
Ecologvy, 67(4), 1986, pp. 919-928 
c 1986 by the Ecological Society of America 

APPLYING METRIC AND NONMETRIC MULTIDIMENSIONAL 
SCALING TO ECOLOGICAL STUDIES: 

SOME NEW RESULTS' 

N. C. KENKEL2 AND L. ORL6CI 
Department of Plant Sciences, University of Western Ontario, 

London, Ontario N6A 5B7, Canada 

Abstract. Metric (eigenanalysis) and nonmetric multidimensional scaling strategies for ecological 
ordination were compared. The results, based on simulated coenoplane data showing varying degrees 
of species turnover on two independent environmental axes, suggested some strong differences between 
metric and nonmetric scaling methods in their ability to recover underlying nonlinear data structures. 
Prior data standardization had important effects on the results of both metric and nonmetric scaling, 
though the effect varied with the ordination method used. Nonmetric multidimensional scaling based 
on Euclidean distance following stand norm standardization proved to be the best strategy for re- 
covering simulated coenoplane data. Of the metric strategies compared, correspondence analysis and 
the detrended form were the most successful. While detrending improved ordination configurations 
in some cases, in others it led to a distortion of results. It is suggested that none of the currently 
available ordination strategies is appropriate under all circumstances, and that future research in 
ordination methodology should emphasize a statistical rather than empirical approach. 
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INTRODUCTION 

Methods of multidimensional scaling or ordination 
seek a parsimonious representation of individuals in a 
space of low dimensionality. Parsimony in this context 
implies that the distances between individuals in or- 
dination space optimally represent their dissimilarities 
in variable space, in some defined sense. Techniques 
differ in their definition of optimality, but a minimal 
requirement of most methods is a rank order agree- 
ment between distances and dissimilarities (Shepard 
and Carroll 1966, Orl6ci 1978). Factor revelation is 
achieved when the ordination is interpretable in terms 
of environmental gradients which impose structure on 
the data. Ideally these gradients should bear a linear 
relationship to the ordination axes (Hill and Gauch 
1980). This is not always necessary for successful in- 
terpretation (Phillips 1978, Feoli and Feoli-Chiapella 
1980), but a linear relationship is to be preferred since 
otherwise the ordination may be difficult to interpret, 
particularly if the data are noisy (Austin 1976a, Gauch 
1982a) and there is more than one major gradient. 

Dale (1975) distinguished three major objectives of 
ordination: the direct arrangement of stands along one 
or more environmental gradients, factor revelation or 
path (trend) seeking, and dimensionality reduction. 
There is normally some convergence of the latter two 
objectives (Nichols 1977), and according to Austin 
(1976a) the two are necessarily linked. To differentiate 
between objectives is nonetheless useful, as it clarifies 
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the distinction between dimensionality reduction as a 
statistical objective and factor revelation as an ecolog- 
ical objective. Any method which leads to factor rev- 
elation implicitly reduces the dimensionality of a com- 
plex data set (though with differing degrees of 
information loss; Orl6ci 1974), but a method which is 
efficient in dimensionality reduction does not neces- 
sarily meet the ecological objective of factor revelation. 
An efficient redescription is achieved only when both 
objectives are met. 

A large number of ordination algorithms have been 
described (see Orl6ci 1978). Of these, the geometric 
projective methods (reviewed by Noy-Meir and Whit- 
taker 1977) were developed by ecologists. These re- 
quire the selection of gradient endpoints and are there- 
fore suitable only for the arrangement of stands along 
strong environmental gradients where endpoints are 
known a priori. While they have sometimes been rec- 
ommended for factor revelation (Gauch and Whittaker 
1972b), it is doubtful that external endpoints alone can 
offer an adequate summarization of multidimensional 
data (Anderson 1971, Dale 1975). A second group of 
methods involves the eigenanalysis of a sum of squares 
and cross-products (SSCP) matrix. Of this group, prin- 
cipal components analysis (PCA; Hotelling 1933) is 
the most familiar method. A variant known as prin- 
cipal coordinates analysis (P-Co-A; Gower 1966) or 
metric multidimensional scaling (Torgerson 1952) will 
handle other matrices provided that they are related 
to the general SSCP form. Another variant known as 
correspondence analysis (CA; Benzecri 1969, Hill 1974) 
has been shown to have some advantages over PCA 
in summarizing nonlinear trends in artificial data sets 
(Gauch et al. 1977), and is useful in the analysis of 
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concentration tables (Feoli and Orl6ci 1979). A third 
method, derived from the psychometric literature, is 
known as nonmetric multidimensional scaling (NMDS; 
Kruskal 1964 a, b). It was originally developed to allow 
for the analysis of matrices resulting from experiments 
in which subjects are asked to make pairwise judge- 
ments of similarity or preference (Schiffman et al. 1981). 

Comparisons of ordination techniques have gener- 
ally involved the use of artificial data sets showing 
underlying Gaussian species responses to a single en- 
vironmental gradient (coenocline), or two or more in- 
dependent gradients (coenoplanes or coenocubes). The 
model described by Gauch and Whittaker (1 972a, 1976) 
has generally been applied. Austin (1976a, 1980) has 
questioned the realism of this model, pointing out that 
skewed and even bimodal species responses can often 
be expected in field data. Despite these limitations the 
model is at least a crude approximation of the under- 
lying structure of ecological data, and can therefore 
serve as a general, simple model for assessing the ro- 
bustness of ordination methods. But as Dale (1975) 
has pointed out, any conclusions regarding the utility 
of ordination techniques must consider the limitations 
of the model. This implies that the conclusions made 
are relevant only to the model specified. 

Studies which have compared ordination techniques 
have found that PCA shows serious involution of gra- 
dients, attributable to the use of a linear model to at- 
tempt to summarize trends related to nonlinear and 
nonmonotonic species responses (Gauch and Whitta- 
ker 1972b, Kessell and Whittaker 1976, Fasham 1977, 
Gauch et al. 1977). This observation had been antic- 
ipated by Goodall (1954) and van Groenewoud (1965). 
More recent papers have utilized the same general 
strategy in comparing CA, NMDS, and some lesser 
known ordination techniques. Gauch et al. (1977) found 
CA to be superior to PCA, assuming coenocline and 
coenoplane recovery to be of principal importance. 
However, Greig-Smith (1983) has suggested that this 
superiority may be attributable to differences in data 
standardization. In practice the double standardization 
implicit in the CA algorithm may lead to an undue 
emphasis on outliers (Hill and Gauch 1980), though 
this is not apparent from the analysis of artificial sim- 
ulated data which show a smooth, continuous struc- 
ture. 

NMDS has invariably performed well in compara- 
tive tests. Dale (1975) and Noy-Meir and Whittaker 
(1977) recommend its use, notwithstanding the com- 
putational burden. Some workers (Anderson 1971, 
Gower cited in Sibson 1972, Gauch et al. 1981) have 
noted that NMDS may produce results similar to met- 
ric scaling strategies, and have questioned the worth 
of a computationally less efficient algorithm in achiev- 
ing the same end. Fasham (1977) and Orl6ci et al. 
(1984) have stressed the importance of coefficient choice 
in NMDS, while Prentice (1977, 1980) suggested the 
use of Sibson's (1972) local variant version of NMDS 

in conjunction with a coefficient suggested by Kendall 
(1971). He found that such a strategy gave results which 
were superior to metric scaling methods when applied 
to both real and artificial data sets. Gauch et al. (1981) 
concluded that NMDS was often superior to metric 
methods, though this depended on the data set ana- 
lyzed. 

Comparisons of ordination techniques have tended 
to confound three factors: the methodological algo- 
rithm, the resemblance measure employed, and the 
standardization used (Orl6ci 1974, 1978). Objective 
comparisons are made more difficult by the fact that 
many techniques permit only certain coefficients to be 
used, and that certain standardizations are implicit in 
these. 

The importance of standardization on PCA was ex- 
amined in detail by Austin and Noy-Meir (1971; also 
see Noy-Meir et al. 1975). They concluded that stan- 
dardization can have some influence on ordination re- 
sults, and in some situations can considerably lessen 
the degree of distortion attributable to underlying non- 
linear species response. Corresponding studies involv- 
ing NMDS are less complete. Fasham (1977) tested 
NMDS using a number of resemblance coefficients, 
and found that the cos-theta similarity function (An- 
derberg 1973) gave good results when applied to coeno- 
plane data. Most other workers (e.g., Anderson 1971, 
Austin 1976b, Prentice 1977, 1980, Gauch et al. 1981) 
have been satisfied with using a single resemblance 
measure in conjunction with NMDS, comparing the 
results obtained with standard metric ordination meth- 
ods. 

The purpose of this study was to assess the possible 
utility of metric and nonmetric multidimensional scal- 
ing in ecological investigations. Specifically we ad- 
dressed: (a) the behavior of these ordination methods 
when algorithm, resemblance measure, and standard- 
ization are not confounded, (b) the effect of data stan- 
dardization on the results of metric and nonmetric 
scaling, and (c) the utility and possible advantages of 
nonmetric scaling in examining ecological data. 

METRIC MULTIDIMENSIONAL SCALING 

Principal components analysis is a widely-used or- 
dination method first suggested by Goodall (1954) as 
being of potential use in ecology. It offers an efficient 
redescription of a complex data set, and is recom- 
mended for use in dimensionality reduction whenever 
certain basic assumptions are met (Dale 1975). The 
method examines a sum of squares and cross-products 
(SSCP) matrix, and working in this Euclidean space 
performs eigenanalysis to summarize linear trends of 
variation. This implies that nonlinear trends will be 
distorted into higher dimensions. Axes are orthogonal, 
the first depicting the main direction of linear variation, 
the second the main residual variation after removal 
of the trended linear variation accounted for by the 
first, and so forth (Pielou 1984). Thus the method does 
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TABLE 1. Characterization of three different methods of metric multidimensional scaling (eigenanalysis). X is a p x n matrix, 
where p = number of variables and n = number of individuals. Values of b are eigenvector elements (adjusted to unit 
length) associated with an eigenvalue X, and t is the number of axes extracted. 

Definition of sum of squares and Definition of component scores 
Method cross products matrix (S) (Ynk; m = 1, t) 

Principal components S (p x p); Yk = [bimAik]; 
analysis (PCA; 1i= i -l., 
covariance) l= n - I I Wk Xi)(&k X) where Ak = (Xik - Xi)/(n - 1)'' 

k = l,...,n 

Principal coordinates S (n x n); Ymk = m"bkm 
analysis (P-Co-A; Skh = ekh - ek. -Peh + e 
Euclidean) 

Euclidean) ~~~~where ekh= (Xik - Xih)12 

2[] 
i=l,...p 

Correspondence S = U'U (n x n); (bkn - bn) X 
analysis (CA) Uik (X (X)' i. X J[k - b - 1?( ) 

k=l,..(b.,n 

k=l1,. ..n 

not produce a reduction in dimensionality per se, but 
merely rotates axes rigidly to produce a more parsi- 
monious representation. Dimensionality reduction only 
occurs when lesser axes are subsequently discarded 
(Orl6ci 1974). 

PCA as described above will operate only on a prod- 
uct moment SSCP matrix. Torgerson (1952) consid- 
ered a strategy to handle more general cases of the SSCP 
form. He showed that a meaningful eigenanalysis can 
be based on any resemblance measure which shows an 
underlying correspondence to a metric Euclidean dis- 
tance. Gower (1966) investigated this further, suggest- 
ing the name principal coordinates analysis for the steps 
involved. The method has the same basic restrictions 
(linearity and additivity) as PCA, but does permit a 
wider choice of resemblance measures. This is impor- 
tant since some inherent nonlinearity in the data struc- 
ture may be straightened out by an appropriately cho- 
sen coefficient (Dale 1975). 

Correspondence analysis (Benzecri 1969, Ihm and 
van Groenewoud 1984) can be thought of as a variant 
of component analysis in which eigenvalues are ex- 
tracted from a cross-products matrix derived from 
doubly standardized (normalized by taking the square 
root of the row and column totals) data (Gittins 1985). 
Component scores are obtained through a resealing of 
the eigenvector elements (Orl6ci 1978). Hill (1973) de- 
veloped a computationally efficient iterative algorithm 
which avoids an eigenanalysis. In the formulation of 
Williams (1952), the method treats the raw data as a 
contingency table, producing a factorial partitioning of 
the contingency chi-squared statistic, and therefore im- 
plicitly assumes discrete data (Hill 1974, Nishisato 
1980). It is also instructive to note that CA is closely 
related to canonical correlation analysis (Hill 1974, 
Gittins 1985). 

CA has been shown to be efficient with highly het- 
erogeneous nonlinear data (Hill 1974, Gauch et al. 
1977), but has the disadvantage that higher axes, while 
linearly independent (i.e., having zero covariance), show 
higher order correlations. Furthermore, tests with ar- 
tificial coenoplane data have indicated that the ends 
of ordination axes are compressed relative to the mid- 
dle (Gauch 1982b). To overcome these problems, Hill 
and Gauch (1980) suggested a method to "detrend" a 
CA ordination. Detrended correspondence analysis 
(DCA) incorporates two important modifications to 
the CA algorithm: (a) axis orthogonality is replaced by 
the requirement that axes be independent in a nonlin- 
ear sense (though higher order interactions may re- 
main) and (b) axes are resealed by standardizing species 
scores within sets of stands. Being an empirically based 
strategy, DCA manipulates the data to reflect specific 
preconceived notions and expectations, implying a sys- 
tematic modification of the underlying data structure 
(Pielou 1984). However, preliminary tests involving 
both real and artificial data have suggested that de- 
trending may result in a more readily interpretable 
ordination (Gauch 1982b, Pielou 1984), particularly 
when the data contain strong discontinuities. 

There are major differences among the three metric 
methods (Table 1), but it is important to realize that 
they all analyze a cross-products matrix by extracting 
latent roots and vectors. In this respect the methods 
are restricted by an underlying linearity assumption. 
However, suitable data transformations can be defined 
to allow for the summarization of nonlinear trends 
under specific conditions (Hill 1974). 

NONMETRIC MULTIDIMENSIONAL SCALING 

This method, which is based on the rankings of dis- 
tances between points, was first suggested by Shepard 
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TABLE 2. Description of the eight ordination strategies compared. Euclidean distance matrices were used for both P-Co-A 
and NMDS. 

Method Standardization or version 

Principal coordinates analysis unstandardized (PCAE) 
(P-Co-A) simultaneous double standardization (PCAD) 

stand norm standardization (PCAC) 

Nonmetric multidimensional scaling unstandardized (MDSE) 
(NMDS) simultaneous double standardization (MDSD) 

stand norm standardization (MDSC) 

Correspondence analysis unmodified (CA) 
(CA) detrended (DCA) 

(1962), while Kruskal (1964a, b) developed a more 
stringent algorithm with an objective optimization cri- 
terion. The method is of considerable theoretical in- 
terest since it circumvents the linearity assumption of 
metric ordination methods. Lucid accounts of NMDS 
in an ecological context can be found in Fasham (1977) 
and Prentice (1977). 

The basic idea is intuitively appealing. An arrange- 
ment of individuals is sought in a reduced metric space 
such that the distances d in this reduced space are as 
closely monotonic as possible to the dissimilarities a 

calculated in variable space. The monotonicity re- 
quirement originally suggested was the tetrad inequal- 
ity: that dij - dkl whenever aij > bkl. Sibson (1972) 
termed this global order equivalence, and suggested as 
an alternative the triad inequality (or local order equiv- 
alence): that di >- dik whenever aij > 6ik- 

The algorithm, while simple in theory, is difficult 
and computationally demanding to implement in prac- 
tice. A method of successive approximation is in- 
volved, and although the algorithm normally con- 
verges to an optimal solution, local (nonoptimal) 
solutions are also possible, particularly when the data 
are poorly structured (Shepard 1974). In practice, a 
number of different starting configurations may have 
to be tried, and the solution minimizing stress (a mea- 
sure of deviation from monotonicity; Kruskal 1964a) 
chosen. Random starting configurations will likely cir- 
cumvent local minima problems (Fasham 1977), while 
input configurations based on metric scaling often con- 
strain the solution. 

The method requires the user to specify the number 
of dimensions of the final solution. Early workers fol- 
lowed Kruskal's (1964a) guidelines, choosing a di- 
mension which reduced stress to a sufficiently small 
value. However, Shepard (1974) has argued strongly 
for solutions in two, or at most three, dimensions, as 
these are more readily interpretable. It should be noted 
that the k-dimensional solution obtained in NMDS is 
not a projection of a solution in higher dimensions as 
in the metric ordination methods. 

Kendall (1971) has argued that nonmetric scaling is 
superior to metric methods since it is based on fewer 
assumptions. Gower (in Sibson 1972) has questioned 

this, arguing that computational expense is a more im- 
portant consideration, particularly if metric and non- 
metric methods tend to converge to a similar solution. 
Nonmetric scaling has the advantage that, because only 
rank order is used, it can accept as input a large variety 
of resemblance measures. 

METHODS 

Metric and nonmetric scaling ordination methods 
were compared using data derived from a coenoplane 
model. While the limitations of such a model are con- 
siderable, the strategy was felt appropriate in that it 
rendered the study comparable to previous work. Fur- 
thermore, tests involving artificial data of known struc- 
ture provide information about the behavior of ordi- 
nation methods under fixed conditions, permitting an 
objective comparison of results. 

To minimize the confounding of algorithm, resem- 
blance measure, and standardization, only Euclidean 
distance measures were used, in each case utilizing the 
raw data, data standardized by stand normalization 
(the chord distance of Orl6ci 1967), and simultaneous 
double standardization (Austin and Noy-Meir 1971). 
Euclidean distance measures were utilized since they 
have certain desirable axiomatic properties (Anderberg 
1973) not held by so-called semimetric measures such 
as percent difference, which was used by Gauch et al. 
(1981). Furthermore, while semimetric measures can 
be handled by NMDS, their suitability as input to P-Co- 
A is questionable since they violate the assumed un- 
derlying SSCP form (Orl6ci 1974, Dale 1975). Table 
2 summarizes the eight strategies which were contrast- 
ed. The emphasis was on comparing metric and non- 
metric scaling methods in the absence of confounding: 
thus, for example, P-Co-A using Euclidean distance 
after stand normalization was compared to NMDS us- 
ing the same distance measure and standardization. 
CA and DCA, which incorporate a simultaneous dou- 
ble standardization of data, were also performed. They 
are in some ways comparable to P-Co-A ordinations 
of doubly standardized data, but there are some dif- 
ferences, particularly in the definition of component 
scores, which point against a direct comparison (Table 
1). 
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TABLE 3. Description of the 11 coenoplane data sets used in the study, and corresponding Procrustes analysis sum of squares 
values for the ordination strategies outlined in Table 2. 

Species turn- Procrustes analysis sum of squares residual values 
over rate 

(HC)* H't PCAE PCAD PCAC MDSE MDSD MDSC CA DCA 

2.65 x 2.65 2.75 1.47 0.47 0.71 1.14 0.24 0.06 0.18 0.14 
2.65 x 3.05 2.69 1.76 0.64 0.83 1.71 0.26 0.12 0.25 0.23 
2.65 x 3.75 2.59 3.01 1.56 1.29 3.04 1.08 0.64 1.45 0.98 
2.65 x 5.30 2.31 8.55 8.06 8.63 7.97 1.73 1.45 6.64 2.35 
3.05 x 3.05 2.62 1.94 0.45 0.78 2.17 0.34 0.02 0.20 0.12 
3.05 x 3.75 2.55 2.52 0.68 1.16 3.08 0.68 0.21 0.47 0.44 
3.05 x 5.30 2.24 3.89 0.77 1.63 3.08 1.09 0.76 1.38 1.23 
3.75 x 3.75 2.17 2.67 0.83 1.41 2.96 0.97 0.04 0.34 0.19 
3.75 x 5.30 2.13 5.87 0.95 2.13 4.59 1.33 0.26 0.72 1.29 
5.30 x 5.30 1.81 5.64 1.98 1.97 7.59 9.16 0.15 0.95 1.76 
7.50 x 7.50 1.23 9.23 8.99 4.66 10.57 10.74 0.27 1.71 7.52 

* HC = half-change units = the measure of species turnover rate on each of the two independent environmental gradients 
of the coenoplane. 

t Averaged Shannon-Wiener stand alpha diversity. 
t The sum of squares measures goodness of fit: the smaller the sum of squares, the more successful the ordination has been 

in recovering the original data structure (which is known for each of these test data sets). 

P-Co-A analyses were performed using the Wildi and 
Orl6ci (1983) package, while the DECORANA pro- 
gram (Hill 1979) was used to produce the CA and DCA 
ordinations. Scores on the first two ordination axes 
were used in each case to produce scattergrams. Two- 
dimensional global order equivalence NMDS ordina- 
tions were obtained using a version of the Brambilla 
and Salzano (1981) program described by Orl6ci and 
Kenkel (1985). Random starting configurations were 
specified, and three runs were performed on each data 
set. Replicate ordination configurations were very sim- 
ilar, except for two runs in which the iterative proce- 
dure did not converge (as indicated by a very high stress 
value). 

To produce the simulated data, a program was writ- 
ten based on the model presented by Gauch and Whit- 
taker (1976). It is similar to the program CEP-21 pub- 
lished by Gauch (1977), but differs in that (a) the 
distribution of species surface heights is normal, not 
lograndom or lognormal and (b) species modes are 
positioned in a stratified random manner. The program 
was initially tested by producing three data sets similar 
to those used by Gauch et al. (1977, 1981), Fasham 
(1977), and Prentice (1980). Each consisted of 40 stands, 
positioned at regular intervals on a 5 x 8 grid (rep- 
resenting two independent environmental gradients), 
and 30 species each showing a Gaussian distribution. 
Whereas in the original data sets species modal posi- 
tions were located systematically, the data generated 
here utilized a stratified random procedure in locating 
species modes. This involved subdividing the coeno- 
plane into 30 equal-sized strata, and randomly locating 
one modal position within each. Species surface heights 
were normally distributed within the 60-100 range. 
The three data sets showed different levels of species 
turnover on the two gradients, measured in half-change 
(HC) units (Gauch and Whittaker 1972a). The values 
were: 1.5 x 1.5 HC; 1.5 x 4.5 HC; and 4.5 x 4.5 HC. 

The resultant CA ordinations were very similar to those 
presented by Fasham (1977), but with somewhat great- 
er displacement of sample positions. This is likely at- 
tributable to the stratification of species modal posi- 
tions. Interestingly, displacement was also observed by 
Gauch et al. (1981) when they added "noise" to their 
data. DCA improved the results of the 1.5 x 4.5 HC 
coenoplane (Hill and Gauch 1980). The results of 
NMDS using Euclidean distance following stand nor- 
malization (chord distance) were very similar to those 
obtained by Fasham (1977), who used the cos-theta 
similarity function. This was expected since these re- 
semblance measures are inversely monotonically re- 
lated (Orl6ci 1967). 

The methods outlined in Table 2 were applied to 11 
simulated coenoplane data sets. In all cases two in- 
dependent environmental gradients were assumed, and 
36 stands were placed at regular intervals on a 6 x 6 
grid. Each data set consisted of 36 species, with four 
species modal positions located randomly within each 
of nine equal-sized strata. Heights of species surfaces 
were normally distributed within the 60-100 range. 
The 11 data sets differed in the amount of species turn- 
over on the two gradients (Table 3). Stand alpha 
diversity decreases as species turnover increases, 
but species richness of the data sets was constant 
(Table 3). 

The results of the analyses were assessed by visual 
inspection (plotting the ordinations obtained), and 
compared using Procrustes analysis (Schdnemann and 
Carroll 1970). This method uses the 6 x 6 regular 
spacing of stands on the coenoplane as a target config- 
uration, minimizing the sum of squares residuals in a 
rigid rotation of the resultant ordination configuration 
with respect to the target. The sum of squares quantity 
thus measures goodness of fit: the smaller the value, 
the more successful the ordination has been in re- 
covering the original data structure (Fasham 1977). 
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RESULTS 

Salient features are apparent upon visual inspection 
of selected ordination scattergrams with grid lines con- 
necting the 36 points (Fig. 1), and from the Procrustes 
analysis residual values presented in Table 3. We sum- 
marize and discuss the results as a series of observa- 
tions. 

1) Regardless of the method used, the ability to re- 
cover underlying data structure decreased as species 
turnover increased. This is in keeping with the well- 
known fact that as the proportion of zeros in the data 
increases, the data become less coherent (Swan 1970, 
Kendall 1971). Note that complete species turnover 
(when at least some stands have no species in common) 
occurs at -4.5 HC (Gauch 1982b). Beyond this point 
the relationship between stands with no species in com- 
mon is definable only in terms of pathways which link 
stands showing a common floristic component. The 
robustness of these ordination strategies to increasing 
coenoplane beta diversity was quite variable. NMDS 
of stand-normalized data proved to be the most robust 
strategy. CA and DCA were the most robust of the 
metric strategies tested, but results were more depen- 
dent on the data set analyzed than were those of NMDS 
following stand norm standardization. Of the other 
strategies tested, P-Co-A and NMDS analyses of raw 
data were the most susceptible to distortion with in- 
creasing species turnover. 

2) Standardization had important effects on ordi- 
nation results. Both stand normalization and simul- 
taneous double standardization were far superior to 
the analysis of raw data when P-Co-A was applied, 
though substantial distortion was nonetheless present 
at moderate levels of species turnover (Austin and Noy- 
Meir 1971, Gauch et al. 1977). NMDS and P-Co-A 
ordinations were similar when unstandardized data 
were analyzed directly. Conversely, NMDS following 
stand norm standardization (MDSC) produced results 
which were consistently superior to the other strategies, 
and far superior to P-Co-A using the same standard- 
ization. NMDS following simultaneous double stan- 
dardization (MDSD), by contrast, was somewhat sen- 
sitive to outliers and anomalies in the data structure, 
though the ordinations were generally superior to those 
obtained using unstandardized data. 

3) CA and DCA ordinations were similar except 
when considerable differences in species turnover on 
the two gradients occurred, in which case DCA per- 
formed notably better. At low to moderate species turn- 
over, CA and DCA results were similar though slightly 
inferior to NMDS results based on stand-normalized 
data, while at high species turnover NMDS was clearly 
superior. Note also that detrending (DCA) collapsed 
and distorted CA results at high levels of species turn- 
over and low alpha diversity. 

4) The distinction between the results of P-Co-A 
following simultaneous double standardization and CA 

underlies the differences between these methods in the 
definition of the cross-products form and the eigen- 
vector elements (Table 1). Thus the simultaneous dou- 
ble standardization implicit in CA is not the sole reason 
for the superiority of correspondence analysis over 
component analysis in the recovery of simulated coe- 
noplane structure, though it is important: compare the 
P-Co-A ordinations based on raw data with those fol- 
lowing simultaneous double standardization. 

DISCUSSION 

Our results suggest that considerable variation exists 
in the ability of different ordination strategies to re- 
cover simulated coenoplane data. In particular, the evi- 
dence indicates that the success and robustness of both 
metric and nonmetric scaling methods in the sum- 
marization of nonlinear data is strongly dependent upon 
prior standardization. The results also suggest that the 
same standardization can have very different effects, 
depending upon whether metric or nonmetric scaling 
is performed. For example, while the results of metric 
and nonmetric scaling using raw data were very similar, 
standardization by stand norm, while it improved P-Co- 
A results to some extent, resulted in very efficient 
NMDS ordinations. Why should the effect of data stan- 
dardization be dependent upon the ordination method 
used? We suggest two possible reasons. First, the linear 
constraints of eigenanalysis may restrict the ability of 
many metric methods to recover nonlinear data struc- 
ture. NMDS, by contrast, involves a simple mapping 
of resemblance structure into a space of specified di- 
mensionality. Thus, inherent nonlinearity can be pro- 
vided for through the appropriate definition of resem- 
blance structure. Secondly, the manner by which 
dimensionality is reduced may be important. In eigen- 
analysis, dimensionality reduction is achieved only 
when higher axes are discarded. This may lead to sub- 
stantial information loss, and can result in misleading 
interpretations, if an inherently k-dimensional solution 
(real or the result of curvilinear distortion) is presented 
in fewer dimensions. Nonmetric scaling differs in that 
the solution in k dimensions is optimal for that number 
of dimensions, by a well-defined optimality criterion. 

The results also confirm previous studies which have 
indicated that correspondence analysis is more suc- 
cessful in coenoplane recovery than are other metric 
ordination methods. However, the results also suggest 
that detrending a correspondence analysis ordination 
can, at least in some situations, distort underlying data 
structure (see also Wilson 1981). While additional heu- 
ristic investigations are clearly required, our results do 
indicate that conclusions recognizing DCA as the most 
efficient of the available ordination techniques (Hill 
and Gauch 1980, Gauch 1982b) were perhaps pre- 
mature. In utilizing an empirically based strategy such 
as DCA, we suggest that users should also perform a 
CA ordination to objectively assess the effect of de- 
trending on their particular data set. 
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2.65 x 3.75 HC 

3.05 x 3.75 HC 

3P75 x 3.75 HC 

2.65 x 5.30 HC 

KCAE PCAD PCAC MDSE MDSD MDSC CA DCA 

3.05 x 5.30 HC 

3.75 x 5.30 HC 

5.30x 5.30 HC 

7.50 x 7.50 HC 

PCAE PCAD PCAC MDSE MDSD MDSC CA DCA 

FIG. 1. Scattergrams of eight ordination strategies (see Table 2), each applied to 8 of the 11 artificial coenoplane data sets 
described in Table 3. In each case the 36 stands on the 6 x 6 grid are connected by lines. HC = half-change units = the 
measure of species turnover rate on each of the two independent environmental gradients of the coenoplane. 
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The limited number of comparisons made in this 
study indicate the importance of the definition of re- 
semblance structure when applying NMDS. Further 
research should therefore be devoted to the theoretical 
derivation of resemblance measures suitable for the 
recovery of strongly nonlinear data (Austin 1976a). 
Considerations of the relationship between sample 
similarity and "ecological distance" (the physical dis- 
tance between stands along an environmental gradient; 
Gauch 1973) may be a useful first approach. Orl6ci 
(1980) used this approach to show that the calculation 
of Euclidean distance following stand norm standard- 
ization (chord distance; Orloci 1967) leads to an ap- 
propriate definition of resemblance structure when 
nonlinear species responses are anticipated. The pres- 
ent study and an earlier one by Fasham (1977), who 
used a similarity function which is inversely monotonic 
to the chord distance, offer strong empirical evidence 
for the utility of this strategy. Other resemblance mea- 
sures which appear to be useful in accommodating non- 
linear data structure include the percent difference coef- 
ficient (Gauch et al. 1981) and a coefficient suggested 
by Kendall (1971) and used by Prentice (1977, 1980). 
Resemblance coefficients which cannot be accommo- 
dated by metric ordination methods, such as the Cal- 
houn ordinal distance (Bartels et al. 1970) and prob- 
abilistic measures (Goodall 1966), may also prove 
useful. 

In applying NMDS one must select the dimensional- 
ity of the final solution. Austin (1976b) has shown, 
using simulated data, that NMDS may distort structure 
if the dimensionality specified is greater than that un- 
derlying the data. However, it seems unlikely that this 
situation would arise in practice, particularly if two- 
or three-dimensional solutions are selected (Shepard 
1974). Using the stress value to determine dimen- 
sionality, as originally suggested by Kruskal (1 964a), 
is made difficult by the fact that stress is a function of 
the number of individuals, the distribution of resem- 
blance quantities, and the noise level of the data (Gauch 
1 982a). Wish and Carroll (1982) concluded that good- 
ness of fit, interpretability, and parsimony of data rep- 
resentation must all be considered in selecting the ap- 
propriate dimensionality. 

Objectives should always be considered when se- 
lecting an ordination technique. If the principal objec- 
tive is the recognition of distinct noda (Noy-Meir 1973, 
Hill et al. 1975, Peet 1980), an eigenanalysis strategy 
may be preferred, since data clusters and outliers tend 
to attract metric ordination axes (Anderson 1971, 
Gauch et al. 1977). However, this may result in the 
separation of strongly divergent clusters at the expense 
of obscuring trends within the remaining individuals, 
at least on the first few axes (Hill and Gauch 1980). If 
the objective is to summarize overall interspecific re- 
lationships, NMDS may be preferred, since it will op- 
timize and preserve relative distances between all in- 
dividuals irrespective of the presence of distinct noda 

(Anderson 1971). Prentice (1977, 1980) has suggested 
that the model underlying NMDS is more in keeping 
with our current understanding of vegetation than the 
models using metric methods, which make more strin- 
gent assumptions regarding data structure. In ordinat- 
ing species, Matthews (1978) has pointed out that the 
theory underlying NMDS represents an implicit state- 
ment of the objectives of a species plexus. This argu- 
ment can be readily extended to the examination of 
relationships among individuals. 

Greig-Smith (1980, 1983) has indicated that there 
exists no objective method to assess ordination effi- 
ciency. While the ability to recover artificial data struc- 
tures does give some indication of ordination efficiency 
and robustness, the large number of possible models 
of vegetation structure implies that inductive infer- 
ences regarding ordination utility cannot be made from 
such studies (Dale 1975, Austin 1976a, 1980, Wilson 
1981). Further work in ordination methodology should 
therefore be directed toward the development of sta- 
tistically derived nonlinear methods rather than de- 
terministic, empirically derived ones (Orl6ci 1979). In 
the interim, there is much to be said for the analysis 
of a given data set using a number of ordination meth- 
ods (Orl6ci 1978, Green 1979, Greig-Smith 1983). Be- 
cause different methods emphasize different aspects of 
the data, such a strategy may be more revealing of data 
structure than the automatic application of any single 
method. 

While the results of this study should be regarded as 
preliminary, they do offer some insight into the pos- 
sible utility and limitations of a number of ordination 
strategies. Further work is clearly desirable, both in the 
heuristic testing of methods and in the statistical de- 
velopment of a general theory for the ordination of 
nonlinear ecological data. 

ACKNOWLEDGMENTS 

We thank M. B. Dale, R. K. Peet, I. C. Prentice, and an 
anonymous referee for their valuable comments and criti- 
cisms. The research described in this paper is part of a broader 
project supported by Natural Sciences and Engineering Re- 
search Council (NSERC) funds to L. Orl6ci. Financial support 
from NSERC and the University of Manitoba Research Com- 
mittee to N. C. Kenkel is gratefully acknowledged. 

LITERATURE CITED 

Anderberg, M. R. 1973. Cluster analysis for applications. 
Academic Press, New York, New York, USA. 

Anderson, A. J. B. 1971. Ordination methods in ecology. 
Journal of Ecology 59:713-726. 

Austin, M. P. 1 976a. On non-linear species response models 
in ordination. Vegetatio 33:33-41. 

1 976b. Performance of four ordination techniques 
assuming three different non-linear species response models. 
Vegetatio 33:43-49. 

1980. Searching for a model for use in vegetation 
analysis. Vegetatio 42:1 1-2 1. 

Austin, M. P., and I. Noy-Meir. 1971. The problem of non- 
linearity in ordination: experiments with two-gradient 
models. Journal of Ecology 59:763-774. 

Bartels, P. H., G. F. Bahr, D. W. Calhoun, and G. L. Weid. 



August 1986 APPLYING MULTIDIMENSIONAL SCALING 927 

1970. Cell recognition by neighbourhood grouping tech- 
niques in Ticas. Acta Cytologica 14:313-324. 

Benzecri, J. P. 1969. Statistical analysis as a tool to make 
patterns emerge from data. Pages 35-74 in S. Watanabe, 
editor. Methodologies of pattern recognition. Academic 
Press, New York, New York, USA. 

Brambilla, C., and G. Salzano. 1981. A non-metric multi- 
dimensional scaling method for non-linear dimension re- 
duction. Theory and computer program. Series III, Number 
121, Istituto per le Applicazioni del Calcolo "Mauro Pi- 
cone," Consiglio Nazionale delle Richerche, Rome, Italy. 

Dale, M. B. 1975. On objectives of methods of ordination. 
Vegetatio 30:15-32. 

Fasham, M. J. R. 1977. A comparison of nonmetric mul- 
tidimensional scaling, principal components and reciprocal 
averaging for the ordination of simulated coenoclines, and 
coenoplanes. Ecology 58:551-561. 

Feoli, E., and L. Feoli-Chiapella. 1980. Evaluation of or- 
dination methods through simulated coenoclines: some 
comments. Vegetatio 42:35-41. 

Feoli, E., and L. Orl6ci. 1979. Analysis of concentration 
and detection of underlying factors in structured tables. 
Vegetatio 40:49-54. 

Gauch, H. G. 1973. The relationship between sample sim- 
ilarity and ecological distance. Ecology 54:618-622. 

1977. ORDIFLEX: a flexible computer program for 
four ordination techniques: weighted averages, polar or- 
dination, principal components analysis, and reciprocal av- 
eraging. Release B. Ecology and Systematics, Cornell Uni- 
versity, Ithaca, New York, USA. 

1982a. Noise reduction by eigenvector ordinations. 
Ecology 63:1643-1649. 

1982b. Multivariate analysis in community ecology. 
Cambridge University Press, Cambridge, England. 

Gauch, H. G., and R. H. Whittaker. 1972a. Coenocline 
simulation. Ecology 53:446-451. 

Gauch, H. G., and R. H. Whittaker. 1972b. Comparison of 
ordination techniques. Ecology 53:868-875. 

Gauch, H. G., and R. H. Whittaker. 1976. Simulation of 
community patterns. Vegetatio 33:11-16. 

Gauch, H. G., R. H. Whittaker, and S. B. Singer. 1981. A 
comparative study of nonmetric ordinations. Journal of 
Ecology 69:135-152. 

Gauch, H. G., R. H. Whittaker, and T. R. Wentworth. 1977. 
A comparative study of reciprocal averaging and other or- 
dination techniques. Journal of Ecology 65:157-174. 

Gittins, R. 1985. Canonical analysis. A review with appli- 
cations in ecology. Volume 12 in Biomathematics. Spring- 
er-Verlag, New York, New York, USA. 

Goodall, D. W. 1954. Objective methods for the classifi- 
cation of vegetation. III. An essay on the use of factor 
analysis. Australian Journal of Botany 2:304-324. 

1966. A new similarity index based on probability. 
Biometrics 22:883-907. 

Gower, J. C. 1966. Some distance properties of latent root 
and vector methods used in multivariate analysis. Bio- 
metrika 53:325-338. 

Green, R. H. 1979. Sampling design and statistical methods 
for environmental biologists. Wiley, New York, New York, 
USA. 

Greig-Smith, P. 1980. The development of numerical clas- 
sification and ordination. Vegetatio 42:1-9. 

. 1983. Quantitative plant ecology. Third edition. 
Volume 9 in Studies in ecology. University of California 
Press, Berkeley, California, USA. 

Hill, M. 0. 1973. Reciprocal averaging: an eigenvector 
method of ordination. Journal of Ecology 61:237-249. 

1974. Correspondence analysis: a neglected multi- 
variate method. Journal of the Royal Statistical Society 
(London), Series C 23:340-354. 

1979. DECORANA: a FORTRAN program for de- 

trended correspondence analysis and reciprocal averaging. 
Ecology and Systematics, Cornell University, Ithaca, New 
York, USA. 

Hill, M. O., R. G. H. Bunce, and M. W. Shaw. 1975. In- 
dicator species analysis, a divisive polythetic method of 
classification, and its application to a survey of native pine- 
woods in Scotland. Journal of Ecology 63:597-613. 

Hill, M. O., and H. G. Gauch. 1980. Detrended correspon- 
dence analysis, an improved ordination technique. Veg- 
etatio 42:47-58. 

Hotelling, H. 1933. Analysis of a complex of statistical vari- 
ables into principal components. Journal of Educational 
Psychology 24:417-441, 498-520. 

Ihm, P., and H. van Groenewoud. 1984. Correspondence 
analysis and gaussian ordination. Pages 5-60 in J. M. 
Chambers, J. Gordesch, A. Klas, L. Lebart, and P. P. Sint, 
editors. Compstat lectures 3, Lectures in computational 
statistics. Physica-Verlag, Vienna, Austria. 

Kendall, D. G. 1971. Seriation from abundance matrices. 
Pages 215-252 in F. R. Hodson, D. G. Kendall, and P. 
Tautu, editors. Mathematics in the archeological and his- 
torical sciences. Edinburgh University Press, Edinburgh, 
Scotland. 

Kessell, S. R., and R. H. Whittaker. 1976. Comparisons of 
three ordination techniques. Vegetatio 32:21-29. 

Kruskal, J. B. 1964a. Multidimensional scaling by optim- 
izing goodness of fit to a nonmetric hypothesis. Psycho- 
metrika 29:1-27. 

1964b. Nonmetric multidimensional scaling: a nu- 
merical method. Psychometrika 29:115-129. 

Matthews, J. A. 1978. An application of non-metric mul- 
tidimensional scaling to the construction of an improved 
species plexus. Journal of Ecology 66:157-173. 

Nichols, S. 1977. On the interpretation of principal com- 
ponents analysis in ecological contexts. Vegetatio 34:191- 
197. 

Nishisato, S. 1980. Analysis of categorical data: dual scaling 
and its applications. University of Toronto Press, Toronto, 
Ontario, Canada. 

Noy-Meir, I. 1973. Divisive polythetic classification of 
vegetation data by optimized division on ordination com- 
ponents. Journal of Ecology 61 :753-760. 

Noy-Meir, I., D. Walker, and W. T. Williams. 1975. Data 
transformations in ecological ordination. II. On the mean- 
ing of data standardization. Journal of Ecology 63:779-800. 

Noy-Meir, I., and R. H. Whittaker. 1977. Continuous multi- 
variate methods in community analysis: some problems 
and developments. Vegetatio 33:79-98. 

Orl6ci, L. 1967. An agglomerative method for classification 
of plant communities. Journal of Ecology 55:193-205. 

1974. On information flow in ordination. Vegetatio 
29:11-16. 

1978. Multivariate analysis in vegetation research. 
Second edition. Dr. W. Junk Publishers, The Hague, The 
Netherlands. 

1979. Non-linear data structures and their descrip- 
tion. Pages 191-202 in L. Orl6ci, C. R. Rao, and W. M. 
Stiteler, editors. Multivariate methods in ecological work. 
International Co-operative, Fairland, Maryland, USA. 

1980. An algorithm for predictive ordination. Veg- 
etatio 42:23-25. 

Orl6ci, L., and N. C. Kenkel. 1985. Introduction to data 
analysis with applications from population and community 
ecology. International Co-operative, Fairland, Maryland, 
USA. 

Orl6ci, L., N. C. Kenkel, and P. H. Fewster. 1984. Probing 
simulated vegetation data for complex trends by linear and 
nonlinear ordination methods. Abstracta Botanica 8:163- 
172. 

Peet, R. K. 1980. Ordination as a tool for analyzing complex 
data sets. Vegetatio 42:171-174. 



928 N. C. KENKEL AND L. ORLOCI Ecology, Vol. 67, No. 4 

Phillips, D. L. 1978. Polynomial ordination: field and com- 
puter simulation testing of a new method. Vegetatio 37: 
129-140. 

Pielou, E. C. 1984. The interpretation of ecological data. A 
primer on classification and ordination. Wiley, New York, 
New York, USA. 

Prentice, I. C. 1977. Non-metric ordination methods in 
ecology. Journal of Ecology 65:85-94. 

1980. Vegetation analysis and order invariant gra- 
dient models. Vegetatio 42:27-34. 

Schiffman, S. S., M. L. Reynolds, and F. W. Young. 1981. 
Introduction to multidimensional scaling-theory, meth- 
ods, and applications. Academic Press, New York, New 
York, USA. 

Schbnemann, P. H., and R. M. Carroll. 1970. Fitting one 
matrix to another under choice of a central dilation and a 
rigid motion. Psychometrika 35:245-255. 

Shepard, R. N. 1962. The analysis of proximities: multi- 
dimensional scaling with an unknown distance function. 
Psychometrika 27:125-139, 219-246. 

1974. Representation of structure in similarity data: 
problems and prospects. Psychometrika 39:373-421. 

Shepard, R. N., and J. D. Carroll. 1966. Parametric rep- 
resentation of nonlinear data structures. Pages 561-592 in 
P. R. Krishnaiah, editor. Multivariate analysis: proceedings 
of an international symposium. Academic Press, New York, 
New York, USA. 

Sibson, R. 1972. Order invariant methods for data analysis. 
Journal of the Royal Statistical Society (London), Series B 
34:311-349. 

Swan, J. M. A. 1970. An examination of some ordination 
problems by use of simulated vegetational data. Ecology 
51:89-102. 

Torgerson, W. S. 1952. Multidimensional scaling: I. Theory 
and method. Psychometrika 17:401-419. 

van Groenewoud, H. 1965. Ordination and classification of 
Swiss and Canadian coniferous forest by various biometric 
and other methods. Berichte des Geobotanischen Institutes 
der Eidgen6ssischen Technischen Hochschule, Stiftung Ru- 
bel, Zurich 36:28-102. 

Wildi, O., and L. Orl6ci. 1983. Management and multi- 
variate analysis of vegetation data. Swiss Federal Forestry 
Institute of Forestry Research, Birmensdorf, Switzerland. 

Williams, E. J. 1952. Uses of scores for the analysis of 
association in contingency tables. Biometrika 39:274-289. 

Wilson, M. V. 1981. A statistical test of the accuracy and 
consistency of ordinations. Ecology 62:8-12. 

Wish, M., and J. D. Carroll. 1982. Multidimensional scaling 
and its applications. Pages 317-345 in P. R. Krishnaiah 
and L. N. Kanal, editors. Handbook of statistics. Volume 
II. North-Holland Publishing, Amsterdam, The Nether- 
lands. 


	Article Contents
	p. 919
	p. 920
	p. 921
	p. 922
	p. 923
	p. 924
	p. 925
	p. 926
	p. 927
	p. 928

	Issue Table of Contents
	Ecology, Vol. 67, No. 4 (Aug., 1986), pp. 827-1114
	Front Matter
	Adult Interference with Postlarvae in Soft Sediments: The Pontoporeia-Macoma Example [pp. 827-836]
	Sex Change by a Polychaete: Effects of Social and Reproductive Costs [pp. 837-845]
	The Distribution of a Bryozoan on Seagrass Blades: Settlement, Growth, and Mortality [pp. 846-857]
	Competition, Comparative Life Histories, and Maintenance of Shell Dimorphism in a Barnacle [pp. 858-864]
	Sulfur and Carbon Isotopes as Tracers of Salt-Marsh Organic Matter Flow [pp. 865-874]
	Effects of Vascular and Nonvascular Macrophytes on Sediment Redox and Solute Dynamics [pp. 875-882]
	A Lunar Cycle in Zooplankton [pp. 883-897]
	Influence of Habitat Manipulations on Interactions Between Cutthroat Trout and Invertebrate Drift [pp. 898-911]
	Physiological Responses of a Native and an Introduced Desert Fish to Environmental Stressors [pp. 912-918]
	Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results [pp. 919-928]
	Environmental Impact Assessment: "Pseudoreplication" in Time? [pp. 929-940]
	Population Estimation from Mark-Recapture Experiments Using a Sequential Bayes Algorithm [pp. 941-951]
	Testing the Dispersion of Juveniles Relative to Adults: A New Analytic Method [pp. 952-957]
	A Numerical Analysis of Holocene Forest and Prairie Vegetation in Central Minnesota [pp. 958-966]
	Peninsulas in Maine: Woody Plant Diversity, Distance, and Environmental Patterns [pp. 967-974]
	Comparison of Methods of Estimating Leaf-Area Index In Old-Growth Douglas-Fir [pp. 975-979]
	Tree Form, Height Growth, and Susceptibility to Wind Damage in Acer Saccharum [pp. 980-990]
	Floral Sex Ratios, Fruit-Set, and Resource Allocation in Plants [pp. 991-1001]
	Stable-Carbon Isotope Variability in Tree Foliage and Wood [pp. 1002-1010]
	Soil Properties of Steep Appalachian Old Fields [pp. 1011-1023]
	Sexual Differences in the Thermoregulation of Thymelicus Lineola Adults (Lepidoptera: Hesperiidae) [pp. 1024-1035]
	Food Limitation of Reproduction and Survival For Populations of Brachinus (Coleoptera: Carabidae) [pp. 1036-1045]
	Ants Rearrange the Vertebrate-Generated Seed Shadow of a Neotropical Fig Tree [pp. 1046-1051]
	A Test of Optimal Caste Ratio Theory Using the Ant Camponotus (Colobopsis) Impressus [pp. 1052-1062]
	Interspecific Competition Between Folivorous Insects on Erigeron Glaucus [pp. 1063-1072]
	Tests for Similarity and Convergence of Finch Communities [pp. 1073-1085]
	Metabolic Effects of Infrequent Drinking and Low-Quality Feed on Bedouin Goats [pp. 1086-1090]
	Notes and Comments
	Recording Devices on Free-Ranging Marine Animals: Does Measurement Affect Foraging Performance? [pp. 1091-1093]
	Nitrogen Mineralization By Native and Introduced Earthworms: Effects on Big Bluestem Growth [pp. 1094-1097]
	Silicon Concentration of Grasses Growing in Sites With Different Grazing Histories [pp. 1098-1101]
	Pollen in Laminated Sediments Provides Evidence For a Mid-Holocene Forest Pathogen Outbreak [pp. 1101-1105]

	Reviews
	Review: Plant Physiology and Seaweed Biology [p. 1106]
	Review: Ecology of Social Life--In Honeybees [pp. 1106-1107]
	Review: The Living Tundra: A Soviet Perspective [pp. 1107-1108]
	Review: Community Ecology: Back on Its Feet Again [pp. 1108-1109]
	Review: Environmental Chemistry of Pollutants [pp. 1109-1110]
	Review: Human Interference in Global Cycles [pp. 1110-1111]
	Review: Population Ecology Revealed--Episodically [p. 1111]
	Review: Ecology of Plant Populations [p. 1112]
	Review: Tropical Rain Forest Dynamics [p. 1113]
	Review: Books and Monographs Received for Review Through April 1986 [p. 1114]

	Back Matter





