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ABSTRACT Precise information regarding the transmembrane topology of mitochondrial porin is essential for understanding
the mechanisms by which this protein functions. Porin acts as a channel in the outer membrane and interacts with small solutes
and proteins to regulate mitochondrial function. The acquisition of high-resolution structural data requires a method of
maintaining high concentrations of unaggregated, properly folded porin. In the current studies, several mixed detergent systems
were analyzed for their ability to fold Neurospora mitochondrial porin expressed in and isolated from Escherichia coli. A mixture
of sodium dodecyl sulfate and dodecyl-b-D-maltopyranoside in a 1:6 molar ratio supports a b-strand-rich conformation. In this
state, the two tryptophan residues in the protein reside in hydrophobic environments, and about half of the nine tyrosines are
solvent exposed. Most importantly, heat-labile tertiary contacts, as detected by near-UV circular dichroism spectropolarimetry,
in the sodium dodecyl sulfate/dodecyl-b-D-maltopyranoside-solubilized porin are very similar to those of the protein following
functional reconstitution into liposomes. Similarly, both forms are protease resistant. Thus, a method has been identified with
the potential to solubilize high concentrations of mitochondrial porin in a state virtually indistinguishable from the membrane-
embedded form.

INTRODUCTION

One of the most abundant proteins in the mitochondrial outer

membrane is mitochondrial porin, otherwise known as VDAC.

Like its bacterial namesakes, this channel is presumed to ex-

ist in a b-barrel composed of antiparallel transmembrane

b-strands (see Fig. 1 for one model). Reconstitution of these

proteins into artificial membranes generates channels that

passively transport solutes and display voltage-dependent

gating; the channels are ‘‘open’’ and anion selective at low

applied voltages and exist in partially closed, cation-selective

states on application of high voltages (reviewed by Benz (1)).

Mitochondrial porins have been shown to interact with

small molecules and other proteins that participate in a variety

of cellular processes. Examples of interaction partners include

hexokinase (2) and creatine kinase (3), which are involved in

glucose metabolism. ATP (4,5), NADH (6), and the inner

membrane ATP/ADP carrier (reviewed by Crompton et al.

(7)) also interact with porin and participate in processes

involving oxidative phosphorylation. Furthermore, regulators

of apoptosis, namely the Bcl-2 family of proteins (as reviewed

elsewhere (8,9)) interact with VDAC in higher organisms,

potentially controlling cytochrome c release and the induction

of apoptosis. In many cases, these interactions modulate

channel gating and reflect complex interactions of porin with

its environment (reviewed by Blachly-Dyson and Forte (10)).

The involvement of mitochondrial porin in multiple cellular

activities emphasizes the need for understanding the structural

arrangement of this channel. However, in contrast to the

wealth of information regarding bacterial porin structure, very

little is known about the topology of mitochondrial porins.

Evidence supporting a b-barrel conformation for mito-

chondrial porins has included structural predictions based on

primary sequence, the properties of porin channels in artificial

membranes, and far-UV CD spectropolarimetry studies (40–

70% b-strand) (11–14). Low-resolution electron microscopic

analysis of two-dimensional and multilamellar arrays con-

firmed the barrel structure of porin (15–18). Other direct

approaches to the determination of mitochondrial porin

structure have been hindered by the low yields of folded

protein obtained from mitochondria, the low solubility of the

recombinant protein in the detergents used for electrophys-

iological analysis, and the poor stability of mitochondrial

porins in comparison to their bacterial counterparts (19,20).

Isolation of native mitochondrial porin in quantities high

enough for spectroscopic analysis (microgram amounts)

requires a large quantity of cells and numerous purification

steps involving initial solubilization in detergent (21–25).

The low yields of protein restrict the techniques available for

the characterization of the folded state. Recombinant His6-

porin expressed in Escherichia coli has facilitated the

purification of higher quantities of protein (milligrams), but

at the cost of the native folded state, because these proteins

must be isolated from inclusion bodies (9,13,26). Isolation
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and folding usually have involved denaturation and subse-

quent solubilization in detergent, using dialysis (13) or

dropwise dilution (9) to remove the denaturant while

encouraging folding that presumably reflects that of the

native porin.

Our recent studies utilizing His-tagged Neurospora crassa
mitochondrial porin involved spectroscopic characterization

of the protein and model compounds in single detergents (26).

His6-porin was purified in 8 M urea, acetone precipitated, and

the dried pellet dissolved directly in the detergent of choice.

High concentrations of His6-porin were attainable in LDAO,

DPC, and SDS, but high b-strand content was exhibited by the

protein in LDAO only.

Alternative detergent systems for solubilizing other mem-

brane proteins involve mixtures of anionic and nondenatur-

ing, nonionic detergents. For example, the E. coli integral

OmpA has been folded in a mixture of SDS and OG (27–29).

SDS and DDM systems have been used for solubilization of

other membrane proteins including DsbB (30) and the P5

outer membrane protein of Haemophilus influenzae (31). The

focus of many of these studies was to characterize unfolding

kinetics on the addition of SDS to protein folded in a nonionic

detergent (28,32). However, in the case of OmpA, folding

into a b-rich conformation could be achieved by adding OG

to SDS-solubilized protein at a particular molar ratio of the

two detergents (29).

In this study, mixed detergent systems were used to

solubilize recombinant His6-tagged N. crassa mitochondrial

porin. SDS and DPC were chosen for primary solubilization

of the protein based on the high solubility of His6-porin in

these detergents (26). Several nonionic and zwitterionic

detergents were added as the secondary surfactants, and

varying molar ratios of the two detergents were examined.

The folded states of the proteins in the resulting detergent

mixtures were examined by CD spectropolarimetry in the far-

UV and near-UV regions, by fluorescence spectrophotome-

try, and by UV absorption spectroscopy. To interpret the

results obtained for His6-porin in these binary systems,

aromatic amino acid derivatives of varying hydrophobicity

were also examined to probe the micellar environments

experienced by the protein. His6-porin also was reconstituted

into liposomes and analyzed by fluorescence and CD

spectropolarimetry to provide reference data for the folded

porin. Based on these criteria, SDS/DDM-solubilized His6-

porin exhibits a conformation that is virtually indistinguish-

able from that of the membrane-embedded protein.

MATERIALS AND METHODS

Detergents and amino acid derivatives

DPC, DDM, and OG were purchased from Anatrace (Maumee, OH), and

LDAO from Calbiochem (San Diego, CA). Sigma (St. Louis, MO) was the

supplier of N-Ac-W-NH2, N-Ac-Y-NH2, SDS, urea, and N-Ac-W-OEth).

BOC-Y-OMe, egg yolk L-a-phosphatidyl choline, and egg lecithin

L-a-phosphatidic acid were purchased from Fluka (Oakville, Ontario,Canada).

Expression and purification of His6-porin

The construct encoding the N-terminal His6-tagged version of N. crassa has

been described previously (33). Recombinant mitochondrial porins that bear

N-terminal hexahistidinyl-tags (His6-porin) are functionally indistinguish-

able from porins isolated from mitochondrial membranes (33,13).

Protein expression was carried out in QIAexpress E. coli M15 (pREP4)

(Qiagen, Toronto, Ontario, Canada). His6-porin was purified in 8 M urea, as

described (26).

Detergent solubilization of His6-porin

After dialysis against 8 M urea, His6-porin was acetone-precipitated, and the

dried pellets were resuspended either in SDS (3.5 or 21 mM) or DPC (20 or

100 mM), buffered in 50 mM sodium phosphate, pH 7. After mixing by

repeated inversion overnight at room temperature (22�–25�C), samples were

clarified by centrifugation at 10,000 3 g for 15 min. For mixed detergent

systems, an appropriate amount of the second detergent, in powder form,

was added, and the samples mixed by inversion overnight. Insoluble protein

aggregate was removed by centrifugation before analysis.

FIGURE 1 Model for the transmem-

brane arrangement of Neurospora mito-

chondrial porin (20,58). The N-terminus

is at the left and proposed to reside in the

intermembrane space. Potential b-strands

are indicated by rectangles, and loops

and turns by arrows between them. The

estimated positions of Tyr (Y) and Trp

(W) residues are indicated. The putative

limits of the b-strands are indicated; it

should be noted that neither the number

of strands nor the precise position of any

one strand has been confirmed by high-

resolution methods.
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Liposome stock preparation

SUV were prepared using modifications of procedures described earlier (11).

Briefly, a 10:1 (w/w) mixture of egg yolk L-a-phosphatidyl choline and egg

lecithin L-a-phosphatidic acid was prepared. Phospholipid was dissolved in

chloroform and evaporated in a fume hood at room temperature (22–25�C)

overnight. Dried lipids were either stored at �20�C in a desiccator or

resuspended in phosphate buffer to a concentration of 40 mg phospholipid/

ml for immediate use. The resulting milky suspension was diluted 1:1 with

phosphate buffer and sonicated on ice until the microtip (Fisher Scientific

(Ottawa, Ontario, Canada) Sonifier Model 300) could be clearly observed to

yield the stock SUV suspension.

Proteoliposome preparation and swelling assays

Liposomes were prepared based on a modified procedure for Type B (CD

grade) liposomes as described (11). In short, the stock SUV suspension

was diluted 1:1 with His6-porin (0.5 to 1 mM) in 3.5 mM SDS or in

SDS3.5DDM30. The resulting suspension was subjected to three cycles of

freezing in liquid nitrogen for 1 min and thawing for 20 min at room

temperature. After the last thawing in the FT cycle, samples were diluted

with 1.5 volumes of phosphate buffer, resulting in a cloudy suspension.

Negative controls for liposome swelling experiments were prepared with

detergents only and lacked His6-porin.

Assays were also performed to assess the ability of urea- and detergent-

solubilized His6-porin to insert into liposomes (data not shown) as described

for E. coli OmpA (34). Liposomes for porin insertion experiments were

prepared as described above for liposome swelling except that the stock 20

mg/ml SUV suspension was diluted 1:1 with phosphate buffer. After the

three FT cycles, 0.25 volumes of detergent-resuspended porin and 1.25

volumes of phosphate buffer were added to create a final 1:1.5 dilution. To

encourage insertion, samples were incubated overnight at room temperature,

30�C, and 42�C.

Liposome swelling (11,35) was measured on an Ultrospec 3100 pro

spectrophotometer at an absorbance of 400 nm. Liposome samples prepared

as described above were diluted 1/100 into sodium phosphate buffer to a

final volume of 0.5 ml and measured in a 1-cm quartz cuvette. After 300–400 s,

liposomes were shocked with 40 ml of the isosmotic phosphate buffer, pH 7,

followed by an addition of 40 ml of 1 M sucrose (11) or 40 ml of 0.5 g/ml

(PEG, Sigma, average molecular weights of 1000 or 3350 (35)), after 600–

700 s. Liposome reswelling, as indicated by a gradual decrease in A400 nm,

was followed for up to 1800 s after sucrose addition.

Protease digestions of mitochondria and
His6-porin in liposomes or mixed detergents

Mitochondria were isolated from N. crassa 97-20 mus his� (36) according to

the method described by (37). Mitochondrial pellets were resuspended in

SEM (250 mM sucrose, 1 mM EDTA, 9 mM MOPS, pH 7.5), 3.5 mM SDS

or SDS3.5DDM30 to a final concentration of 1 mg/ml mitochondrial protein

as determined by a Bradford assay (Sigma). Mitochondrial digestions

contained 0.5 mg/ml mitochondrial protein in 1.75 mM SDS and 15 mM

DDM. All samples were digested with a final concentration of 0.15 mg/ml

trypsin for 10 or 30 min at room temperature.

His6-porin in detergent was digested with trypsin under the same condi-

tions as for mitochondria. Final concentrations of samples were as follows:

0.075 mg/ml (2.5 mM) His6-porin, 1.75 mM SDS, and 15 mM DDM. All

protease digestions were stopped by the addition of phenylmethylsulfonly-

fluoride to a final concentration of 20 mM and 4:1 dilution into 53 Laemmli

buffer (38) containing 8 M urea. As a control for protease activity in the

SDS/DDM system, bovine serum albumin (Sigma) was also digested under

these conditions and demonstrated susceptibility to trypsin (data not shown).

All protease-digested samples were loaded onto 0.1% SDS, 3 M urea,

14% polyacrylamide gels; the urea was necessary to aid migration of the

protein in the presence of high concentrations of lipid. After electrophoresis

and Western blotting, the samples were probed with an antibody against

residues 7–20 of N. crassa mitochondrial porin (a-NcPor-N) generated by

R. Lill at Universität München.

Fluorescence spectrophotometry

Fluorescence spectroscopic analyses of detergent-solubilized model com-

pounds and His6-porin were performed using a Shimadzu RF-1501 fluo-

rometer or a JASCO-810 (FMO-427S) spectropolarimeter/fluorometer, as

described (26). The relatively hydrophilic (N-Ac-W-NH2 and N-Ac-Y-NH2)

and hydrophobic (BOC-Y-OMe and N-Ac-W-OEth) model compounds

were used for comparison with fluorescence by His6-porin. Samples of

individual model compounds, and Trp:Tyr mixtures in the same molar ratio

as in His6-porin (2:9), were prepared at molar concentrations close to those

of the individual residues in porin, and all of the protein and model compound

fluorescence spectra were normalized with reference to His6-porin in urea.

UV absorption spectroscopy

UV absorption spectra were obtained on an Ultrospec 4000 spectropho-

tometer, as described (26). Tyrosine exposure (a) was calculated using the

method described by Bay (26) and in Ragone et al. (39). UV absorption

spectra of proteoliposomes could not be reliably measured because of high

light scatter.

CD spectropolarimetry

CD spectra were acquired on a JASCO J-810 spectropolarimeter-fluorom-

eter calibrated with (1)-10-camphorsulfonic acid and purged with N2 at 20

liters/min (40). CD spectra of 1.5 mM or 5 mM His6-porin samples were

measured in the far-UV region (195–250 nm) as described previously (26).

After correction by baseline subtraction, CD spectra were converted to mean

residue ellipticity according to the formula:

½u�
M
¼ Mu=fð10ÞðlÞðcÞðnÞg;

where [u]M is deg cm2 dmol�1 3 10�3, M is the molecular weight of His6-

porin (31,402 g/mol), u is the measured ellipticity in millidegrees, l is the

path length of the cuvette in centimeters (0.1 cm for protein in detergent and

0.05 cm for protein in liposomes), c is the protein concentration in g/liter,

and n is the number of amino acid residues in the protein (295). Twelve

spectra were collected and averaged for each proteoliposome preparation;

three spectra were collected and averaged for the protein in detergent. Far-

UV spectra were deconvoluted with the CDSSTR algorithm (41–43) in the

DichroWeb package (44).

Near-UV (245–330 nm) CD spectra of 33 mM His6-porin in mixed deter-

gents were measured with a JASCO J-810 spectropolarimeter-fluorometer,

as described (26). Molar ellipticity was calculated from the baseline cor-

rected spectra according to the formula: [u] ¼ Mu/f(10)(l)(c)g where [u] is

the molar ellipticity (degrees cm2 dmol�1), and l is 1 or 5 cm. Proteoliposomes

analyzed by near-UV CD were prepared with the FT technique, using 5–10

mM His6-porin in either 3.5 mM SDS or 3.5 mM SDS and 30 mM DDM. In

some cases, following this analysis, liposome-swelling assays of these

samples were performed after dilution of the samples to 0.66 mg/ml

phospholipid.

Temperature was controlled during thermal denaturation experiments

using the Peltier device in the spectropolarimeter. Experiments were carried

out with a ramp speed of 1�C/min; u (mdeg) was monitored at 208 nm and at

268 nm at 1�C intervals, and full spectra were collected at 5�C intervals. The

cuvettes used for these experiments had pathlengths of 0.1 cm (far-UV) and

1 cm (near-UV). HT voltage (absorbance) measurements were monitored

during collection of CD data.
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RESULTS

Reconstitution of His6-porin into liposomes

Before the analysis of detergent-solubilized porin, it was nec-

essary to characterize the conformation of mitochondrial porin

embedded in a membrane. Such analyses cannot easily be

performed in mitochondria because of the abundance of other

proteins in the outer membrane. Therefore, His6-porin was

functionally reconstituted into liposomes and analyzed by far-

and near-UV CD, and UV absorption spectroscopy, to provide

a basis for comparison with detergent-solubilized protein.

His6-porin solubilized in SDS or 3.5 mM SDS/30 mM DDM

(SDS3.5DDM30, see below) could be integrated into liposomes

using a FT procedure to generate osmotically responsive

proteoliposomes (Fig. 2). As described by Colombini (35), the

FT proteoliposomes were permeable to PEG of average mo-

lecular weight of 1000 but showed very little swelling in re-

sponse to PEG 3350, supporting the conclusion that channels

of wild-type dimensions were formed. The FT procedure was

necessary for incorporation under the conditions used in this

study. For both SDS-His6-porin (data not shown) and

SDS3.5DDM30-His6-porin (Fig. 2 B) in FT liposomes, channel

activity in response to sucrose was resistant to heating to 65�C,

and a partial swelling response was seen after heating to 100�C.

Protease resistance is often used as a criterion for refolding

of porins, such as human mitochondrial porin (hVDAC1)

(45), and bacterial OmpA (27,46), after reconstitution into

artificial membranes. It is also used to confirm that Neuros-
pora mitochondrial porin is assembled in the outer membrane

after in vitro import into isolated organelles (47). Therefore,

the protease sensitivities of SDS- and SDS3.5DDM30-

solubilized His6-porin before and after reconstitution into

liposomes were examined (Fig. 3). The sensitivity of porin

obtained by dissolving isolated mitochondria in detergents

was also tested. Immunoblotting was used to detect the low

amounts of His6-porin (,2 mM) in liposomes and native

porin in mitochondria. Trypsin was also detected on the

immunoblots as 24- or 25-kDa bands as a result of sequence

similarity between trypsin and the porin peptide (residues

7–20) used to generate antibodies used for this study.

Native porin is very susceptible to protease digestion

after solubilization of mitochondria in 3.5 mM SDS (Fig. 3 A).

In contrast, when the organelles are solubilized in SDS3.5DDM30,

porin is highly resistant to digestion with trypsin. A minor

50-kDa species can also be observed after digestion of mi-

tochondria in SDS3.5DDM30, suggestive of a porin dimer.

His6-porin migrates with an apparent molecular mass of

32 kDa (Fig. 3 B). Digestion of SDS3.5DDM30-His6-porin

with trypsin resulted in a reduction but not complete elimi-

nation of the porin; species of ;20-kDa remained. His6-porin

in 3.5 mM SDS was digested, leaving some residual material

of ;20 kDa. Undigested FT SDS and SDS/DDM-His6-porin

liposomes contained additional faint species of ;60 kDa and

.100 kDa (Fig. 3 C), suggesting that dimers and multimers

of the protein are present in the liposomes. After digestion

with trypsin, the full-length His6-porin band remained, but at

less than half the intensity of the intact band in the undigested

sample, and the higher molecular weight species was no longer

detectable.

The combination of liposome swelling and protease

resistance indicates that His6-porin is embedded in proteo-

liposomes in a functional form. Far-UV CD analysis revealed

a broad spectrum (Fig. 4 A); deconvolution confirmed high

b-strand content (31%, Table 1), as expected for folded mito-

chondrial porin (for example, 31–38% for hVDAC1 in lipid

bilayers, 45). The a-helical content of this form was very low

(7%), similar to that seen for hVDAC1 (8–12%) (45). In-

creased temperature did not alter the overall shape of the far-

UV spectra (Fig. 4 A).

The membrane-embedded state was further examined to

provide reference data for comparisons with detergent-

solubilized porin. The wavelength of maximum Trp fluo-

rescence (lmaxTrp) is influenced by exposure of Trp residues

FIGURE 2 Liposome swelling assays. Proteoliposomes were prepared

using SDS3.5- and SDS3.5/DDM30-solubilized His6-porin and the FT

method. (A) Swelling in response to solutes of varying molecular weights.

Swelling was measured by following absorbance at 400 nm after the addi-

tion of sucrose, PEG 1000, or PEG 3350, as indicated next to the trace.

(B) Thermal stability of swelling in response to sucrose. Swelling was mea-

sured either directly (20�C) or after heating to 65�C or 100�C as indicated

above each plot. In both panels, relative A400 values for each sample were

plotted on the same scale, which permitted individual plots to be distinguish-

able from each other.
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to solvent. lmaxTrp ranges from 347 to 351 nm for residues

completely exposed to the solvent, to 308 nm for those in a

highly hydrophobic environment without any possibility for

hydrogen bonding (48,49). In liposomes, lmaxTrp of His6-

porin was 329 nm, similar to that observed for membrane-

embedded hVDAC1 (45) and other b-barrel proteins (OEP,

16 (50); OmpA (51); FomA (52)).

Finally, near-UV spectropolarimetry was used to examine

the tertiary interactions in the liposome-embedded protein.

The near-UV spectrum of His6-porin in proteoliposomes

displayed positive ellipticity (Fig. 5 A), as does that of folded

PorB class 2 (53) and class 3 (54) porins of Neisseria. To-

gether, these spectroscopic features, combined with protease

resistance, form the criteria for correctly folded His6-porin in

detergent systems.

Far-UV CD spectropolarimetry of His6-porin in
mixed detergent systems

Addition of a nonionic detergent to SDS-solubilized bac-

terial OmpA protein was shown to convert the a-helix-rich

structure to one predominantly b-strand (29). Several deter-

gent systems were examined to determine whether a similar

approach would yield well-folded mitochondrial porin. SDS

and DPC were chosen initially to solubilize His6-porin, based

on the high solubility of the protein in these detergents (26).

Under these conditions, b-strand content is low and ranges

from 18% to 25% (Table 1). The nonionic detergents, DDM

and OG, and the zwitterionic LDAO were used as the second

detergents in the system. Phase separation occurred at several

LDAO/SDS ratios, limiting the mixtures that could be tested.

For simplicity, mixtures will be described for each detergent,

with its concentration in mM, as a subscript. For example,

SDS3.5DDM7.5 is a mixture of 3.5 mM SDS and 7.5 mM DDM.

To determine the effects of secondary detergent addition

on the protein solubilized in DPC or SDS, far-UV CD was

used (Fig. 4 B, Table 1). In 3.5 mM SDS, and in SDS3.5

DDM7.5, the far-UV spectrum of His6-porin is typical of an

a-helix-rich protein with a minimum at 208 nm and a shoul-

der at 220 nm. In SDS3.5DDM15, the spectrum of the protein

exhibits a broad minimum in the 210- to 220-nm range, more

typical of a b-strand-rich protein; deconvolution reveals a

FIGURE 3 Protease susceptibility of porin in mitochon-

dria, liposomes, and detergent. (A) Western blot analysis of

N. crassa mitochondria. Mitochondria (2.5 mg protein/

well) were solubilized in SDS3.5 (S, lanes 1 and 2) or

SDS3.5DDM30 (S3.5D30, lanes 3 and 4) and analyzed after a

30-min digestion in the absence (�) or presence (1) of

0.75 mg trypsin as indicated. Minor proteolytic fragments

(;20 kDa) resulted from activity of mitochondrially

associated proteases during isolation and/or the 30-min

incubation at room temperature. Similar analysis was

performed on (B) 7.5 mg of His6-porin solubilized in 3.5

mM SDS (lanes 1 and 2) or SDS3.5DDM30 (lanes 3 and 4)

and (C) FT proteoliposomes formed in the presence of 0.9

mM SDS/7 mM DDM and containing 2.5 mg His6-porin.

Samples were undigested (lanes 1 and 3) or digested with 0.75 mg trypsin (lanes 2 and 4). Panel B shows an image of the Coomassie blue-stained gel. The

molecular weights of markers in the molecular weight ladder are indicated to the side of each panel. Solid circles indicated multimers of His6-porin, and cross-

reacting trypsin is indicated by asterisks. The trypsin band is not visible in lane 2 of panel A because of the short exposure used; it is visible in longer exposures

(data not shown).

FIGURE 4 Far-UV CD analysis of 5 mM His6-porin in (A) liposomes, (B) SDS/DDM systems, and (C) SDS/OG systems. Spectra were obtained as indicated

in Materials and Methods. (A) Full-length spectrum of His6-porin in liposomes (thick line). Thermal denaturation of porin in liposomes was followed, and far-

UV spectra were obtained at 20�C (solid line), 60�C (short dashed line), and 90�C (long dashed line) and after cooling back to 20�C (dotted line). The cell used

for thermal denaturation experiments did not allow collection of CD data below 200 nm. In panels B and C, detergent concentrations are indicated in legend;

‘‘1DDM’’ indicates the concentration (mM) of DDM that was added to 3.5 mM SDS.
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loss of a-helix concomitant with an increase in b-strand to

28%. In SDS3.5DDM30 and SDS3.5DDM45, b-strand content

reached 35% and 38%, respectively (Table 1). lmin was 215–

216 nm in SDS3.5DDM30, and SDS3.5DDM45. In liposomes,

lmin was 219–221 nm (Fig. 4). Similarly, lmin of the b-barrel

protein Tom40 (55) was red-shifted in liposomes compared

to in detergent. The a-helical content of His6-porin was higher

in SDS/DDM (13–18%) than in liposomes (7%); a similar ob-

servation was made by Shanmugavadivu et al. (45) for human

VDAC (14–18% in LDAO versus 8–12% in liposomes).

Addition of OG (Fig. 4 C) or LDAO (data not shown) to

SDS-solubilized porin led to similar increases in b-strand

structure (Table 1). Similarly, b-strand content increased on

addition of DDM, OG, and LDAO to DPC-solubilized porin.

However, these mixtures were found to be unsuitable for

further structural studies because of the low porin solubility

(;1.5 mM, Table 1) and phase separation that occurred in

most DPC/LDAO mixtures.

SDS-solubilized His6-porin is very stable during heating,

and the limited unfolding that does occur is completely

TABLE 1 Analysis of His6-porin solubilized in mixed detergent systems and proteoliposomes

Porin in

Detergent

added

Temperature

(�C)

a-Helix

(%)

b-Strand

(%)

Turn and

unordered

Maximum concentration of

soluble porin (mM)

3.5 mM SDS 20 32 18 50 66

7.5 mM DDM 20 33 17 50 5*

15 mM DDM 20 23 28 49 5*

30 mM DDM 20 18 35 47 5*

30 mM DDM 35 14 36 50 5*

30 mM DDM 45 14 33 52 5*

30 mM DDM 55 15 28 56 ndy

30 mM DDM 60 12 28 60 nd

30 mM DDM 80 14 31 55 nd

30 mM DDM 95 ndcz ndc ndc nd

30 mM DDM 95–20 13 29 57 nd

45 mM DDM 20 13 38 49 5*

12.5 mM OG 20 21 29 50 1.5

25 mM OG 20 24 28 48 1.5

50 mM OG 20 17 35 47 1.5

100 mM OG 20 17 35 48 1.5

40 mM LDAO 20 13 34 53 1.5

20 mM DPC 20 22 25 53 10

7.5 mM DDM 20 14 33 54 1.5

15 mM DDM 20 9 36 54 1.5

30 mM DDM 20 9 38 53 1.5

6.25 mM OG 20 13 29 58 1.5

50 mM OG 20 7 35 57 1.5

100 mM OG 20 6 38 56 1.5

50 mM LDAO 20 16 33 51 5*

Liposomes 20 4 31 64 10

Far-UV spectropolarimetry was performed on either 1.5 or 5 mM porin samples as indicated; the resulting spectra were deconvoluted with CDSSTR.

*Higher concentrations not tested.
yNot determined because of protein precipitation in the sample.
zNot deconvoluted because of poor spectrum at ,200 nm.

FIGURE 5 Near-UV analysis of 33 mM His6-

porin in mixed detergent systems. Spectra were

obtained as described in Materials and Methods:

(A) 8 M urea, 300 mM LDAO, and proteolipo-

somes; (B) SDS/DDM mixtures, as indicated.

Detergent mixtures are identified as described

for Fig. 4.
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reversible (Fig. 6 A, Table 1). During heating of

SDS3.5DDM30-solubilized porin to 45�C, there are only

minor alterations to the secondary structural content (data not

shown). At 55�C, an increase in the HT voltage, as monitored

by the CD spectropolarimeter, indicated precipitation in the

sample; absorbance measurements at the end of the experiment

demonstrated that ;2/3 of the protein remained in solution. At

55�C and above, a conformational shift occurred, and the

fraction of b-strand was reduced to ;28%, and random

structure increased to 60% (Fig. 6 B). In contrast, thermal

denaturation is not reversible in SDS3.5DDM30 (Fig. 6 B), and

the secondary structure on cooling to 20�C remains similar to

that measured at 55�C and above (Table 1).

Tryptophan fluorescence in
mixed-detergent systems

The fluorescence of both His6-porin and model compounds

(Table 2) was used to determine how the addition of a second

detergent to SDS or DPC micelles affects the interactions

of tyrosine and tryptophan with the micelles. Two variants

of each compound were used, the relatively hydrophobic

O-alkyl-esters, BOC-Y-OMe and N-Ac-W-OEth, and the

more hydrophilic amide variants, N-Ac-Y-NH2 and N-Ac-

W-NH2. In previous studies, it was shown that the former

compounds are better probes of the hydrophobic interiors of

detergent micelles (26), whereas the latter sample both the

surface and interior of the micelle.

In 3.5 mM SDS, both Trp model compounds are predom-

inantly in the aqueous phase, although N-Ac-W-OEth inter-

acts slightly more often with the micelle, as indicated by the

slightly blue-shifted lmaxTrp (351 vs. 347 nm), compared

with that of N-Ac-W-NH2. Unlike that observed in aqueous

buffer, fluorescence is quenched by SDS (26). In the SDS/

DDM micelles, lmaxTrp of both Trp compounds is blue-

shifted to near 340 nm, and the environment is less quenching

(Table 2). In contrast, lmaxTrp was similar for both Trp

compounds in DPC and DPC/DDM and DPC/OG mixtures.

DPC/OG and DPC/DDM micelles quenched N-Ac-W-NH2

fluorescence, but only the former reduced the fluorescence of

N-Ac-W-OEth (Table 2). Thus, blue-shifts in fluorescence are

seen only in the SDS background.

In 3.5 mM SDS, lmaxTrp for His6-porin fluorescence is 336

nm, indicating that the Trp residues reside in a hydrophobic

environment but are partially solvent exposed. The low

intensity of the Trp fluorescence suggests strong quenching

by the SDS headgroups (26). In the presence of increasing

DDM concentrations, lmaxTrp is blue-shifted significantly,

and the fluorescence intensity increases, indicating that,

overall, the Trp residues are moving to a more hydrophobic,

less quenching environment in the mixed micelles. Similar

trends were observed in the SDS/OG system (Table 2), but a

higher mole fraction of OG was required to induce the

conformational shift. Blue-shifted Trp fluorescence was

observed for His6-porin in DPC20DDM30, but not in DPC/

OG mixtures.

Tyrosine exposure in
detergent-solubilized His6-porin

Because of the large blue shifts in His6-porin Trp fluores-

cence in the SDS/DDM mixtures, the overlap between the

Tyr fluorescence and the blue-shifted Trp fluorescence is

extensive, making it difficult to analyze (data not shown).

Therefore, UV absorption spectroscopy was used to deter-

mine the exposure of Tyr to the aqueous environment. The

second derivative plots of UV absorbance spectra (SDUV)

were used to calculate r values; in general, higher r values

indicate exposure to solvent, whereas lower values are indi-

cative of interactions with hydrophobic environments (39).

In SDS, r calculated for the more hydrophobic Tyr com-

pound, BOC-Y-OMe, is lower (1.51) than that of the more

hydrophilic compound N-Ac-Y-NH2 (2.24). In SDS3.5DDM7.5

micelles, r values increase for both model compounds and

then decrease in the presence of higher concentrations of DDM.

For the more hydrophobic compound, r continues to decrease,

suggesting increased interactions with the interior of the mi-

celle. In contrast, in SDS3.5DDM30 micelles, exposure of the

hydrophilic compound returns to near that observed in SDS

alone.

FIGURE 6 Thermal denaturation of His6-porin

as followed by far-UV CD spectropolarimetry.

The experiments were carried out as described in

Materials and Methods for His6-porin in (A) 3.5

mM SDS and (B) SDS3.5DDM30. Temperatures at

which the spectra were obtained are indicated on

the graphs. Note that in A, the spectrum obtained

after cooling from 95�C to 20�C is partially ob-

scured by that at 20�C.
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Tyr exposure is high (r ¼ 1.39, Yexp ¼ 77%) in SDS-

solubilized porin (Table 3). However, on average, only 22%

(;2) of the 9 Tyr residues in the presence of SDS3.5DDM7.5

are exposed to the aqueous environment (r ¼ 0.85, Table 3).

This observation confirms the prediction that increased Tyr

fluorescence intensity in the SDS/DDM system reflects a

higher degree of interaction between the Tyr residues and the

detergent micelles. At higher DDM concentrations (15–30

mM) in SDS, Tyr exposure is near 50%, suggesting a further

change in conformation when the concentration of DDM

exceeds 15 mM.

Near-UV CD spectropolarimetry

To investigate whether alterations in tertiary interactions

accompany the structural changes detected by the methods

described above, near-UV CD spectropolarimetry was used

(Fig. 5 B). Higher concentrations of detergent were required

to solubilize sufficient amounts of protein for these studies,

but the same molar ratios of the pairs of surfactants were

used. The protein was first solubilized in 21 mM SDS,

followed by addition of DDM to final concentrations ranging

from 45 to 270 mM. In SDS alone, near-UV CD spectra of

porin display strong negative ellipticity in the 260- to 290-

nm range, which includes signals from Trp (270–290 nm)

and Tyr (265–270 nm). Higher negative ellipticities in the

Tyr and the Trp regions of the spectra are observed in

SDS21DDM45 (Fig. 5 B). In SDS21DDM90, the overall shape

of the spectrum is similar to that of the protein in urea or

LDAO (Fig. 5 A) (26), but the negative intensity is inter-

mediate between that in urea and that in SDS21DDM45.

Remarkably, the ellipticity is positive in SDS21DDM180 and

SDS21DDM270, as shown for porin in liposomes (Fig. 5 A).

To assess the stability of the tertiary interactions, thermal

denaturation was followed by near-UV CD. In SDS, the

secondary structure composition of porin is not altered

TABLE 3 Second derivative plots of UV absorbance spectra analysis of His6-porin and model compounds

r

Detergents

N-Ac-W-OEth

1 BOC-Y-OMe

N-Ac-W-NH2

1 N-Ac-Y-NH2 His6-porin Yexp (a)

3.5 mM SDS 1.51 2.24 1.39 0.77

7.5 mM DDM 1 3.5 mM SDS 1.82 2.48 0.85 0.22

15 mM DDM 1 3.5 mM SDS 1.53 1.63 1.02 0.42

20 mM DDM 1 3.5 mM SDS 1.59 1.80 1.16 0.55

30 mM DDM 1 3.5 mM SDS 0.85 2.26 1.18 0.58

r and Yexp values were calculated as described in Materials and Methods. For the amide model compounds and His6-porin, each experiment was repeated at

least twice; averages are reported; standard deviations were ,22%. For the hydrophobic compounds, the data reported are from a single experiment.

TABLE 2 Summary of fluorescence data collected at excitation wavelengths of 280 nm (Tyr) and 296 (Trp) nm

His6-porin N-Ac-W-OEth N-Ac-W-NH2

Trp Trp Trp

lmax Intmax* lmax Intmax lmax Intmax

Sample in 3.5 mM SDS with

No addition 336 0.03 347 0.04 351 0.11

7.5 mM DDM 337 0.03 341 0.07 348 0.12

15 mM DDM 330 0.11 337 0.13 345 0.13

30 mM DDM 322 0.08 343 0.08 340 0.17

12.5 mM OG 339 0.05 347 0.09 349 0.15

25 mM OG 333 0.09 347 0.07 350 0.12

50 mM OG 330 0.08 345 0.10 352 0.13

100 mM OG 330 0.07 342 0.07 347 0.16

Sample in 20 mM DPC with

No addition 337 0.06 337 0.22 342 0.25

7.5 mM DDM 335 0.05 337 0.21 343 0.09

30 mM DDM 327 0.17 338 0.22 338 0.09

12.5 mM OG 333 0.09 338 0.11 342 0.11

50 mM OG 334 0.07 339 0.11 342 0.12

100 mM OG 334 0.07 338 0.09 342 0.11

His6-porin and amino model compounds were solubilized in the detergent mixtures indicated. Maximum intensity (Intmax) values were corrected for

differences in concentration.

*Intensity of fluorescence at lmax, corrected for protein concentration.
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significantly by heating to 95�C (Fig. 6). However, heating

alters the near-UV CD spectrum (Fig. 7 A); above 40�C, the

spectra show very little ellipticity. The spectrum obtained

after cooling of the heated sample to 20�C is similar in shape

to that of the unheated sample, but the signal intensity has

increased.

During heating, the near-UV CD spectra of the protein in

SDS21DDM180 show a steady decrease in ellipticity until

40�C is reached (Fig. 7 B). At this point the spectrum

resembles the partially unfolded state of the protein seen in 8

M urea; at higher temperatures, the spectra display negative

ellipticity (Fig. 5 A). Protein precipitation is occurring at this

temperature, as detected by an increase in HT voltage (data

not shown). Absorbance measurements taken after the com-

pletion of the experiment indicate that ;E of the protein

remained in solution. Thermal denaturation is nonreversible,

as the near-UV spectra obtained after cooling of the sample

to 20�C is very similar to that seen at 90�C (Fig. 7 A).

DISCUSSION

The results presented here indicate that an SDS/DDM

mixture maintains high concentrations of His6-porin in a

b-strand-rich state with tertiary contacts that resembles the

membrane-embedded pore. In terms of Tyr fluorescence,

b-strand content, and protease resistance, both the liposome-

embedded and SDS/DDM-solubilized forms resemble mem-

brane-embedded hVDAC1 (45). NMR spectroscopy was

recently used to analyze LDAO-solubilized hVDAC1. In this

case the criteria for folding were perturbations in the NMR

spectrum after incubation of the protein with ATP or

b-NADH (9). These compounds are known to influence pore

conductivity in black lipid bilayers (4,6,56). In contrast, ex-

tensive tertiary contacts were not detected by near-UV CD in

N. crassa mitochondrial porin folded in LDAO after acetone

precipitation (26), suggesting that the procedure for refolding

is critical.

Additions of different molar ratios of DDM and SDS to

porin promoted unique conformations, which are summa-

rized in Fig. 8. In SDS3.5DDM7.5 mixtures, the overall

secondary structure content and lmaxTrp are similar to those

in SDS alone. However, rearrangements involving Tyr

residues occur, as indicated by the large decrease in Tyr

exposure and increased negative ellipticity in the Tyr region

of the near-UV CD spectrum (Fig. 5 B). Because the a-helix

and b-strand content are unchanged from those in SDS

alone, these rearrangements are likely occurring within the

turns or unordered regions of the protein in SDS. Seven of

the nine Tyr are clustered in the C-terminal half of the protein

(Fig. 1), suggesting that this segment is unordered in the

SDS-solubilized protein.

In SDS3.5DDM15, there is a notable increase in b-strand at

the expense of a-helical structure. This rearrangement in-

volves placement of Trp residues in hydrophobic environ-

ments, as evidenced by the blue-shift of lmaxTrp. To date, all

models of mitochondrial porin structure (20,57,58) place

the two Trp residues near or in predicted transmembrane

b-strands (Fig. 1, for example). It is tempting to speculate

that the regions of the protein flanking the two Trp residues

are in a-helices in SDS and are rearranged into b-strands in

SDS3.5DDM15. Near-UV CD analysis suggests that the ter-

tiary interactions involving Trp are less extensive in this con-

formation. Accompanying the change in secondary structure,

Tyr exposure and negative ellipticity in the Tyr region of the

near-UV CD spectrum are further reduced, suggesting signif-

icant changes to the folded state of large segments of the

protein.

Higher DDM concentrations (SDS3.5DDM30) promote a

higher level of b-strand (35%) with a concomitant decrease

in a-helix. A large blue shift in lmaxTrp is observed, indi-

cating that the Trp residues are hydrogen-bonded in a very

hydrophobic environment, as predicted in numerous struc-

tural models for Neurospora mitochondrial porin (1,57–59)

(see Fig. 1). On average, half of the Tyr residues are solvent

exposed at the elevated DDM concentrations that yield high

b-sheet content and suggest formation of a folded b-barrel.

About half of the tyrosines are predicted to be solvent-

exposed in the folded protein in several models (57,58),

whereas in other models all or almost all of the tyrosines

reside outside of predicted transmembrane regions (1,59).

The near-UV CD spectrum of His6-porin in SDS21/

DDM270 displays positive ellipticity in both the Tyr and Trp

regions. Because there are no near-UV data for natively

folded mitochondrial porins, comparisons can only be made

FIGURE 7 Thermal denaturation of His6-

porin in (A) 21 mM SDS and (B) SDS3.5DDM180.

as measured by near-UV CD spectropolarimetry.

Experiments were carried out as described in

Materials and Methods. Temperatures at which

the spectra were taken are indicated in the panels.

Two-Step Folding of Mitochondrial Porin 465

Biophysical Journal 94(2) 457–468



with bacterial proteins. Positive ellipticity has been reported

in the near-UV CD spectra of the folded forms of the PorB

class 2 (53) and class 3 (54) porins of Neisseria and for the

b-barrel segment of OmpA (29). As observed for mitochon-

drial porin, the CD spectrum of OmpA in SDS is negative,

but on folding by the addition of OG, it is dominated by a

positive signal (29). Although the correlation is not absolute

(60), a conversion from positive to negative ellipticity ac-

companies unfolding of water-soluble b-strand proteins, such

as cardiotoxin analog III (CTXIII, (61,62)), CD40L (63), and

TNF-a (64).

Recombinant His6-porin was incorporated into liposomes,

resulting in osmotically responsive proteoliposomes that were

useful for comparison to detergent-solubilized mitochondrial

porins. His6-porin in both SDS and SDS/DDM could be

incorporated into proteoliposomes by a FT procedure, but

neither could insert directly after dilution into preformed

liposomes. In contrast, OmpA (34) and human VDAC1 (45)

spontaneously insert into membranes when diluted into a

solution of liposomes. The difference may in part be

explained by the fact that the latter system utilized 1,2-

diacyl-sn-glycerol-3-phosphocholine lipids at pH 3 in citrate

buffer, whereas the system described in this work utilized a

mixture of L-a-phosphatidyl choline and L-a-phosphatidic

acid at pH 7 (11).

It is noteworthy that porin oligomers were detected in both

liposomes and SDS/DDM-solubilized mitochondria (Fig. 2)

but not in mitochondria in the absence of detergent.

Although the urea included in the SDS-PAGE gels presented

in this study might disrupt such interactions, oligomers were

also undetectable in mitochondria analyzed with gels lacking

denaturant (data not shown). Furthermore, they were not

detected in two-dimensional arrays of mitochondrial outer

membranes from N. crassa (15–17). In contrast, chemical

cross-linking allowed detection of the oligomers of rat liver

(65) and hVDAC1 (9). Although mitochondrial porin may be

able to oligomerize under certain conditions, interactions

with other proteins (9,66) and porin-associated sterols (67)

may prevent the formation of oligomers in the mitochondrial

outer membrane.

Taken together, these studies reveal that a mixture of SDS

and DDM promotes a His6-porin conformation very similar

to that adopted by the protein functionally reconstituted into

artificial membranes. The identification of a mixed detergent

system for well-folded mitochondrial porin is an important

first step toward high-resolution structural studies using

approaches such as NMR spectroscopy, which has recently

been used to analyze hVDAC1 (9) and OmpA and OmpX

solubilized in detergent (68–71).
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