpha helix The >C=O and >N-H groups of peptide bonds are involved in H-bonding that stabilizes the alpha helix The H-bonds that stabilize the alpha helix are parallel to the axis of the helix About half the peptide bonds in an alpha helix are involved in H-bonding All the peptide bonds in an alpha helix are involved in H-bonding 	
	A) 1 & 2 B) 1 & 3 C) 2 & 4 D) 3 & 5 E) 1 &	
26.	Weak acids are? ionized (dissociated) in aqueous sol	lution:
	A) completely B) only slightly C) not at all D) about 50%	6 E) none of the above
27.	When a weak acid loses a proton (H') it becomes:	
	A) a strong acid B) a conjugate base C) a conjugate acid E) an acid anhydride	D) an ammonium ion
28.	The role of the enzyme in an enzyme-catalyzed reaction is	to:
	 A) ensure the product is more stable than the substrate B) make the overall free energy change for the reaction mc C) increase the rate of conversion of substrate to product D) ensure all the substrate is converted to product E) increase the equilibrium constant for the reaction 	ore favourable .

DATE: Oct. 26, 1999

Midterm EXAMINATION

PAPER NO.:

PAGE NO.: 5 of 8

DEPARTMENT & COURSE NO.: 2.277/60.277

Time: 2 HOURS

EXAMINATION: Elem. Of Biochemistry I

EXAMINER: Drs. Burton & Scoot

29. Enzymes are potent catalysts. They:

- A) drive reactions to completion while other catalysts drive reactions to equilibrium
- B) are consumed in the reactions they catalyze
- C) can prevent the conversion of products back to substrate
- D) increase the equilibrium constants for the reactions they catalyze
- E) lower the activation energy for the reactions they catalyze

30. Which of the following statements about enzymes is UNTRUE?

- A) weak, non-covalent forces are important in the binding between enzyme and substrate
- B) optimal catalysis occurs when the active site binds most strongly with the transition state between the substrate and product
- C) formation of an enzyme-substrate complex increases the entropy of substrates
- D) amino acid R-groups in the active site often participate in enzyme-catalyzed reactions
- E) their catalytic activity is affected by pH

31. V_{max} for an enzyme-catalyzed reaction:

- A) usually increases when pH increases
- B) increases in the presence of a competitive inhibitor
- C) is unchanged in the presence of a non-competitive inhibitor
- D) is twice the velocity observed when $[S] = K_m$
- E) is limited only by the amount of substrate supplied

Which of the following is a correct statement about K_m for an enzyme-catalyzed reaction showing a 32. hyperbolic v versus [S] curve?

- A) the enzyme's active site is saturated with substrate when $[S] = K_m$
- B) If two different substrates can bind to the same active site, the substrate with the smaller K_m will bind more strongly
- C) the rate of reaction is equal to K_m multiplied by V_{max}

D)
$$K_m = \frac{V_{max}}{2}$$

E) the units of K_m are sec⁻¹

33. The kinetic data in the table below were obtained using an enzyme known to follow Michaelis-Menten kinetics:

1	[S] mM	0.8	2.0	4.0	6.0	500.0	1000.0
	Velocity µmol/min	217	325	433	488	635	647

The K_m for the substrate of this enzyme is approximately:

- A) 1 mM B) 2 mM
- C) 3 mM D) 4 mM
- E) 500 mM

	DATE: <u>Oct. 26, 1999</u>	Midterm EXAMINATION				
	PAPER NO.:	PAGE NO.: 6 of 8				
	DEPARTMENT & COURSE NO.: 2.277/60,277	Time: 2 HOURS				
	EXAMINATION: Elem. Of Biochemistry I	EXAMINER: <u>Drs. Burton & Scoot</u>				
34.	In another study on the same enzyme and substrate, but in the presence of an inhibitor, the following data were obtained:					
	K_m for the substrate = 4 mM and V_{max} = 650 μ mol/min					
	The inhibitor is _?_					
	A) competitive B) uncompetitive C) a weak base D) Allosteric E) non-competitive					
35.	For an enzyme which follows simple Michaelis-Menten kinetics, what is the V_{max} if $\nu=35$ µmoles/min when [S] = K_m ?					
	A) 50 μmoles/min B) 70 μmoles/min C) 90 μmoles/min D) 110 μmoles/min E) 130 μmoles/min					
36.	For the enzyme mentioned in the previous question (#35), what is the value of K_m if $\nu = 35$ µmoles/min at [S] = 20 µM?					
	Α) 20 μΜ Β) 22 μΜ C) 25 μΜ D) 27 μΜ E) 30 μΜ					
37.	An uncompetitive inhibitor will change the kinetic parameters in an enzyme-catalyzed reaction showing simple Michaelis-Menten kinetics as follows:					
		e both K_m and V_{max} se V_{max} leaving K_m unchanged				
38.	Allosteric enzymes:					
	 A) usually have only one active site B) usually have more than one polypeptide chain (subunit) C) usually show strictly hyperbolic ν versus [S] curves D) usually catalyze several different reactions in the same metabolic pathway E) usually are active only at acidic pH 					
39.	A compound that <u>decreases</u> the activity of an enzyme by bi site is called:	inding to a site other than the catalytic or active				
	A) an alternative inhibitor B) an allosteric inhibitor C D) a transition-state analogue E) an allosteric activate					
40.	The glycolytic enzyme phosphofructokinase (PFK) is	By ATP				
	A) allosterically activated B) competitively in C) unaffected D) allosterically inh					

	DATE: Oct. 20	<u>6. 1999 </u>		Midterm E	XAMINATION
	PAPER NO.:	-		PAGE NO.:	7 of 8
	DEPARTMENT	& COURSE NO.	: 2,277/60.277	Time: 2 H	OURS
	EXAMINATION	: Elem. Of Bioch	emistry I	EXAMINER	: Drs. Burton & Scoot
LAB	SECTION (QUEST)	IONS 41 to 50)			
ethai					with a solvent containing aspartate (Asp), isoleucine
41.	Which of the amino	o acids would be	found closest to the	solvent front?	
	A) Asp B) I E) Cannot be deter		r D) Ile and	Ser equally close	
42.	Which of the amino	o acids would hav	e the largest Rf?		
	A) Asp B) I E) Cannot be deter	,	r D) Ile and	Ser equal and large	est .
43.	ength = 1 cm.				
	If the absorbance h for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M	B) 7.28 x 10 ⁻⁶ E) Cannot be	¹ M C) 4.55 x		of vit D, that could be used
	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M	B) 7.28 x 10 ⁻² E) Cannot be	M C) 4.55 x determined	10 ³ M	
	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance h	B) 7.28 x 10 ⁻² E) Cannot be	determined determined delow what is the hi M C) 4.67 x	10 ³ M ghest concentration	
44. 45.	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻⁵ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M	B) 7.28 x 10 ⁻¹ E) Cannot be as to be 0.85 or to B) 2.14 x 10 ⁴ E) Cannot be	determined clow what is the him C) 4.67 x determined	10 ³ M ghest concentration 10 ⁻⁵ M	of vit D ₂ that could be used
44.	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance he for analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M	B) 7.28 x 10 ⁻⁶ E) Cannot be as to be 0.85 or b B) 2.14 x 10 ⁻⁶ E) Cannot be ving are required ons Cu ²⁺ cid and base a calibration cur	determined celow what is the him C) 4.67 x determined conditions for mean	10 ³ M ghest concentration 10 ⁻⁵ M suring protein by the	of vit D ₂ that could be used
44.	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻⁵ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M Which of the follow 1) Alkaline condition 2) The presence of 3) Titration with ac 4) Establishment of	B) 7.28 x 10°E) Cannot be as to be 0.85 or b B) 2.14 x 10°E) Cannot be ving are required ons Cu²* cid and base a calibration cure complex whose ab	determined celow what is the him C) 4.67 x determined conditions for mean	10 ³ M ghest concentration 10 ⁻⁵ M suring protein by the	of vit D_2 that could be used
44.	for analysis? A) 1.45 x 10 ⁻² M D) 1.37 x 10 ⁻³ M If the absorbance heror analysis? A) 1.55 x 10 ⁻⁴ M D) 1.45 x 10 ⁻² M Which of the follow 1) Alkaline condition 2) The presence of 3) Titration with act 4) Establishment of 5) Formation of a condition A) All of the abundance of the solution was according to the solution was	B) 7.28 x 10° E) Cannot be as to be 0.85 or to B) 2.14 x 10° E) Cannot be wing are required ons Cu²+ cid and base f a calibration curve omplex whose above B) 1, 200 ethod, the absorbus found to be 0.30 ontaining 6 mg BS	determined relow what is the him M C) 4.67 x determined conditions for mean ve expression and a C) ance of a tube core 3A/mL, gave an ab	ghest concentration 10 ⁻⁵ M suring protein by the termined 1, 2, 4 and 5 taining 0.2 mL of a ze cuvette, 1.5 mL	

continued on next need

DATE: Oct. 26, 1999

Midterm EXAMINATION

PAPER NO.: ___

PAGE NO.: 8 of 8

DEPARTMENT & COURSE NO.: 2,277/60,277

Time: 2 HOURS

EXAMINATION: Elem. Of Biochemistry I

EXAMINER: Drs. Burton & Scoot

- 47. Which of the following would result in a 1 in 50 dilution of an original solution Y?
 - 1. A 5 mL aliquot of Y was diluted with 20 mL of buffer. This was further diluted by taking a 2 mL aliquot and adding 18 mL buffer.
 - 2. A 10 mL aliquot of Y was diluted by adding 40 mL of buffer.
 - 3. A 0.5 mL aliquot of Y was diluted with 9.5 mL of buffer. This was further diluted by taking a 0.3 mL aliquot and adding 8.7 mL buffer.
 - 4. All of the above.
 - 5. None of the above.

For questions 48, 49 and 50 please refer to the following:

Glutamate can be schematically represented in the following way:

The pka values for glutamate are 2.2, 4.2 and 9.7

- 48. Which species would exist at pH 11.0?
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 5
- 49. Which species would not exist in solution?
 - A) 1
- B) 2
- C) 3
- D) 4
- E) 5

- 50. Which species would exist at pH 4.2?
 - A) 1 & 2
- B) 2 & 3
- C) 2 & 4
- D) 3 & 5
- E) 2

2.277/60.277 Elements of Biochemistry I

1999/2000 (00R)	Midterm Exam Answers	October 26, 1999		
1. C	21. A	41. B		
2. C	22. B	42. B		
3. A	23. B	43. D		
4. B	24. A	44. C		
5. B	25. E	45. C		
6. B	26. B	46. E		
7. C	27. B	47. A		
8. B	28. C	48. D		
9. D	29 . E	49. A		
10. D	30. C	50. B		
11. D	21 D			
11. B	31. D 32. B			
13. A				
14. D	33. B 34. A			
15. A				
16. C	35. B			
17. E	36. A			
	37. B			
18. B	38. B			
19. E	39. B			
20. B	40. D			