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Abstract 

In this paper we emphasize that sampling decisions in population and community ecology are context 
dependent. Thus, the selection of an appropriate sampling procedure should follow directly from con­
siderations of the objectives of an investigation. We recognize eight sampling alternatives, which arise 
as a result of three basic dichotomies: parameter estimation versus pattern detection, univariate versus 
multivariate, and a discrete versus continuous sampling universe. These eight alternative sampling 
procedures are discussed as they relate to decisions regarding the required empirical sample size, the 
selection or arrangement of sampling units, and plot size and shape. Our results indicate that the 
decision-making process in sampling must be viewed as a flexible exercise, dictated not by generalized 
recommendations but by specific objectives: there is no panacea in ecological sampling. We also point 
to a number of unresolved sampling problems in ecology. 

Introduction largely concerned with population parameter esti­
mation, in which the sampling units are discrete, 

It has long been recognized that sampling proce­ recognizable entities. Ecological investigations, 
dures play an important role in population and by contrast, often involve pattern recognition in 
community studies in ecology (Greig-Smith 1983; communities, in which the sampling unit is arbi­
Green 1979). Over the past few decades, however, trarily defined (e.g. a plot). Failure to fully recogn­
the clarification of sampling objectives and the ize such differences has resulted in the superficial 
elucidation of sampling problems in ecology have treatment of many sampling problems in ecology. 
received little attention. Indeed, ecologists have Why is there a need to clarify sampling prin­
generally applied uncritically the well-established ciples and procedures in ecology? We note that in 
principles and procedures of classical sampling recent years considerable progress has taken 
theory (Cochran 1977) to ecological problems. place in the development of methodological pro­
While realizing that many of these fundamental cedures for analyzing multivariate data (Digby & 
principles (e.g. randomization) underly all sam­ Kempton 1987; Ludwig & Reynolds 1988) and 
pling decisions, it is also important to recognize spatial pattern (Upton & Fingleton 1985). During 
that the objectives of an ecological study may the same period, however, many fundamental 
differ from those considered by the classical problems in ecological sampling have been all but 
theory. Specifically, classical sampling theory is ignored (Greig-Smith 1983). Because sampling 
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represents the first step in an ecological study, 
sampling decisions will necessarily affect infor­
mation flow and so impact upon final con­
clusions. It is therefore imperative that sampling 
decisions be made which are consistent with the 
objectives of a study (c.f. Sukhatma et al. 1984, 
p.4). 

Very general sampling procedures are often 
recommended in the ecological literature, which 
may create problems if the objectives of the study 
are at variance with the recommended procedure. 
As a simple example, consider the problem of 
determining an adequate sample size. The solu­
tion is quite straightforward given the objective of 
population parameter estimation (e.g. mean or 
total). First, a small preliminary random sample 
is taken from the population to estimate the 
sampling variance. A simple formula is then used 
to calculate the sample size required to obtain an 
estimate within specified probability limits (e.g. 
Green 1979, pp. 40, 126; Elliott 1983, p. 128). 
This technique, while useful, is largely irrelevant 
when the objective is pattern recognition. Fur­
thermore, it is applicable only to the population 
(single species) case. Sample size determination 
under objectives other than population parameter 
estimation is not discussed in monographs on 
community ecology, however. 

A further problem is that very general state­
ments regarding sampling decisions are made in 
the ecological literature. Should such statements 
be taken out of context, sampling procedures 
which are inconsistent with stated objectives may 
be used. As an example, consider the following 
statement in a discussion of plot shape (Gauch 
1982, p. 57): 

'On the whole, a rectangle that is two to four 
times as long as it is wide is ordinarily most 
accurate ... ' 

Such a general statement invites a number of 
questions: How can a single sampling unit be 
accurate? What is meant by accuracy in this con­
text? What does 'ordinarily' imply? And most 
importantly, under what objectives does this 
statement hold? As we shall see, the determi­
nation of plot shape should be dictated by the 

objectives of a study. Many other examples of this 
problem could be cited from the literature: suffice 
to say that sampling decisions must be dictated by 
the study objectives, rather than by recommended 
'general principles'. 

The objective of this review is to point out that 
ecological studies have very divergent objectives, 
and that these objectives are of fundamental im­
portance in making intelligent and meaningful 
sampling decisions. We begin our discussion by 
introducing some basic terms and concepts, and 
follow this with a discussion of eight sampling 
alternatives. We then examine the problem of de­
termining sample size and the selection (or spatial 
arrangement) of sampling units, and discuss 
problems in the determination of plot size and 
shape. Our hope is to clarify some of the existing 
confusion in the ecological literature regarding 
sampling, and to indicate problem areas which 
are deserving of greater attention. 

Basic terms and concepts 

Field biologists obtain information in one or two 
ways: observational (reconnaissance of an area, in 
which no data are recorded) or analytical (data 
collected, usually for further processing). Data 
collection necessarily involves the application of 
a sampling procedure (measurements, counts, and 
so forth). Unfortunately, some confusion has 
arisen in the ecological literature due to the misuse 
of well-established sampling theory terminology. 
We therefore begin by clarifying some terms and 
concepts before turning to a discussion of 
problems specific to sampling in population and 
community ecology. 

In statistics, a universal set of data is referred 
to as a population, a term which is a potential 
source of confusion. It was originally a biological 
term, and has been used in this context since the 
17th century (for example, by Malthus). In bio­
logical studies, therefore, the biological definition 
of the term should receive priority over its statisti­
cal use. We propose sampling universe to replace 
population as a statistical term. Note that in many 
cases there is a fairly good correspondence 
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between a population and a sampling universe: 
thus, a trait is Mendelian if and only if the sample 
is rightly supposed to be drawn from a Mendelian 
sampling universe. 

A clear distinction should be made between the 
empirical and theoretical aspects of sampling. 
Theoretical sampling refers to the derivation of 
methods of inference which define a sample, such 
that specified statistical conditions (e.g. represen­
tativeness, unbiasedness, and so forth) are met. 
By contrast, empirical sampling refers to the 
actual process of data collection, and is asso­
ciated with terms such as sampling units and 
sampling design. Sampling units are usually con­
sidered to be discrete entities whose assemblage 
corresponds to the sampling universe (e.g. Co­
chran 1977, p. 6), while sampling design refers to 
the selection or arrangement of these units. Em­
pirical and theoretical aspects should be simul­
taneously considered in sampling surveys. Ideally 
a methodological iteration, in which conditions of 
empirical sampling are modified so as to approxi­
mate theoretical requirements, is the most admis­
sible strategy. 

The term sample size is sometimes used by 
ecologists to refer to the size of an individual 
sampling unit (Gauch 1982; Greig-Smith 1983). 
We prefer the statistical definition, and therefore 
refer to the number of sampling units in a sample 
as the empirical sample size. By contrast, the 
theoretical sample size is the number of data items 
in the sample. The empirical and theoretical 
sample sizes will therefore be equal only if a single 
variable is measured for each sampling unit. In 
multivariate studies, the multiple of the number of 
sampling units and variables recorded on each 
will provide the theoretical sample size. 

Sampling theory assumes that a random pro­
cess is involved at some stage of the selection of 
the sampling units (probabilistic sampling, Co­
chran 1977, p. 9). By contrast, the ill-defined non­
probabilistic sampling involves selection from a re­
stricted, accessible part of the population, or the 
preferential selection of what are considered to be 
'typical' units. The latter practice, which is wide­
spread among phytosociologists, takes advantage 
of the previous experience of the researcher (e.g. 

Braun-Blanquet 1964). Note, however, that sta­
tistical inference is valid only if probabilistic 
sampling is undertaken. We do not consider non­
probabilistic sampling in this paper, as it is well 
covered elsewhere (Knapp 1984). 

Sampling alternatives 

The sampling procedure used is ultimately deter­
mined by three dichotomous choices: study ob­
jectives (estimation or pattern recognition), num­
ber of variables (univariate or multivariate), and 
the nature of the sampling universe (discrete or 
continuous). Eight distinct sampling alternatives 
can therefore be recognized (Table 1). As the ex­
amples in the table indicate, the determination of 
a suitable sampling strategy is context-dependent: 
an appropriate procedure for anyone of the eight 
alternatives may be unsuitable for another. This 
implies that general statements regarding sam­
pling decisions (specifically with respect to em­
pirical sample size, the arrangement or selection 
of sampling units, and the size and shape of 
sampling units) are of limited utility if not placed 
in their proper context. 

Parameter estimation vs. pattern detection 

In many fields of biology sampling is undertaken 
to obtain estimates of population parameters (e.g. 
mean cover or density, diversity). The estimator, 
a statistical function, should meet several basic 
requirements including unbiasedness, consisten­
cy, efficiency, sufficiency and minimum variance 
(Wilks 1962, p. 351). Classical sampling theory, 
which is concerned with both the derivation of 
estimators and the maximization of precision of 
estimates through alternative sampling designs, is 
appropriate for this purpose. Precision in this 
context refers to the minimization of the variabili­
ty (sampling variance) about the estimated para­
meter. 

In ecology, estimation is often not the sole aim 
of a study. Instead, the principal focus may be on 
the analysis of pattern: here, we define pattern in 
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Table I. Dichotomous sampling alternatives in plant ecology. 

Objective Number of Nature of Examples 
of the study variables sampling universe 

Parameter Univariate Discrete 
estimation Continuous 

Multivariate Discrete 
Continuous 

Pattern One Discrete 
analysis population Continuous 

Community Discrete 

Continuous 

Tree height, seed production per plant
 
Cover, density, biomass and diversity estimation by plots.
 
Random plant methods for estimating density and cover.
 
Estimation of the mean vector of morphological variables.
 
Estimation of the mean vector of cover values.
 
Random plant methods.
 
Quadrat-variance methods. Random points methods.
 
Ordination or classification of discrete entities (islands,
 
lakes, epiphytic assemblages, etc.)
 
Florula diversity, resemblance, pairwise interspecific cor­

relation. Ordination and classification of plots.
 

its broad sense, to include classification, ordi­
nation, and detection of the intensity and scale of 
spatial variation. It is clear that sampling de­
cisions under an objective of parameter esti­
mation differ from those taken when pattern re­
cognition is the stated objective. As a simple ex­
ample consider the problem of plot size determi­
nation. For simplicity, assume that a species X 
has a clumped pattern, and that n sampling units 
(plots) are to be taken from within the study area. 
To obtain a precise estimate ofmean cover for the 
species, we would choose a plot size such that the 
between-plot variability is minimized. For this 
purpose, a plot size somewhat larger than the 
mean clump size would likely be appropriate. For 
pattern recognition, however, plot size should be 
chosen so as to maximize between-plot variability. 
Under such circumstances, a plot of the same size 
as the mean species clump size should be utilized. 

Univariate vs. multivariate 

In estimation, univariate refers to the determi­
nation of a single random variable, regardless of 
whether one or several species are considered. 
Examples include mean cover or yield (of a single 
species or the whole community) and textural 
variables such as species-individual diversity 
(sensu Barkman 1979). Univariate estimation 
problems are well covered by sampling theory 

(Cochran 1977). In the multivariate situation 
several variables are simultaneously measured, 
and estimates are obtained for elements of a mean 
vector: here, the covariance (correlation) struc­
ture of variables must also be considered. 

In pattern analysis, the term univariate refers to 
recognition of the scale of pattern of a single 
species. Studies of community pattern are multi­
variate (multi-species): examples include the ana­
lysis of interspecific association, ordination and 
classification. 

Discrete vs. continuous sampling universe 

The sampling universe is said to be discrete when 
the sampling units are natural, distinct, and re­
cognizable entities. It is therefore of finite size N, 
implying a finite number ofpossible samples (2 N). 
Under these circumstances the sampling frame (a 
list of individuals making up the sampling 
universe) is definable. Examples of discrete 
sampling units include individual plant genets, and 
isolated biogeographic units such as islands or 
lakes. 

In a continuous sampling universe there are no 
natural, recognizable sampling units. Instead the 
sampling units, which may have dimensions of 
zero (point-intercept), one (line-intercept), two 
(plot or quadrat), or three (soil core or benthic 
grab), are arbitrarily delineared by the investiga­
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tor. Since the sampling units are arranged within 
a spatial continuum, the statistical population is 
of infinite size and a sampling frame is therefore 
not defined. 

The nature of the sampling universe has impor­
tant consequences for decision-making in sam­
pling. Given a discrete sampling universe (the 
type treated in sampling theory), one need only be 
concerned with the manner by which individuals 
are chosen from the sampling frame: alternatives 
include random, and various restricted ran­
domized procedures (e.g. stratification, sys­
tematic, or cluster sampling). Conversely, in a 
continuous sampling universe one must consider 
the spatial arrangement of sampling units, as well 
as their size and shape (for the two and three­
dimensional cases). 

Empirical sample size 

Univariate estimation 

Determination of sample size is straightforward 
for the discrete sampling universe case. The 
method is based on the relationship 

(1) 

where n is the sample size, S2 is the variance, and 
Sx is the standard error of the mean. The sampling 
universe is assumed to be infinitely large. The 
relationship indicates that any increase in the 
sample size necessarily decreases the standard 
error of the mean. Biological examples of empiri­
cal sample size determination can be found in 
Green (1979, pp. 40, 126), Elliott (1983, p. 127), 
Greig-Smith (1983), and De Vries (1986). While 
the same method can be used when the sampling 
universe is continuous, it must be remembered 
that the variance of the sample will depend on the 
size and shape of the sampling unit (e.g. a plot). 
For a clumped pattern, a plot size of the same 
order as the mean clump size will result in a large 
variance. Thus the sample size required to achieve 
a given level ofprecision will be much greater than 
would be required if the plot size were somewhat 

larger than the mean clump size. Note that if the 
total area which can be sampled is fixed (as deter­
mined by some cost function), it is generally 
recommended that many small plots rather than 
a few large ones be used (Green 1979, pp.39, 
132). 

For diversity measures, the variation of an esti­
mate tends to decrease as sample size increases 
(Pielou 1977, p. 301). A simulation study by 
Wolda (1981) demonstrated that the standard de­
viation ofdiversity estimates obtained by replicate 
samples decreased as sample size increased. 
Sample size effects on evenness estimates cannot 
be similarly interpreted, however. Species even­
ness tends to decrease when an increase in sample 
size leads to the occurrence of new species in the 
sample. Evenness estimates therefore require very 
careful interpretation (Pielou 1977, p. 307). 

Multivariate estimation 

To obtain simultaneous estimates of several 
variables one could simply use the univariate pro­
cedure outlined above, applying it separately to 
each variable. This will very likely result in vastly 
different sample size determinations for each 
variable, however (e.g. Croy & Dix 1984). Fur­
thermore, such a strategy fails to consider the 
covariance structure of the variable set. The 
method of Scagel et al. (1985) attempts to over­
come this problem by determining the empirical 
sample size required to stabilize the correlation 
structure of multivariate data. Unfortunately, 
their method requires a large initial sample size. 

The above arguments hold for both discrete 
and continuous sampling universes. In the latter 
case, the precision of estimates will be influenced 
by the size and shape of the sampling unit. 

Pattern detection in populations 

For closed study regions in which point-plant dis­
tances are measured, the number of points used 
should be equal to or greater than the number of 
plants (Diggle & Matern 1980; Ripley 1981). If 
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plant-to-plant distances are measured, the inter­
pretation of spatial pattern becomes more confi­
dent as the area sampled is increased (Galiano 
1982). Increasing the area covered may result in 
greater environmental heterogeneity, however, 
rendering the interpretation of spatial pattern 
more difficult (Pielou 1962; Kenkel 1988a). The 
same argument holds for the quadrat-variance 
methods (Greig-Smith 1983): the larger the 
nested quadrat system, the more likely that 
patterns attributable to intraspecific interactions 
will be confounded by extraneous factors. 

Pattern detection in communities 

If the objective is trend-seeking, the empirical 
sample size should be such that an ordination or 
classification does not change appreciably with 
any further addition of sampling units. The 
empirical sample size at which the results stabilize 
should therefore be determined. In ordination, 
stability implies that the scattergram trends do not 
change when more sampling units are added. In 
classification, stability implies that the group 
structure remains unaltered with the addition of 
sampling units. Analytical techniques such as 
jackknifing and bootstrapping are useful in as­
sessing the stability of results. The effect of 
including additional species in a reference or­
dination was examined by Goff (1975), but corre­
sponding studies of plot ordinations have not 
been undertaken. Podani (1986) examined the 
extent to which a classification of plots changed 
with increasing empirical sample size. Changes 
were found to be more substantial at the six­
cluster than the three-cluster level, suggesting 
instability (or non-classifiability) in the first case 
and reasonable stability in the second. The analy­
tical method (clustering algorithm, resemblance 
measure) used may also be important in deter­
mining the empirical sample size beyond which a 
classification of species stabilizes (Podani 1987). 

When typification is the major objective, the 
problem of determining empirical sample size is 
potentially more complex. Typification often at­
tempts to accomplish two goals simultaneously: 

the delineation of vegetation types, and the de­
scription of each of these types. A sample size 
which results in any of the delineated types being 
represented by only one or a few sampling units 
is therefore inadequate; the empirical sample size 
must be large enough to ensure both a stable 
classification, and adequate representation of all 
delineated vegetation types. Ideally, sampling 
under a typification objective should involve two 
stages: the first to define and locate vegetation 
types, and the second to intensively sample within 
each type for estimation purposes. 

Selection or arrangement of sampling units 

Univariate estimation 

In the discrete sampling universe, unbiased esti­
mates can only be obtained through random 
selection. In a complete random design, all units 
have an equal change of being selected. Precision 
can often be increased through various 'restricted' 
randomization procedures. In stratified random 
(frame) sampling, the strata or sub-populations 
are defined a priori by the user. Greater precision 
is expected when strata are homogeneous within 
and heterogeneous among. Note that in order to 
obtain an estimate of the sampling variance, at 
least two sampling units must be taken from each 
stratum. In systematic sampling, a pivotal indi­
vidual is chosen at random and every rth indi­
vidual in the sampling frame is enumerated. This 
method, while convenient, does not give an un­
biased estimate of the sampling variance. One 
way to overcome this problem is to perform strati­
fied systematic sampling, in which two indepen­
dent systematic samples are taken from each stra­
tum (Cochran 1977, p. 227). 

For the continuous sampling universe, ran­
domization is again required. In this case, how­
ever, it is the arrangement of the sampling units 
within the study area that is randomized. 'Plot­
less' sampling (in which points are located and 
distances to the closest plant measured) requires 
full randomization to estimate density (Greig­
Smith 1983, p. 48). With plots, complete random­
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ization is often difficult to achieve as random 
points are not easily located in the field (Laferriere 
1987). Under these circumstances systematic 
sampling may be more easily implemented: again, 
the method should be modified so as to permit 
unbiased estimation of the sampling variance. 
Note that if the sampling interval coincides with 
periodic variation in vegetation (spatial auto­
correlation), the sample will not be representative 
of the sampling universe (Finney 1950; Greig­
Smith 1983, p. 23; De Vries 1986, p. 25). Restrict­
ed randomization designs involving both syste­
matic and random components may therefore be 
preferred. Studies comparing the efficiency ofvar­
ious arrangements for estimation purposes in­
clude Hasel (1938), Pechanec & Stewart (1940), 
Finney (1948, 1950), Goodall (1952), Bourdeau 
(1953), Kulow (1966), Yandle & Wyant (1981), 
and Diggle & ter Braak (1982). Smartt & 
Grainger (1974) address the problem of determin­
ing the optimal arrangement of units when com­
munity types are already defined and interest lies 
in estimating the relative proportion of types in an 
area. Smartt (1978) outlines a flexible model for 
optimal allocation of sampling units. 

Multivariate estimation 

Individual sampling units must be selected at ran­
dom in order to obtain unbiased estimates of 
variable means and their intercorrelations. We are 
unaware of any studies dealing with multivariate 
estimation under restricted random (stratified or 
systematic) sampling designs. 

Pattern recognition in populations 

The nature of the sampling universe determines 
two different approaches to the analysis ofpattern 
in a single species. For the discrete universe, in­
dividuals may be selected at random and plant-to­
nearest neighbor distances measured. Clark & 
Evans (1954) suggested this method as a test of 
departure from spatial randomness. Alternatively 
the plant closest to a random point may be 

chosen, and the distance between that plant and 
its nearest neighbor measured (e.g. Cox & Lewis 
1976). Diggle (1979a) suggested examining the 
complete distribution function of nearest-neigh­
bor distances. For mapped point patterns, the 
combined count-distance method of Ripley 
(1977) offers the most penetrating analysis (pren­
tice & Werger 1985; Kenkel 1988a). These and 
other recently developed techniques are reviewed 
by Upton & Fingleton (1985, pp. 74-90). 

For a continuous sampling universe, point-to­
plant methods represent the simplest situation. 
Methods involving randomly located points have 
been suggested by Pielou (1959) and Mountford 
(1961). Others have suggested that a regular grid 
of points (Diggle 1979b) or a stratified arrange­
ment (Ripley 1981) may be preferred. 

Analysis of spatial pattern using plots has 
yielded a wide variety of designs. In the simplest 
case, plots are randomly located within the study 
area and departures from randomness assessed 
using various aggregation indices (Goodall & 
West 1979; Carpenter & Chaney 1983). While 
non-contiguous quadrats are sometimes used in 
ecological studies (Upton & Fingleton 1985, 
p. 65), contiguous units in a regular grid or long 
transect are more commonly employed (e.g. 
Greig-Smith 1952; Hill 1973 ; Ludwig & Goodall 
1978; Galiano 1985). A combination of random 
and systematic designs was used by Goodall 
(1974). Renshaw & Ford (1984) point out that a 
grid of plots is preferable to a long transect, since 
only the former can detect directional (aniso­
tropic) trends in spatial pattern. 

Pattern detection in community studies 

The distinction between the discrete and con­
tinuous sampling universe is important 
throughout the following discussion. If discrete, 
the sampling units are selected from the sampling 
frame. For the continuous case a map ofthe study 
area is normally required to locate sampling units 
in the field. Edge effect problems may arise in the 
latter case. 

Sampling units may be randomly located within 
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the study area. However, random points may in 
practice be difficult to locate in the field. Further­
more, random sampling generally results in a rela­
tively inequitable distribution of sampling units 
over the study area, which is disadvantageous in 
survey and mapping studies. To overcome these 
problems, the study area may first be stratified, 
and independent random samples taken from 
each stratum. Strata can be defined in various 
ways: the simplest involves gridding the study 
area into equal-sized units, and taking a random 
sample from within each. Alternatively, an under­
lying factor (e.g. elevation categories) can be used 
to define strata. If typification is the objective, 
however, circularity ofargument must be avoided: 
thus, strata should not be defined using dominant 
vegetation ifthe objective is to define and describe 
vegetation types (Orloci 1978). 

Systematic sampling is useful in vegetation 
mapping, since the sampling units are equally 
spaced. For this reason it is also the method of 
choice in direct gradient analysis studies. Syste­
matically placed sampling units are also more 
readily located in the field. 

In community pattern analysis, an ordination 
procedure is often employed to obtain a univariate 
seriation of plots. The ordination scores are then 
used as input to one of the univariate spatial 
pattern detection methods outlined above. Eco­
logical examples include Bouxin (1983), Galiano 
(1983), Castro et al. (1986), Gibson & Greig­
Smith (1986), and Kenkel (1988b). 

Plot size 

Univariate estimation 

Plot size under an estimation objective will de­
pend upon the spatial pattern of the sampling 
universe. If random, any plot size will give an 
equally precise estimate of the mean (or total). 
Many plant species show a clumped pattern, 
however, and as a consequence plot size determi­
nation will be important in minimizing the 
sampling variance. Studies reporting on the effect 

of plot size on precision include Freese (1961), 
Van Dyne et al. (1963), Wiegert (1967), and Ram 
Babu et al. (1981). 

It is useful to distinguish two cases. In the first, 
the total amount of material sampled is fixed by 
practical constraints (typically expressed as a cost 
function). Examples include biomass studies, and 
studies employing benthic grabs or soil cores. In 
all these cases, there is a fixed upper limit on the 
amount of material (A) which can be processed. 
Under such circumstances, the smallest possible 
area or volume per sampling unit will normally 
result in the most precise estimate of the mean 
(Green 1979, p. 132; Elliott 1983, p. 128). The 
reason for this is simple: we note that the fixed 
total A = a x n, where n is the sample size and a 
is the size (area or volume) of each sampling unit. 
Clearly, the smaller the sampling unit, the larger 
the sample size. Because the standard error of the 
mean S-x = /S2jnjI/2, precision can always be 
improved by making n larger (that is, making a 
smaller). In practice, the size of the organism 
sampled, edge effects, and other factors will deter­
mine the smallest sampling unit size possible 
(Bigwood & Inouye 1988). 

There are other circumstances, however, in 
which the sample size n is fixed, but the size of the 
plot can vary within certain limits. For example, 
consider the determination of percent cover in 
each of n randomly located plots within a large 
study area. The location of plots in the field is a 
relatively time-consuming exercise. Once located, 
however, the time taken to estimate species 
percent cover is largely independent of plot size, 
at least within certain size limits. Under these 
circumstances, a plot size should be chosen which 
minimizes the sampling variance (the between­
plot variation). Such a plot will normally be some­
what larger than the mean clump size. A further 
advantage of using a larger plot size is that a 
greater proportion of the study area is sampled. 

For diversity and evenness estimation, increas­
ing plot size has the same effect as increasing the 
sample size, since it is the total area sampled 
which determines the precision of estimates 
(Kwiatkowska & Symonides 1986). 
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Multivariate estimation 

Here the objective is to select a plot size that 
simultaneously minimizes the variances of all 
variables. In addition, the pairwise associations 
between species should be minimized (c.f. 
Goodall 1961). This is most easily accomplished 
by minimizing the covariance structure of the 
cross-products matrix between variables. A plot 
size which simultaneously minimizes the var­
iances of species, and their covariances, will 
therefore be optimal for estimation of mean or 
total values in community studies. 

Pattern recognition in populations 

The scale of spatial pattern of a species can be 
detected by locating plots of different sizes within 
a study area. One possibility would be to take 
independent samples using different plot sizes, 
but this is generally not practical in the field si­
tuation. An alternative is to begin with a regular 
grid of sufficiently small units, and then to succes­
sively fuse adjacent units to obtain larger plots or 
blocks (Greig-Smith 1952). Similar nested sys­
tems have been suggested for examining transect 
data (Hill 1973; Goodall & West 1979). Such 
data can then the subjected to statistical analysis 
to detect departures from randomness (Upton & 
Fingleton 1985, pp.46-48). Under some cir­
cumstances departures from randomness in non­
random populations are largely independent of 
plot size. Pielou (1977, p. 136) indicates that this 
may occur when compact clumps are widely 
spaced, or when mosaics of differing density are 
present. 

Pattern recognition in community studies 

Ideally the analysis of community pattern in the 
continuous universe should involve the use of a 
series of plot sizes, since results are dependent on 
the size of the plot used. For example, interspeci­
fic species associations are known to vary greatly 
as plot size is changed (Greig-Smith 1983), and as 

a result species classifications and ordinations are 
also prone to change (Fekete & Szocs 1974; 
Matthews 1978). The dependence of species 
covariance structure on plot size may indicate a 
characteristic area of the community in terms of 
maximum covariance ('multiple pattern analysis', 
Noy-Meir & Anderson 1971). Similarly, a range 
of plot sizes is required to detect an area at which 
maximum differences occur between random 
pairs of plots (expected resemblance, Podani 
1984a, b). Concepts of florula diversity and re­
lated information theory functions (Juhasz-Nagy 
& Podani 1983) are also inevitably linked to a 
screening process involving increases in plot size. 
This holds true for other structural variables as 
well. 

Results are also scale-dependent when the ob­
jective is the classification and ordination of plots 
(Kershaw 1961; Noy-Meir et al. 1970). This 
problem is particularly complicated in typification 
studies. The recognition of vegetation types is 
clearest when plots not belonging to the same type 
are maximally different. At the same time, plots 
belonging to the same type should be as similar as 
possible. Clearly these are potentially conflicting 
objectives. Ideally, sampling should proceed in 
two stages. In the first, a plot size should be 
chosen which maximizes between-plot variation 
in order to best discriminate between types. In the 
second stage, a different plot size should be used 
within each vegetation type to obtain the most 
precise community estimates. 

It would perhaps be instructive to mention here 
the concept of minimal area, as much confusion 
exists in the literature concerning its utility and 
purpose. The minimal area method attempts to 
find the smallest plot size necessary to charac­
terize the species richness of a community 
(species-area curves, Mueller-Dombois & Ellen­
berg 1974): that is, it determines the spatial scale 
of species richness (Dietvorst et al. 1982). The 
method is useful for plot size determination in 
phytosociology, where the objective is to describe 
a previously-defined community as a single 'pic­
ture' or releve. It is inappropriate as a method for 
determining plot size in probabilistic sampling, 
however. 
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Plot shape 

Univariate estimation 

Like plot size, the shape of a plot is dependent on 
the spatial pattern of a species. Precision of esti­
mates is unaffected by plot shape if the spatial 
pattern is random, though elongated plots will 
increase edge effects. Elongated plots are pre­
ferred when the pattern is aggregated, however, 
since the plot will tend to include both high and 
low density regions and thereby reduce the 
sampling variance. This is well documented in 
studies estimating yield (e.g. Kalamakar 1932; 
Justesen 1932; Van Dyne et al. 1963), abundance 
(Clapham 1932), and various forest parameters 
(Hasel 1938; Bormann 1953; Freese 1961). 

Elongated plots are also preferred when esti­
mating diversity and related textural variables, 
since more diverse regions of the study area are 
likely to be included. Hahn (1982) has explored 
some possibilities for edge effect correction in 
estimating diversity. 

Multivariate estimation 

Optimization of plot shape is a complex problem 
in this case. Whereas the precision of estimates 
for a given species will likely increase when the 
plot is elongated, the species covariances are sub­
ject to unpredictable changes. Examination of 
several plot shapes in a pilot study to select a 
shape offering the best compromise between 
precision and covariance minimization is there­
fore recommended. Weare unaware of any 
studies that have examined this problem. 

Pattern detection in populations 

Clearly, pattern detection is most effective when 
plots are of the same size and shape as the mean 
individual clump size. This could be found by 
varying plot size and shape in a factorial design, 
and finding the size-shape combination at which 
departures from randomness are maximized. 

Care must be taken to ensure that elongated plots 
include only a single clump, however, since other­
wise different hierarchical levels of spatial pattern 
will be confounded. 

Pattern detection in community studies 

Whereas inclusion of heterogeneous areas in the 
same plot is advantageous in parameter esti­
mation, elongated sampling units may have detri­
mental effects in community pattern studies. This 
is because interspecific associations detected 
using elongated plots are artifactual and poten­
tially misleading (Pielou 1977; Greig-Smith 
1983). The use of elongated plots should also be 
avoided when measuring expected resemblance, 
florula diversity and related structural variables 
(Podani 1984b; Bartha & Horvath 1987). Since 
square or circular plots are least likely to overlap 
community boundaries, they are also recom­
mended for ordination and classification studies. 
A further advantage ofisodiametric plots in com­
munity pattern detection is that edge effect 
problems are minimized. In practice, square plots 
may be easier to set up and enumerate than circu­
lar ones. 

Concluding remarks 

We have emphasized that sampling decisions 
must be consistent with the objectives of an inves­
tigation. In addition, we suggest that many 
sampling problems have received a cursory treat­
ment in the ecological literature. Familiarity with 
the dichotomous sampling alternatives outlined 
here will hopefully help ecologists in making im­
portant sampling decisions. 

This review indicates that there remain a num­
ber of unresolved questions regarding sampling in 
ecology. Our hope is that some of the issues we 
have raised will be explored further, and that 
ultimately specific 'optimal' sampling strategies 
will be determined for various objectives. It would 
also be desirable to determine the relative impor­
tance of sampling in ecological studies: that is, 
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how important are sampling decisions relative to 
decisions regarding choices of data type and stan­
dardization, the resemblance measure used, and 
the scaling or clustering procedure employed? 
The effect of sampling on the stability of results is 
also deserving of greater attention. 
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