DATE: Oct. 24, 2000 Midterm EXAMINATION PAPER NO.: __ PAGE NO.: 1 of 10 DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS EXAMINATION: Elements of Biochemistry I EXAMINER: Drs. D.Burton and A. Scoot **GENERAL INSTRUCTIONS** You must mark the answer sheet with pencil (not pen). 1. Put your name and enter your student number on the answer sheet. 2. The examination consists of multiple choice questions. Choose what you think is the best, correct 3. answer and record your choice on the answer sheet. There is only **ONE CORRECT** answer. This exam will count for 25% of your final mark. Which of the following amino acids does not have a nitrogen atom in its side-chain (R- group)? 1. A) arginine B) glutamine C) leucine D) lysine E) asparagine Which of the following amino acids contains a sulfur atom? A) proline B) tryptophan C) methionine D) isoleucine E) tyrosine Which of the following amino acids does NOT possess a hydrophobic (non-polar) side chain? A) threonine B) leucine C) valine D) phenylalanine E) isoleucine Which statement is incorrect about the classification of amino acids? A) At pH 7, lysine, arginine and tryptophan have positively charged R-groups. B) Alanine and valine have nonpolar, aliphatic R-groups. C) At pH 7, aspartate and glutamate have negatively charged R-groups. D) At pH 7, threonine, serine and cysteine have polar, uncharged R-groups. E) None of the above are incorrect. A 10 mL sample of HCl solution requires 7.2 mL of 0.1M NaOH solution for complete titration. What is the concentration of the HCl? A) 0.72 M B) 0.072 M C) 0.0072 M D) 0.036 M E) 0.36 M What is the pH of the HCl solution referrred to in question 5? A) 7.0 B) 1.1 C) 3.1D) 11.1 E) 1.5 To 50 mL of a 0.1M solution of alanine at pH=pK, for its carboxyl group, was added X mL of 0.2M

NaOH. The new pH was found to be equal to the pK, for its amino group. What is the value of X?

D) 75 mL

C) 50 mL

E) the problem cannot be solved without knowing the pK, values.

A) 100 mL

B) 25 mL

THE UNIVERSITY OF MANITOBA DATE: Oct. 24, 2000 Midterm EXAMINATION PAGE NO.: 2 of 10 PAPER NO .: ___ DEPARTMENT & COURSE NO.: 2.277/60.277 Time: 2 HOURS EXAMINER: Drs. D.Burton and A. Scoot EXAMINATION: Elements of Biochemistry I 0.05 mol of HCl was added to a solution containing 0.1 mol of a weak acid and 0.1 mol of its conjugate base. After mixing, the pH of the solution was found to be 4.28. What is the pK, of the weak acid? E) 5.18 A) 4.28 B) 4.40 C) 4.76 D) 5.04 Which of the forms of lysine shown below CANNOT exist in solution at any pH? Which pair of the forms of lysine shown in question is will predominate in solution at pH 3? The pK. values for lysine are 2.16, 9.18 and 10.79 (R-group). E) A&C A) A & E B) A & D C) B&C D) A & B 11. The ratio of the concentrations of the conjugate base and weak acid forms of lysine predominating in solution at pH 3 is close to ? (pK, values for lysine are given in question 10). C) 3:1 E) 7:1 A) 1:3 B) 1:1 D) 5:1 12. Which one of the following tetrapeptides has net charge = +2 at pH 7? A) gly-thr-ser-glu B) lys-val-ala-arg C) lys-ile-phe-gln D) arg-ser-leu-asp E) trp-pro-asp-gly

A) primary structure

9.

- B) secondary structure
- C) tertiary structure

- D) quaternary structure
- E) covalent structure
- The linear sequence of peptide-bonded amino acids in a polypeptide is called ___?
 - A) primary structure
- B) secondary structure
- C) tertiary structure
- D) random coil structure E) alpha-helical structure
- 15. The peptide bond is planar because ___?
 - A) the large >C=O group causes steric hindrance
 - B) the H in the >N-H group is small
 - C) free rotation is possible around the bond between the alpha carbon and the carbonyl (>C=O) carbon
 - D) the C-N bond has partial double bond character
 - E) H-bonds can form between polar R-groups

	DATE: Oct. 24, 2000	Midterm EXAMINATION				
ge.	PAPER NO.:	PAGE NO.: <u>3 of 10</u>				
	DEPARTMENT & COURSE NO.: 2.277/60.277	Time: 2 HOURS				
	EXAMINATION: Elements of Biochemistry I	EXAMINER: <u>Drs. D.Burton and A. Scoot</u>				
16.	In the alpha helix, the R-groups of the amino acids	s?				
	 A) are found on the outside of the helix B) generate H-bonds to stabilize the helix C) stack within the interior of the helix D) cause only right-handed helices to form E) alternate between the inside and outside of the helix 					
17.	Repeating secondary structures such as the alpha- of the following?	helix are formed as a result of predominantly which				
	 A) Intramolecular hydrogen bonding B) Electrostatic interactions C) Hydrophobic interactions D) Intrastrand disulfide bonds E) None of the above 					
18.	Quaternary structure is associated with which of the following?					
 A) The overall shape of a polypeptide chain B) The sum of the secondary and tertiary interactions C) Simple proteins with only one subunit D) The relative orientation of one polypeptide to another polypeptide in a multi-subunit pro E) None of the above 						
19.	Which factors will influence the native conformati	on of a protein?				
Sace.	 pH of the solution Temperature Its sequence of amino acids 	A) 1, 2 and 4 B) 1, 2 and 3 C) 1, 2, 3 and 4				
replace	4) The presence of ethanol in the solution5) Applying an electric field across the solution	D) 1, 2, 3 and 5 E) All of the above				
20.	Which of the following correctly depicts interchain	n H-bonding in the Beta-sheet?				
	A) >N-H //// H-N< B) >C=O //// H-C- D) >N-H //// H-R- E) >C=O //// O=C<	C) >C=0 //// H-N<				
21.	Which of the following statements about the fibro	hich of the following statements about the fibrous protein silk fibroin are TRUE?				
	 Fibroin consists of stacked beta-sheets Fibroin consists of right handed helices Fibroin has a high content of glycine Disulfide bonds are important in stabilizing the The stacked beta-sheets of fibroin are held together. 	structure of fibroin ether by van der Waal's forces				
	A) 1,2 & 5 B) 2,4 &5 C) 1, 2 &4	D) 1,3 & 5 E) 2,3 & 4				

DATE: Oct. 24, 2000

Midterm EXAMINATION

	PAPER NO.:		PAGE NO.: 4 of 10				
	DEPARTMENT & COURSE NO.: 2.277	7/60.277	Time: 2 HOURS				
	EXAMINATION: Elements of Biochemist	try I	EXAMINER: <u>Drs. D.I.</u>	Burton and A. Scoot			
22.	Which of the following statements about	the fibrous prote	n keratin are UNTRUE?				
	 Keratin consists of stacked beta-sheet. Keratin consists of right-handed helice. Keratin has a high content of hydroph. The stability of keratin is due to electr. Disulfide bonds are important in stabil. 	es arranged into l obic amino acids rostatic interactio	n between adjacent helic	al chains			
	A) 1 & 2 B) 1, 2 & 4	C) 1 & 4	D) 2, 3 & 5	E) 1 & 5			
23.	Which ONE of the following statements	about protein str	ructure is true?				
	 A) Proteins are generally loosely structured B) In water-soluble proteins, hydrophobic (non-polar) amino acid side chains are usually buried and not exposed to water C) In water-soluble proteins, hydrophilic (polar) amino acid side chains are usually buried and not exposed to water D) Globular proteins that contain alpha helical regions never contain regions of beta-sheet E) Fibrous proteins are always exclusively alpha helical 						
24.	Which of the following does NOT contr proteins?	ribute to the form	nation and stability of t	ertiary structure in			
	 A) electrostatic interaction between amino acid R-groups B) entropy increase resulting from a decrease in the number of ordered water molecules forming a solvent shell ("cage") around non-polar amino acid R-groups C) formation of disulfide bonds D) van der Waal's forces E) formation of covalent bonds between amino acid R-groups containing -OH groups 						
25	Which of A), B), C), D) and E) in question 24 above makes the biggest single contribution to the formation and stability of tertiary structure in proteins?						
26	The polypeptide backbone in the alpha h	nelix conformatio	n is?				
	A) in an extended zig-zag structure D) a left-handed helix	B) a right ha D) a randoml	nded helix C) y coiled structure	a double helix			
27	The amino acid most likely to disrupt al	pha helical struct	ure is?				
	A) arginine B) tryptophan	C) isoleucine	D) threonine	E) proline			

Midterm EXAMINATION

DATE: Oct. 24, 2000

	PAPER NO.:	PAGE	NO.: <u>5 of 10</u>			
	DEPARTMENT & COURSE NO.: 2.2	77/60.277	Time: 2 HOUR	.s		
	EXAMINATION: Elements of Biochem	istry I	EXAMINER: <u>Dr</u>	s. D.Burton and A. Scoot		
28.	Which of the following statements are	ΓRUE?				
	1) H-bonding between amino acid side2) The >C=O and >N-H groups of perhelix					
	3) The H-bonds that stabilize the alpha4) About half the peptide bonds in an a5) All the peptide bonds in an alpha hel	lpha helix are invol	ved in H-bonding	ix		
	A) 1 & 2 B) 1,2 & 3 C) 2 & 4	D) 2, 3 & 5 E)	3 & 4			
29.	Weak acids are? ionized (dissocia	ted) in aqueous so	lution:			
	A) completely B) only slightly E) none of the above	C) not at all	D) about 50	0%		
30.	Which of the following statements are to concentrations in solution?	ue when a weak acid	d and its conjugate b	pase are present in equal		
		he solution is neut)H [·] and H ⁺ concent		<i>3)</i> pH=pI		
	A) 1 & 2 B) 3 & 4 C) 2	2 & 5 D)	1 & 4	E) 3 & 5		
31.	The role of the enzyme in an enzyme-ca	talyzed reaction is	to:			
	 A) ensure all the substrate is converted to product B) make the overall free energy change for the reaction more favourable C) increase the rate of conversion of substrate to product D) ensure the product is more stable than the substrate E) increase the equilibrium constant for the reaction 					
32.	Enzymes are potent catalysts. They:					
	 A) lower the activation energy for the reactions they catalyze B) are consumed in the reactions they catalyze C) can prevent the conversion of products back to substrate D) increase the equilibrium constants for the reactions they catalyze E) drive reactions to completion while other catalysts drive reactions to equilibrium 					
33,	Which of the following statements about	enzymes is UNTF	RUE?			
	 A) weak, non-covalent forces are important and product B) optimal catalysis occurs when the active substrate and product C) formation of an enzyme-substrate composition of an enzyme substrate composition and active significant and active significant and active significant and active significant significa	tive site binds most implex increases the te often participate	e entropy of substr	ransition state between ates		
	E) their catalytic activity is affected by		, ,			

	DATE: Oct. 24, 2000		Midterm EXAMINATION				
	PAPER NO.:	PA	GE NO.: 6 of 10				
	DEPARTMENT & COUR	SE NO.: <u>2.277/60.277</u>	Time: 2 HOURS				
	EXAMINATION: Element	s of Biochemistry I	EXAMINER: <u>Drs. D.Burton and A. Sco</u>	<u>)0</u>			
34.	Which of the following are	true in relation to the Micha	elis - Menten equation and its constants?				
	2) The amount of S bour concentration of S.	nd by E at any given time i	eady state, ie [ES] is constant s negligible compared to the total				
	 3) K_m is the substrate concentration at which enzyme velocity is equal to V_{max} 4) The affinity of an enzyme for a substrate increases as K_m increases. 5) All enzymes that follow Michaelis - Menten kinetics exhibit a sigmoidal dependence of v on [S] 						
	A) 1 and 2 B) 1, E) All of the above	2 and 3 C) 1, 2, 3 a	and 4 D) 3, 4 and 5				
35.	Which of the following is hyperbolic v versus [S] cu		m for an enzyme-catalyzed reaction showing a	1			
		e is saturated with substrate vates can bind to the same act	when $[S] = K_m$ ive site, the substrate with the smaller K_m wil	1			
	C) the rate of reaction is e	equal to K_m multiplied by V_{math} decreased in the presence of	x a competitive inhibitor				
36.	For an enzyme which followhen $[S] = K_m$?	ws simple Michaelis-Menten	kinetics, what is the V_{max} if $v = 65 \mu mol/min$	1			
	A) 50 μmol/min B) 65 E) 130 μmol/min	5 μmol/min C) 90 μmo	l/min D) 110 μmol/min				
37.		itor will change the kinetic Menten kinetics as follows:	parameters in an enzyme-catalyzed reaction	1			
	 A) Increase K_m leaving V_m C) Increase both K_m and V E) Decrease K_m leaving V 	V _{max}	B) Decrease both K_m and V_{max} D) Decrease V_{max} leaving K_m unchanged				
38.	i) K_m for the substrate =	5 mM; $V_{max} = 900 \mu mol/min$.	nown to follow Michaelis-Menten kinetics: = 900μmol/min. The type of inhibition shows	n			
	A) uncompetitive B) all	osteric C) competitive	D) non-competitive E) irreversible				

DATE: Oct. 24, 2000

Midterm EXAMINATION

PAPER NO.: __

PAGE NO.: <u>7 of 10</u>

DEPARTMENT & COURSE NO.: 2.277/60.277

Time: 2 HOURS

EXAMINATION: Elements of Biochemistry I

EXAMINER: Drs. D.Burton and A. Scoot

USE THE FOLLOWING DATA TO ANSWER QUESTIONS 39 and 40.

An enzyme-catalyzed reaction was carried out with a substrate concentration 2000 times greater than the K_m for the substrate. After 12 minutes, only 0.5% of the substrate had been consumed and 15 μ mol of product had been formed.

- 39. If one third as much enzyme and twice as much substrate were used, how long would it take for the same amount of product (15 µmol) to be formed?
 - A) 4 min
- B) 6 min
- C) 18 min
- D) 24 min
- E) 36 min
- 40. If the enzyme concentration was doubled and the substrate concentration halved, how long would it take for the same amount of product (15 μmol) to be formed?
 - A) 4 min
- B) 6 min
- C) 18 min
- D) 24 min
- E) 36 min

DATE: Oct. 24, 2000

Midterm EXAMINATION

PAPER NO.: ___

PAGE NO.: 8 of 10

DEPARTMENT & COURSE NO.: 2.277/60.277

Time: 2 HOURS

EXAMINATION: Elements of Biochemistry I

EXAMINER: Drs. D.Burton and A. Scoot

LAB SECTION (Questions 41 to 50)

For questions 41, 42, 43, 44, 45 and 46 please refer to the following:

The titration curve for 30.0 mL of 0.05 M unknown amino acid with 0.15 M HCl and 0.15 M NaOH is shown

below.

41. Which of the five amino acids listed below is the unknown amino acid?

	pK _a (α-COOH)	$pK_a(\alpha-NH_3^+)$	pK _a (R-gp)
A \ Arcinina	2.2	9.0	12.5
A) Arginine B) Aspartic acid	2.4	9.8	4.0
C) Phenylalanine	1.8	9.1	
D) Serine	2.2	9.1	
E) Alanine	2.4	9.8	

- 42. What is the pI for this unknown amino acid?
 - A) 1.4
- B) 3.2
- C) 4.0
- D) 6.1
- E) 7.0
- 43. A solution of this amino acid at a pH of 10.6 would be which of the following?
 - A) A more effective buffer for H⁺ ions
 - B) A more effective buffer for OH ions
 - C) An equally effective buffer for H⁺ and OH⁻ ions
 - D) An effective buffer for neither H⁺ nor OH⁻ ions
 - E) None of the above

		DATE:	Oct. 24, 2000		<u>Mi</u>	idterm EXAMINATION	1	
		PAPER	NO.:		PAGE NO	.: <u>9 of 10</u>		
		DEPAR	TMENT & COURS	E NO.: <u>2.277/60,277</u>	Tin	ne: 2 HOURS		
		ЕХАМГ	NATION: Elements	of Biochemistry I	EX	AMINER: Drs. D.Burto	on and A. Scoo	
→	44.			ion at pH 9.8 of the sa HCl. What is the new		amino acid from questic	on § 46 and 47	
		A) 3.2	B) 4.0	C) 5.4	D) 6.1	E) 6.9		
	45.	togethe solvent.	r with the five amino	acids listed in question acids listed in question acids listed in question acids aci	n 41 using e	as subjected to paper chrothanol: ammonia: water (ag position of the unknow	(8:1:1) as the	
7		B) Clos C) Fartl D) Neit		nt n the origin but in the Il the other amino acid				
	46.			y of the amino acids it		ary to visualise the spot	s in order to	
		B) Add C) Char D) Addi	ling phenol red to giving the pH to a hig	ent to produce purple ve a colour change hly alkaline pH to brin and changing the pH to	g about a col	our change or change		
	For	question	s 47 and 48 please r	refer to the following:	<u>.</u>			
	a sp	ectrophot	ometer. Readings we	ere taken for a 1 in 200	dilution of th	and NADH in the same are original sample at two variances were obtained	wavelengths,	
		0.495 at 260 nm and 0.155 at 340 nm.						
	The molar extinction coefficients for these two compounds at these two wavelengths are shown below:							
				€, M ⁻¹ cr				
			NAD⁺ NADH	260 nm 18,000 15,000	340 nm 0 6300			
	47.	What wa	as the molar concent	ration of the reduced f	orm of the el	ectron carrier in the origi	inal sample?	
		A) 4.10x D) 2.75x		B) 1.16x10 ⁻³ M E) 2.05 x 10 ⁻⁵ N		C) 5.50x10 ⁻⁵ M		
	48.	What wa	as the molar concent	ration of the oxidised t	form of the e	lectron carrier in the orig	inal sample?	

B) 1.16 x 10⁻³ M E) 0.00 M

A) 4.58 x 10⁻³ M D) 0.58 x 10⁻⁵ M C) 2.29 x 10⁻⁵ M

	DATE: Oct. 24, 2000		<u>N</u>	<u>lidterm</u> EXAM	INATION		
	PAPER NO.:		PAGE NO	D.: <u>10 of 10</u>			
	DEPARTMENT & COU	RSE NO.: <u>2.277/60.2</u>	<u>277</u> Ti	me: 2 HOUR	S		
	EXAMINATION: Eleme	ents of Biochemistry I	E	XAMINER: <u>Dr</u>	s. D.Burto	n and A. S	Scoot
49.	Which of the following a	are required conditions	of measuring p	protein by the Bi	uret metho	od?	
	 Alkaline conditions The presence of Cu²⁺ Titration with acid and base Establishment of a calibration curve Formation of a complex whose absorbance can be determined 						
	A) All of the above	B) 1, 2, 3 and 4	C) 1, 2, 4 an	d 5 D) 4 a	and 5	E) 3	
50.	Using the Biuret method protein solution was fou						

albumin solution containing 6 mg BSA/mL, gave an absorbance reading of 0.450. What is the protein

D) 100 mg/mL

E) 150 mg/mL

C) 30 mg/mL

concentration of the original protein solution?

A) 1.2 mg/mL B) 6 mg/mL