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Twenty-two years after their discovery as ribozymes,

the self-splicing group I introns are finally disclosing

their architecture at the atomic level. The crystal

structures of three group I introns solved at moderately

high resolution (3.1–3.8 Å) reveal a remarkably con-

served catalytic core bound to the metal ions required

for activity. The structure of the core is stabilized by an

intron-specific set of long-range interactions that

involves peripheral elements. Group I intron structures

thus provide much awaited and extremely valuable

snapshots of how these ribozymes coordinate substrate

binding and catalysis.

Group I introns in the spotlight

Since the early 1980s, RNA molecules such as ribonu-
clease P [1] and the self-splicing introns [2–4] have been
known to catalyze the cleavage and formation of covalent
bonds. Such molecules were called ‘ribozymes’ to specify
that they are enzymes with a catalytic RNA component
[2]. Since then, several new classes of ribozyme have been
identified in nature – for example, the hammerhead, the
hairpin and the hepatitis delta virus ribozymes (reviewed
in Refs [5,6]), and the more recently discovered glmS
ribozyme [7] – or have been evolved in vitro from pools of
random RNA sequences (e.g. see Refs [8,9]). Even the
ribosome has been shown to be a ribozyme [10].

Self-splicing introns occur naturally in many organ-
isms, including algae, lichens and fungi, as well as in some
bacteria, but few have been found in animals [11]. They
are not essential for cell viability unlike, for example, the
peptidyl transferase center of rRNA [12] and the
ribonuclease P responsible for tRNA maturation [13].
Instead, self-splicing introns seem to be selfish genetic
elements that have a successful strategy for survival: they
paste themselves in and out of various genes and, because
they self-splice at the RNA level, they are not deleterious.
Self-splicing introns are nonetheless highly instructive
models for RNA folding and catalysis. In addition,
understanding the function of these molecules helps to
address the ‘RNA world’ hypothesis [14]: the discovery
that RNA molecules, like proteins, could possess catalytic
properties as well as being able to store genetic infor-
mation (e.g. as in HIV and the tobacco mosaic, hepatitis C
and SARS viruses), implied that an era based solely on
RNA could have preceded DNA- and protein-based life on
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this planet [14,15]. Furthermore, self-splicing introns can
be engineered as new tools for gene regulation, discovery
and analysis [16]. Modified group I introns can, for
example, replace portions of mRNA sequences [17,18], a
strategy that could help to repair mutations causing
diseases or to reprogram genetic expression.

The most abundant self-splicing introns are the group I
introns (O2000 sequences have been found so far [19]),
which catalyze a two-step transesterification reaction
using a guanosine molecule as a cofactor (Figure 1).
They are thus distinguished from the group II introns,
which generally use an internal adenosine to initiate self-
splicing [5]. The other important feature that dis-
tinguishes group I from group II introns and other RNA
molecules is their structure. Group I introns are formed by
a specific arrangement of about ten Watson–Crick paired
elements (indicated by P) or helices that are capped by
loops (L) and connected by junctions (J).

Helices P1 to P10 (and the intervening junctions and
loops) assemble to form the catalytic core, from which
different peripheral elements branch out [20–23]. Helix P1
contains the 5 0 substrate strand or ‘5 0 exon’ and ends with
a conserved G†U pair that contributes to 5 0 splice site
recognition. Helix P10, which forms after the first step of
splicing, involves base pairs between the intron and the 3 0

substrate strand or ‘3 0 exon’ (Figure 1). Recognition of the
3 0 splice site is achieved, in part, by the conserved
guanine, termed omega G (UG), at the 3 0-terminal position
of the intron. The active site is located in the vicinity of the
P3–P7 pseudoknot and the joining regions J4/5 and J8/7
[24,25]. Even though the core structure is highly
conserved, there is very poor sequence conservation
apart from a few crucial nucleotides located at the active
site [26]. However, patterns of sequence similarity
observed at the core of group I introns, as well as common
peripheral structures, have facilitated a further classifi-
cation into 13 subgroups [21,26,27].

To understand how the P1–P10 elements fold in three
dimensions so that the ribozyme can perform its precise
set of cleavage and ligation reactions, efforts began in the
early 1990s to solve the structures of group I introns by
X-ray crystallography. It is thus remarkable that, after a
decade of attempts, the crystal structures of three
different introns were solved to moderately high resol-
ution by independent groups and published separately
within a 6-month time frame between July 2004 and
January 2005. Group I introns from the purple bacterium
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Figure 1. Group I intron self-splicing occurs by a two-step transesterification mechanism. (a) The 5 0 splice site (marked by a conserved G†U pair, green) undergoes

nucleophilic attack (yellow arrow) by the 3 0-OH group of a guanosine (or GMP or GTP) cofactor bound to the intron at the G-binding site (ringed in yellow). Lower- and upper-

case characters stand for exon and intron sequences, respectively. (b) After the reaction, this guanosine is covalently linked to the 5 0 end of the intron. (c) During a

conformational change, the guanosine is displaced from the G-binding site by the 3 0-terminal omega G (UG) that marks the 3 0 splice site (red). The 3 0-OH group of the terminal

residue of the 5 0 exon attacks the 3 0 splice site in a reaction that is chemically equivalent to the reverse of step 1. (d) The 5 0 and 3 0 exons are ligated and the intron is released.

The group I intron is shown adopting its conserved secondary structure in black; the shaded box delimits its catalytic core (see text and Figure 2b for details).
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Azoarcus (Azo) [28,29], from the ciliate Tetrahymena
thermophila (Tet) [30] and from the Staphylococcus aureus
bacteriophage Twort (Two) [31] were solved to resolutions
of 3.1, 3.8 and 3.6 Å, respectively (Table 1). These recent
structures build on the previous Tet structures of the non-
catalytic P4–P6 domain (160 nt) [32,33] and the P4–P6
domain linked to the catalytic core (247 nt) solved to 5 Å
resolution [34], bringing the understanding of self-splicing
activity to the atomic level. They capture different
snapshots along the splicing pathway that rationalize
more than 20 years of biochemical data.
www.sciencedirect.com
Here, we offer an integrative view of group I intron
organization based on comparative structural analysis.
Superimposition of the three structures reveals a defined
set of structural domains that assemble into a conserved
core, which organizes the catalytic site. The structure of
the catalytic site is extraordinarily well preserved, as
inferred by comparative sequence analysis, but reveals
tertiary contacts that could not have been predicted.
Moreover, the structures show three distinct ways in
which intron-specific peripheral elements establish long-
range tertiary interactions that help to stabilize the
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Table 1. General information on the Azo, Tet and Two sequences and structures

Azoarcusa Tetrahymena Twort

General information

Origin (gene location) Purple bacterium (tRNAIle) T. thermophila (26S rRNA) S. aureus bacteriophage (ORF

142)

Subgroup IC3 IC1 IA2

Length of wild-type intron (nt) 206 413 252

Length of construct (nt) 219 (intron) 247 242 (intron)

C3 (5 0 exon) C4 (5 0 exon)

C6 (3 0 exon)

Self-splicing step mimicked Before second step of splicing Product form with exons

released or before docking of

substrate

Product form with 5 0 exon still

bound

GCC content (%) 60 44 37

Refinement parameters

Resolution (Å) 3.1 (deoxy), 3.4 (ribo) 3.8 3.6

R/Rfree (%) 24.6/27.9 (deoxy), 26.9/30.7 (ribo) 26.3/32.0 27.9/31.5

Number of molecules per

asymmetric unit

1 4 1

Number of nt observed per

number of nt in asymmetric unit

222/222 968/988 233/246

PDB ID 1U6B (deoxy), 1ZZN (ribo) 1X8W 1Y0Q
aThe Azo structures containing a deoxy [29] or ribo [35] UG are referred to as deoxy or ribo respectively, where information differs between the two. Abbreviations: nt,

nucleotide; ORF, open reading frame.
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conserved architecture of the core. Finally, the structures
allow the long-anticipated catalytic metal ions to be
observed in the active site.

Different roads to a common destination

Two significant observations can be made when looking
at the Azo, Tet and Two introns and the corresponding
constructs that were crystallized. First, the three introns
represent 3 of the 13 different group I intron subgroups
defined by Michel and Westhof [26]: IC3 (Azo), IC1 (Tet)
and IA2 (Two). As such, they offer three different
examples of how the global architecture of a group I
intron supports a common core structure. This aspect
will be emphasized in the penultimate section of the
review. Second, the three structures reflect three
different solutions to the problem of avoiding RNA self-
splicing during transcription and crystallization, which
might fortuitously mimic three different steps along the
splicing pathway:

(i) The Azo construct was designed to represent an
intermediate state just before the second step of
the self-splicing reaction (Figure 1). To achieve
this, four deoxy mutations were introduced at
residues in the active site (the last two nucleotides
of the intron, the first one of the 3 0 exon and the
last one of the 5 0 exon) to retain both exons in the
final construct. The deoxy UG, however, favored
binding of a monovalent cation in the catalytic
site, which is not thought to be biologically
relevant [29]. The latest structure by the same
laboratory therefore retains only the deoxy
mutation at the 3 0 end of the 5 0 exon, which
slows rather than abolishes self-splicing activity
[35]. In this structure, an Mg2C ion is now bound
to the wild-type ribo UG and the intron is fully
active in the crystal.

(ii) The Tet construct lacks both exons and several
helices including helix P1, and the structure
www.sciencedirect.com
shows UG bound to the G-binding site [30]. In
addition, splicing has been shown to occur on
addition of the substrate in trans [36]. This
structure could therefore reflect either a product
formed after exon release (Figure 1) or the intron
before docking of its substrate.

(iii) The Two construct contains the intron bound to a
mimic of the 5 0 exon, which was added in trans to
form the P1 helix. In this structure, UG is also
bound to the G-binding site and the intron is
active when embedded in the 5 0 and 3 0 exons [31].
Consequently, the Two structure might be analo-
gous to the product formed before exon release.

The three structures were solved to moderately high
resolution (Table 1), providing electron density for bases,
sugar rings, phosphate groups and metal ions. The higher
resolution obtained for Azo made the refinement of water
molecules also possible. All nucleotides are observed in
Azo, whereas a few residues are missing in the final
models of Tet and Two because they were disordered in the
crystal (Table 1). One molecule of the Azo or Two intron is
observed in the asymmetric unit of the crystallographic
unit cell, whereas four copies (named A to D) of the
truncated but still slightly flexible Tet construct are
present in the asymmetric unit of the unit cell. (The
asymmetric unit corresponds to the smallest unit that can
be rotated and translated using only the crystallographic
symmetry operators to generate one unit cell.) This made
the refinement of Tet very difficult, but in the end offered
four different views or conformational states of the
same intron.

In addition, the highest temperature B factors (which
indicate a higher uncertainty in atomic positions) are
observed for residues adjacent to the disordered regions
(such as the P5a helix in Two), for nucleotides involved
in loose crystal packing contacts (such as the P6b helix
bound to the U1A protein in Azo, and the P8 and P5a
helices in Two) and for flexible domains (such as the P9
helix in Tet, which adopts different orientations in
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molecules B and C; see Supplementary Figure S1). The
three structures are well-ordered at the active site,
however, where the lowest B factors are found (Sup-
plementary Figure S1).

Because comparative structural analyses involve
superimpositions of 3D structures, it is worth recognizing
that at resolutions worse than 3.0 Å precise atomic
positions, sugar puckers and contacts between nucleotides
are not unambiguously determined. Such limitations do
not hamper comparisons of global and local architectures
(because overall helical geometries and base-pairing
schemes are well established) but preclude definitive
answers to some atomic level questions about the self-
splicing mechanism.

Introns share a conserved catalytic core

Global fold and the G-binding site

The overall folds of the core portion of the three
structures are very similar [37] (Figure 2 and Sup-
plementary Movie; see Supplementary Figure S2 for the
detailed sequence) and globally confirm previous 3D
models [23,26,38] and crystal structures [32–34]. The
structure of the group I intron forms by assembly of
three main domains: first, P4–P5–P6 (also named
P4–P6), which in Tet is extended and forms a hairpin
clamped by tertiary interactions; second, P3–P7–P8–P9
(also named P3–P9), which is roughly perpendicular to
P4–P6 and wraps around it on one side; and third,
P1–P2, which lies side by side with P3–P9 (Figure 2a–c
and Supplementary Movie). In addition to the univer-
sally conserved G†U pair that marks the 5 0 splice site
and the 3 0-terminal UG, the sequence conservation
between Azo, Tet and Two is localized mostly in the
P4, P6 and P7 helices, matching observations from large-
scale sequence alignments (Figure 2 and Supplementary
Figure S2) [26]. The 3D structures confirm that these
conserved nucleotides are clustered in and around the
active site (Figure 2d).

The Azo, Tet and Two structures show the G-binding
site occupied by the 3 0-terminal UG. Remarkably, even
though the three structures are proposed to represent
different snapshots along the self-splicing pathway, the
structure of the G-binding site is globally conserved (the
root mean square deviation of the sugar-phosphate
atoms is !1 Å; Figure 3a). The UG is involved in
coplanar hydrogen-bonding interactions to the deep
groove of a universally conserved G–C pair of helix P7,
as predicted previously [39,40]. What had been largely
unforeseen by sequence analyses and biochemical data
was that this base-triple interaction is sandwiched by
three other base-triple interactions comprising residues
in the P7 helix and the J6/7 region, so that the guanine
base is stacked on adjacent purines (only one of these
additional triples had been predicted and modeled [41]).
This mode of interaction provides specific recognition of
the guanine base, while enabling the sugar moiety of the
guanosine to remain accessible for catalysis. It can be
contrasted with the situation in the recently solved
structure of a riboswitch bound to the purine base
hypoxanthine [42], where the base is involved in
coplanar hydrogen bonds, as it is in the introns, but no
www.sciencedirect.com
base–base stacking interactions are formed and the
residue is buried deeply in its binding site (Figure 3b).

Joining regions between helices

The junctions of 3–7 nt that connect the various helices
of the introns are not floppy, but instead form specific
structures that are essential to proper folding and to
substrate recognition. The region located around the
bases of helices P4 and P6 that involves the junctions
J3/4 and J6/7 forms the interface between domains
P4–P6 and P3–P9. It is stabilized similarly in the three
structures by a succession of base-triple interactions
that line up along the same side of the P4–P6 junction
(Figure 4a). This triple helical scaffold was predicted
early on from extensive mutagenesis studies [43–45]. A
side-by-side comparison of the five layers of triples
shows that most of the pairing partners had been
predicted accurately, with the exception of the triple
involving the first nucleotide of J3/4 (Supplementary
Figure S3). But although the hydrogen-bond patterns
observed in the three crystal structures are highly
similar, they differ from the modeled patterns (Sup-
plementary Figure S3). This is not unexpected, however,
because the goal of 3D modeling based on comparative
sequence analysis and mutational studies is to predict
the molecular architecture and not necessarily the
atomic details.

Because the J8/7 and J4/5 junctions are directly
involved in RNA substrate recognition, it is interesting
to contrast the Azo and Two structures, which contain the
P1 substrate, with the Tet structure, which lacks this
substrate (reviewed in [46]). The length and sequence of
the J8/7 junction, located in the vicinity of the P3
pseudoknot, are highly conserved, corresponding to
seven nucleotides in the IC1 introns (such as Tet) and
six nucleotides in the other introns, with a particular
order of conserved purines and pyrimidines. The latter six
nucleotides are involved in bringing together the P3–P7
region that contains the G-binding site and the P1 helix,
as shown by the Azo and Two structures (Figure 4b and
Supplementary Figure S4). The Tet structure, which lacks
the P1 helix, has a considerably different J8/7 structure
(Figure 4b). Furthermore, J8/7 seems to be flexible in the
absence of P1, as indicated by the different structures that
it adopts in the four Tet molecules present in the
asymmetric unit (Supplementary Figure S4b). The Tet
structure also shows that the extra uridine at the 5 0 end of
J8/7 (U300 is not present in the other introns) interacts in
the deep groove of the P3 helix (Figure 4b). Also notable is
that the additional G–C pair on the 5 0 side of the P3 helix
of Tet superimposes over the G–C pair on the ‘top’ of helix
P8 of Azo and Two (see orientation in Supplementary
Figure S2).

In the structures of Azo and Two, the conserved
adenines in the J4/5 joining region form a tandem of
sheared ABA pairs, in which one adenine of each strand
comes into direct contact with the G†U pair on the 5 0 splice
site (Supplementary Figures S4a and S5). The accessible
N2 of the guanine is contacted by both the N3 atom and the
2 0-OH group of the 3 0 adenine on the 3 0 side of J4/5 (A87 in
Azo, A83 in Two). The N3 atom and the 2 0-OH group of the
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Figure 2. Introns from Azoarcus, Tetrahymena and Twort share a common core. (a) Superimposition of the 3D structures (based on the P7 helix) of Azo (blue), Tet (green) and

Two (orange). Of the four structures in the asymmetric unit, the structure of molecule B was used for Tet in this and subsequent figures unless otherwise stated. The U1A

protein is shown here but is removed in subsequent figures. (b) The P4–P6 (blue), P3–P9 (red) and P1–P2 (yellow) domains highlighted on the Azo structure (the P7 region is

shown in ball-and-stick notation). (c) The relative positioning of the domains shown in (a,b). (d) Overlay of secondary structure diagrams emphasizing conserved structural

elements (black) inside a conserved core (formed by the three shaded boxes that define, from left to right, the P4–P6, P1–P2 and P3–P9 domains). P1–P10 elements, important

junctions and loops, and the intron-specific peripheral domains are indicated. Colored 5 0 and 3 0 symbols locate the different ends of the three constructs. The broken box

around the P5a element of Two specifies that this region is disordered in the final model. Lower- and upper-case characters stand for exon and intron sequences, respectively.

Nucleotides conserved in the three sequences are shown in red: these residues on the 3D structure of Azo are shown in the inset. Three-dimensional structures in this and all

figures except Figure 4 were drawn with VMD v.1.8.2 [82] and rendered with Povray v.3.6 (http://www.povray.org/).
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3 0 adenine on the 5 0 side of J4/5 (A58 in Azo, A56 in Two)
form hydrogen bonds to the 2 0-OH group of the guanine
(Supplementary Figure S4a). These observations ration-
alize previous experimental and modeling results obtained
www.sciencedirect.com
with the full-length Tet RNA [47,48]. Remarkably, the
geometry of the ABA tandem is maintained in molecules A,
C and D of Tet, even though the relevant substrate is
missing (Supplementary Figure S4b).

http://www.povray.org/
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Tetraloop docking interaction

In most introns the P9 stem is capped by a stable GNRA
tetraloop (L9), where N is any nucleotide and R is purine
[26]. Sequence alignments and experimental data have
identified two modes of specific interactions involving
the L9 tetraloop and a region in P5: in some introns, L9
binds to consecutive Watson–Crick pairs [26,49],
whereas in others it contacts a conserved 11-nt receptor
motif [50].

The Azo, Tet and Two constructs used for crystal-
lization possess a GAAA L9 loop (although the wild-type
Tet sequence does not). The L9 loop of the Tet RNA
interacts with two adjacent base pairs in P5 (Figure 4c),
similar to the interaction predicted for other group I
introns [51]. This interaction is analogous to that
observed in a structure of the hammerhead ribozyme
[52]. The part of P5 observed in the Two structure and
the loop L9 superimpose on these regions of the Tet
RNA, a good indication that they are involved in similar
interactions. The Azo structure shows L9 in contact with
the conserved 11-nt receptor motif located in P5
(Figure 4c). This interaction is similar to one observed
on another side of the Azo intron between loop L2 and
stem P8 [28] (Supplementary Figure S5) and to one
described previously in the Tet P4–P6 domain [32]. As
emphasized by this structural comparison, the two types
of interaction (involving either adjacent Watson–Crick
pairs or the 11-nt receptor) have a similar role in
clamping the P5 and P9 regions to one another
(Supplementary Figure S5).
www.sciencedirect.com
Pseudoknot belts

The Azo structure showed a novel feature – a ‘pseudoknot
belt’, which involves a single stretch of w25 nucleotides
that spans three helices (including the pseudoknot P3)
and two junctions from the 3 0 end of P2 to the 5 0 end of P4
[28]. This stretch encircles the intron at its midpoint
(Figure 5). This structure is compatible with previous
kinetic experiments that indicated that P3 is the last helix
to form during folding of the Tet intron [53–55].

Highlighting the corresponding nucleotides in the Tet
and Two structures reveals that these introns also have a
pseudoknot belt, which wraps around the circumference
in a similar manner (Figure 5). Notably, the belt remains
on the outside of the molecule, despite differences in the
set of peripheral elements possessed by each intron: the
loop L2 binds to P8 in Azo and Two, whereas it forms a
pseudoknot with a region in the P5abc extension in Tet, as
shown in a 3D model of the full-length Tet sequence by
Lehnert et al. [23] (Figure 5).
The architecture of the core is supported by diverse

peripheral elements

The classification of group I introns into 13 structural
subgroups is based not only on different sets of conserved
sequences in the core, but also on subgroup-specific
peripheral elements [23,26]. These elements typically
branch out from the core in the P2, P5, P6, P8 and P9
regions. Some of them are longer than 500 nt and contain
open reading frames encoding endonucleases that pro-
mote intron mobility [11]. The main role of the peripheral
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Base pairs of the Azo structure only are indicated by rods. Figure was drawn with PyMOL v.0.95 (http://pymol.sourceforge.net/) and nuccyl v.1.5 (http://www.biosci.ki.se/

groups/ljo/software/nuccyl.html).
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elements is to stabilize the structure of the core by
establishing long-range tertiary interactions [56,57]; for
example, when progressively deprived of its peripheral
elements, the intron loses activity [58], although very low
levels persist in the complete absence of some peripheral
elements [24]. Artificial peripheral elements can even be
engineered around a minimal catalytic module to enhance
activity [59]. Because the Azo, Tet and Two introns belong
to three different subgroups, a comparative analysis of
their structures offers an exciting opportunity to under-
stand how different sets of elements support a common
architecture of the core.
www.sciencedirect.com
In the three structures, the peripheral elements poke
out in different directions to form intron-specific sets of
long-range interactions. Remarkably, peripheral elements
form buttresses that can wrap around the conserved
active site either halfway, as in the Two intron, or totally,
as in the Tet intron (Figure 6). For example, the P5abc
extension, which is typical of IC1 introns such as Tet,
protrudes on the side opposite to that of the P7.1–P7.2
extension, which is characteristic of IA introns such as
Two (Figure 2a and Supplementary Movie). Consequently,
the P5abc extension establishes several long-range inter-
actions within the P4–P6 domain and with loop L9, and it

http://pymol.sourceforge.net/
http://www.biosci.ki.se/groups/ljo/software/nuccyl.html
http://www.biosci.ki.se/groups/ljo/software/nuccyl.html
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facilitates pseudoknot formation between L2 and L5c, and
between L2.1 and L9.1a (Figure 6 and Supplementary
Figure S5) [23]. The P7.1–P7.2 extension of Two forms a
bow-tie-like protuberance that enables loop L7.2 to
interact with L9.1, which is another extension that is
typical of IA introns (Figure 6 and Supplementary Figure
S5) [26].

The Two structure reveals tetraloop–base-pair inter-
actions between L2 and L9 and the helices P8 and P5 (the
residues in most of the P5 extension are, however, absent
from the final model; Supplementary Figure S5). Notably,
these interactions are replaced by tetraloop–receptor
interactions in the Azo structure (Figure 6 and Sup-
plementary Figure S5). Together with the high GCC
content of the intron (Table 1), these stronger interactions,
established on the outermost ends of the structure,
probably account for the activity of this intron at high
temperatures [60]. Of note, no other long-range tertiary
interactions involving peripheral domains are observed
in Azo.

Some group I introns require a protein for activity; for
example, the Neurospora crassa ND1 intron is stabilized
by CYT-18 [61,62], and in Saccharomyces cerevisiae the
bI3 intron is stabilized by the bI3 and Mrs1 proteins [63],
and the bI5 intron by CBP2 [64]. In these introns, the
protein does not directly participate in the catalysis, but
www.sciencedirect.com
seems to be involved instead in indirectly stabilizing the
catalytic core either by reinforcing long-range interactions
between peripheral elements (e.g. CYT-18 stabilizes the
L9–P5 interaction) or by binding to a peripheral element
(e.g. the bI3 protein binds to the P5abc extension). In
addition, extensive biochemical data obtained for group IE
introns have recently shown the crucial role played by a
part of stem P2.1 (a marker for group IE introns) in
forming a triple helical interaction with P3 and P6 that is
required for catalysis [65].
How many metal ions in the active site?

The folding of group I introns brings many phosphate
groups into close proximity within the active site. The
resulting high electronegative potential is compensated by
the specific binding of several metal ions [66]. Among
these metal ions, some have been found to be directly
involved in catalysis [67,68].

Computational investigations [69], comparisons with
protein enzyme active sites [70], and biochemical and
modeling experiments [71] have led several groups to
suggest mechanisms based on two metal ions for the self-
splicing reaction [71–73]. Indeed, in vitro experiments
uncovered a first (M1) [68] and then a second (M2) [74]
metal ion with specific roles in catalysis: (i) in the first
step one metal ion serves as a nucleophile activator (M2

bound to the 3 0-OH of the guanosine cofactor) and the
other serves as a leaving group stabilizer (M1 bound to

http://www.sciencedirect.com
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the 3 0 oxygen atom of the uridine of the substrate G†U
pair); (ii) in the second step, M2 (now bound to the 3 0

oxygen atom of UG) and M1 (still bound to the same
uridine) exchange their roles [72,73]. In addition, both
M1 and M2 coordinate the scissile phosphate at the 5 0

splice site during the first step, and then the scissile
phosphate at the 3 0 splice site during the second step.
The 2 0-OH group of the guanosine cofactor has also been
shown to be contacted by a metal ion during the first step
of splicing [72]. A third metal ion was subsequently
suggested to have this role [75,76] and to coordinate
residue 262 (Tet numbering), which lies in the catalytic
site [77].

The resolution at which the structures of Azo, Tet and
Two were solved has enabled metal ions to be placed in
the active site (Figure 7): two metals in the Azo active
site (one Mg2C and one KC ion in the first structure
containing the deoxy UG [29], two Mg2C ions in the most
recent ribo UG structure [35]), one metal in the Tet active
site (a Eu3C or Ir3C ion soaked in to identify sites
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normally occupied by Mg2C) and one metal in the Two
active site (Mg2C). The binding mode of the two metal
ions identified in the Azo active site of the most recent
structure supports a two-metal ion model; first, two
metal ions could be sufficient for catalysis to occur in the
second step of splicing: M1 as a nucleophile activator and
M2 as a leaving group stabilizer (Figure 7); second, the
hydroxyl and phosphate oxygen groups that are directly
coordinated by the two metal ions (Figure 7) are the
biochemically predicted ligands; and last, the metal–
metal distance is 3.9 Å, in agreement with the model of a
two-metal-ion catalytic center [73].

In all four Tet structures, the metal ion observed
contacts the 3 0 oxygen atom of the UG and the O2P from
residue 306 (Tet numbering), similar to metal M2 in the
Azo structure (Figure 7 and Supplementary Figure S6).
In the Two structure, a metal ion contacts the 3 0-OH
group of the UG and the phosphate oxygen atom O2P of
residue 306, suggesting that this metal ion could be M2.
The distances are longer, however, and potential
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interactions (although they would involve outer-sphere
coordination of the metal ion) could be formed to residue
304 and the uridine from the substrate G†U pair, which
are ligands of metal M1 in the Azo structure (Figure 7).

The Azo structure shows how the scissile phosphate at
the 3 0 splice site bridges the two metal ions. In absence of
this phosphate group, as observed in Tet and Two, the
catalytic site might contain only one well-ordered metal
ion. Subsequent rearrangement could then occur to
facilitate positioning of a second metal ion for catalysis.

Notably, the present structures do not rule out the
presence of a third metal ion at the active site. A third
metal ion could be (i) disordered enough in the crystal
structures that it is not observed at these resolutions, (ii)
displaced by the high concentrations of monovalent salt
used during crystallization in the case of Two [31], (iii)
involved in steps or transitory stages of the self-splicing
reaction other than those captured by crystallography, (iv)
necessary in other biochemical contexts (e.g. under
different splicing conditions or when analyzing an
amino- or sulfur-substituted intron such as the one used
in recent biochemical studies [75]), or (v) even possibly
involved in the catalysis of some group I introns (such as
Tet) but not others (such as Azo).
Concluding remarks

The crystal structures of self-splicing introns from Azo, Tet
and Two represent a major breakthrough in the field of
group I intron and ribozyme research. Twenty-two years
after the discovery of the first ribozyme, they have
revealed at the atomic level a conserved catalytic core
built around a G-binding site and a precise set of
structural domains that help to stabilize the binding of
substrates. Metal ions are identified in the catalytic site at
positions predicted by models based on solution data and
by comparisons with metalloprotein enzymes.

Group I introns are subdivided into 13 subgroups that
are distinguished by particular conserved sequences at
the core and diverse sets of peripheral elements.
Structural comparisons show how the conserved archi-
tecture of the catalytic core is supported by long-range
tertiary interactions formed by these intron-specific
peripheral elements. Investigation of additional introns
is needed to address whether the sequence identities
observed in the same subgroup are functionally linked to
the presence of a specific set of peripheral elements, or
whether they are simply a fossil of the evolution of these
introns. Such studies would emphasize the importance of
the peripheral elements in stabilizing a catalytic core – a
function that is also known to be crucial in other
ribozymes such as the hammerhead ribozyme [78] and
the catalytic RNA of ribonuclease P [79–81].
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