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Abstract. This review summarizes the major spatial approaches to modelling intraspecific interactions in 
plants. Spatial models recognize that interactions in plant populations are localized, and therefore use the 
number, size, and proximity of neighbouring plants to predict an individual's performance. Such models 
have been used to develop interaction (or competition) indices, to assess the relative importance of spatial 
patterning on individual plant performance, and to examine mortality patterns and changes in the size 
distribution of individuals in field, laboratory, and computer-simulated plant populations. The review be
gins by outlining the competition (or interference) indices developed by foresters and ecologists, and dis
cusses their utility and limitations. Next the 'zone of influence' model, which utilizes overlapping circles 
in quantifying intraspecific interactions, is reviewed. Specific applications of this model are outlined, exam
ples given, and limitations discussed. This is followed by a detailed outline of spatial tessellation models, 
which have only recently been applied to examine spatial processes in plant populations. The paper con
cludes with a discussion of future directions, in which it is argued that tessellation methods should be mo
re widely used in modelling dynamic interactions in plant populations. 

Introduction 

There are many approaches to studying intraspeci
fic interactions in plant populations. One is to consider 
the relationship between mean plant biomass and po
pulation density. This approach led to the development 
of the 3/2 self-thinning rule and related models (Har
per 1977) which have recently been critically apprai
sed by Weller (1987) and Zeide (1987). Another 
approach is to sow plants at various densities and un
dertake a statistical analysis of the resulting frequen
cy distributions of plant 'size' or biomass (see Hara 
1988). 

The approaches described above are static, since in
terest is focused on the final outcome of the intraspe
cific interactions. Dynamic models, by contrast, 
examine changes in various population parameters over 
time. Some of these models are non-spatial in nature; 
rather than requiring information on the positions of 
individual plants, a mean 'neighbourhood effect' is as
sumed. These models, which may be stochastic or de
terministic, monitor changes in mortality, mean plant 
biomass, population skewness, and so forth over time 
(for a complete discussion, see Hara 1988). Nonspatial 
dynamic interspecific (community-level) interaction 
models have also been developed, usually based on 
consumer-resource interactions (e.g. Grime 1979, Til
man 1988). Spatial interspecific interaction models in
clude island or "patchy environment" simulations 
(Levin 1986, Pacala 1987), Monte Carlo simulation of 
·local interactions in which a habitat is divided into grid 
units (Weiner and Conte 1981, Crawley and May 1987, 
Czanin 1989, Czaran and Bartha 1989), and diffusion 
models utilizing partial differential equations (Okubo 

1980). 
Spatial models of intraspecific (population-level) in

teractions require information about the pattern of in
dividuals plants in a population. With such models one 
can examine the interaction between individuals and 
their neighbours, or what is known as 'local competi
tion'. Local interactions between individuals are impor
tant, since an individual's fate (fecundity, probability 
of mortality, biomass, etc.) is determined not by the 
mean population density, but by the number, size, and 
proximity of its immediate neighbours (Mack and Har
per 1977). Since natural selection operates at the level 
of the individual, such studies may also lead to a grea
ter understanding of evolutionary processes in plants 
(Silander and Pacala 1985, Kenkel et al. 1989b). 

This paper outlines spatial models for examining in
traspecific interactions in plants. While simulation mo
dels are discussed, emphasis is placed on empirical 
population interaction models. The review begins with 
an overview of competitive interaction indices, which 
is followed by a summary of spatial overlap indices and 
models. Spatial tessellation models are outlined in the 
third section, and future directions and prospects are 
briefly discussed. 

Competition ~nterference) Indices 

The simplest model for describing competitive inter
ference and examining the effect of local density on 
plant performance is to consider the distance to the nea
rest neighbour in the population (Pielou 1962). This is 
intuitively unappealing to most ecologists, however, sin
ce it is generally felt that a given plant interacts with 
a number of neighbours, not just the nearest one. One 
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alternative is to consider instead the mean distance to 
the n nearest neighbours, where the value of n is em
pirically determined. For example, in a study of inte
raction between four Polygonum species, up to 73% of 
the variation in dry mass of plants was accounted for 
by the mean distance to the four nearest neighbours 
(Hickman 1979). 

An alternative approach defmes the 'neighbourhood' 
of each plant as a circle of arbitrary radius r. Within 
this circle the number, size, and dispersion pattern of 
neighbours may be used to develop various interferen
ce indices. An index developed by Mack and Harper 
(1977), for example, incorporates the size, number, and 
angular dispersion of plants within the neighbourhood. 
They used three different neighbourhood radii and fit
ted the data using polynomial functions. A somewhat 
simpler index, suggested by Weiner (1982, 1984), incor
porates the distance to and size of neighbours within 
a given radius. One of his indices is: 

n 

W= E [k Sj di2
] 

i-l 

where d is the distance to, and S the size of the ith 

neighbour, k is a weighting constant, and n the num
ber of individuals (neighbours) within radius r of the 
target plant. Similar indices have been developed for 
use in forestry by Hegyi (1974), Daniels (1976), and 
others; these are reviewed by Daniels et al, (1986) and 
Tome and Burkhart (1989). 

There are a number of drawbacks to utilizing such 
empirically derived indices: (a) the choice of the neigh
bourhood radius r is arbitrary; (b) there is little justifi
cation in the choice of which variables to include (or 
not to include) in the index; and (c) the 'weights' given 
to the variables in the index are also arbitrarily chosen; 
for example, in Weiner's index the 'influence' of a 
neighbour is a function of the inverse of the square of 
the distance from the target plant. It is therefore per
haps best to avoid using interference indices to quan
tify the effects of local density on individual plant 
performance. An alternative approach, advocated by 
Waller (1981), uses stepwise multiple linear regression 
to determine which variables are the best predictors of 
performance. Silander and Pacala (1985) extended this 
idea further, using an 'exploratory data analysis' stra
tegy to determine an empirically optimal neighbourhood 
radius. In populations of Arabidopsis thaliana, they 
found that the 'best predictor radius' was 5 cm, and that 
the number of neighbours and their angular dispersion 
provided the best fit; neighbour size proved to be far 
less important. It should be remembered, however, that 
all such models are predicated on the assumption that 
plant interactions occur only within a given radius, an 
assumption for which there is little evidence. Further
more, even the simplest indices have largely unknown 
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Fig. 1. An example of the 'zone of influence' model of spa
tial interaction in plants. Circles whose radius is propor
tional to plant 'size' (solid dots) derme the zones. Regions 
of overlap are shaded. In asymmetric interaction, shaded 
regions are 'occupied' by individual A. If interaction is 
symmetric, resources in the shaded regions are shared. In 
this example individual D is not interacting with indivi
duals A, B, and C. 

and potentially undesirable statistical properties. 

Spatial Overlap Indices and Models 

In these models of plant interaction, a 'zone of in
fluence' consisting of a circle of radius r is centred 
around each plant in a population (Zinke 1962, Anto
novics and Levin 1980, Gates 1982). The radius is em
pirically defined; in forestry, for example, the zone 
radius is often determined from predictions of open
grown crown radius as a function of trunk diameter at 
breast height (DBH). The circles of neighbouring trees 
overlap to the greater of lesser extent, the amount of 
overlap determining the degree of 'competitive stress' 
experienced (Fig. 1). A number of such indices have 
been developed by foresters (e.g. Bella 1971, Arney 
1973, Ek and Monserud 1974), some of which are re
viewed by Daniels et al, (1986) and Tome and Burkhart 
(1989). 

Ecologists have generally used 'zones of influence' 
in simulation modelling of plant populations over time, 
typically to determine the dynamics of size distributions 
(Hara 1988). With such models, two types of interac
tion are possible. If competitive interactions are sym
metric, the areas of overlap (shaded regions, Fig. 1) are 
regions in which resources are 'shared'; smaller indivi
duals reduce the growth of larger ones as much as lar
ger individuals reduce the growth of small ones. 
Competition for water and nutrients is likely to be of 
this type. In asymmetric competition, a larger plant 'oc
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cupies' the area of overlap to the exclusion of the smal
ler one; this is probably true of competition for light, 
in which larger plants shade smaller ones. 

These simulation models have yielded some intere
sting results. Gates (1982) produced bimodal distribu
tions of plant biomass when competition was 
asymmetric, in agreement with results obtained using 
experimental populations of Tagetes patula (Ford 1975). 
Ford and Diggle (1981) obtained similar results from a 
model using plant heights and overlapping cones to 
quantify individual competitive interactions. Pacala and 
Silander (1985) modelled population dynamics in arumal 
plant populations. Their neighbourhood analyses exa
mined dynamics at the level of the individual, incor
porating species fecundity, survivorship, and dispersal 
as predictor variables. The 'ecological field theory' mo
del (Wu et al. 1985) extends the 'zone of influence' con
cept by considering the dynamic nature of 
plant-environment interactions. Like other models of 
its type, the intensity of interaction is a function of the 
degree to which circular fields overlap. The 'strength' 
of these ecological fields, however, varies in time (or 
'pulses') depending on prevailing environmental con
ditions. Thus, in this model "the intensity and dyna
mics of the ecological fields about individuals, together 
with the resource response characteristics of the in
fluenced plants, determine spatial interactions within 
plant communities." (Walker et al. 1989). 

Spatial methods have also been used to model tem
poral changes in the spatial pattern of populations with 
self-thinning. The model of Leps and Kindlmann (1987) 
found that spatial regularity increased over time, a re
sult which the authors attributed to competitive inte
ractions between neighbours. By contrast, the aspatial 
model of Kent and Dress (1979) suggested that an ini
tial random pattern remains random with self-thinning. 
However, empirical studies have demonstrated an in
crease in spatial regularity over time (Laessle 1965, Ken
kel 1988), supporting the idea that neighbour effects 
must be considered in determining mortality patterns 
in plant populations. 

Spatial Tessellation Models 

The Dirichlet Tessellation 

A tessellation is a 'tiling' of a set of points (e.g. plant 
positions) in a plane. Of the many algorithms, that pro
posed by Dirichlet (1850) is the most familiar and per
haps the most appealing to ecologists. The tiles or 
'domains' of the Dirichlet tessellation are also known 
as Voronoi or Thiessen polygons, Wigner-Sietz cells, the 
Meijering cell model, or the S-mosaic, reflecting the in
dependent discovery of this model in various branches 
of science (Boots and Murdoch 1983). The Dirichlet tes
sellation subdivides the plane such that each point has 
a polygonal area associated with it. This area defines a 

Fig. 2. The Delaunay triangulation (rme lines) and Dirichlet 
tessellation tiles (solid lines) for a subset of points from 
a larger population. 

region nearer to the point than to any other point in 
the plane. In practice the tessellation is obtained by first 
calculating the Delaunay triangulation, which determi
nes the polygon neighbours of all points in the plane. 
Next, perpendicular bisectors are drawn between the 
Delaunay neighbours to define the polygon edges (Fig. 
2). Using a 'growth' analogy, the Dirichlet tessellation 
model assumes the following (after Boots 1980): 

a. all individuals appear simultaneously, and remain 
fixed in position. 

b. all individuals are equally 'weighted'. 
c. tiles 'grow' at the same rate in all directions. 
d. the growth rates of tiles are linear, and the same 

for all individuals. 
e. tile growth ceases when neighbours (polygon ed

ges) contact. 
These appear to be restrictive assumptions: for a 

plant population, they imply simultaneous germination, 
a homogeneous substrate, and lack of genotypic varia
bility. The utility of the Dirichlet tessellation, however, 
lies in its ability to model pattern: for example, a signi
ficant relationship between tile area and plant biomass 
indicates that spatial pattern plays a role in determi
ning plant performance (Cormack 1979). 

The Dirichlet tessellation has a long history of use 
in various fields of study, including biology, archeolo
gy, metallurgy, geography, physics, mathematics, and 
statistics. In biology it has been used to model cell pac
king (Honda 1978, Saito 1982), crop-weed interactions 
(Fischer and Miles 1973), and the development of ani
mal territories (Hasegawa and Tanemura 1976). It was 
first described in the biological literature by Brown 
(1965), who recommended its use in estimating timber 
resources. Mead (1966) independently suggested using 
this tiling to study interactions in mapped plant popu
lations. Brown described a Dirichlet polygon as the 
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"area potentially available" (APA) to a plant, since the 
polygon defines a region closer to the target plant than 
to any other plant. Green and Sibson (1978) used a ter
ritorial analogy, while Firbank and Watkinson (1987) 
described the polygon as an "area of available re
sources". 

The Dirichlet tessellation offers an objective defini
tion of the 'zone of influence' of a plant, though whe
ther this definition is biologically realistic remains to 
be demonstrated. Silander and Pacala (1985) dismissed 
the use of Dirichlet polygons to define neighbourhoods, 
since "only neighbours of adjacent polygons are consi
dered". However, Mead (1971) found the definition of 
neighbours implied by the Dirichlet tessellation to be 
"intuitively appealing", since "all plants excluded from 
the set of neighbours are in the 'shadow' of a neigh
bour". Mead developed a series of interaction indices 
similar to those discussed above, but using the Dirichlet
Delaunay definition of neighbours. The variables used 
in the indices were distance to and size of each neigh
bour, and the angle subtended by a side of the polygon 
corresponding to a given neighbour (thus .weighting' 
each neighbour according to the length of the shared 
edge). 

There is some evidence to suggest that plant interac
tions are mainly between neighbours sharing a tile ed
ge. Cannell et al. (1984) planted Picea sitchensis and 
Pinus cantorta in hexagonal lattices and computed va
rious intraspecific interaction indices to predict indivi

dual plant performance. They found that predictions 
obtained by considering the sizes of the six 'first-order' 
neighbours were not improved upon by considering the 
twelve 'second-order' neighbours as well. In stands of 
Picea sachalinensis, Hara (1985) found that the opti
mal number of neighbours required to predict perfor
mance decreased over time, but was almost constant 
at a value of six for much of the time. Kenkel (1988) 
examined temporal changes in the spatial pattern of a 
Pinus banksiana stand. Using a second-order statisti
cal procedure in which increasing 'zones of influence' 
are defined, it was found that the pattern of surviving 
trees was regular at a local scale (up to a radius of about 
3.5 m, corresponding to a mean of six neighbours). In
terestingly, six is also the mean number of neighbours 
of a Dirichlet tessellation (Upton and Fingleton 1985, 
p. 97). These empirical results offer indirect evidence 
that a given plant may compete mainly with its tile ed
ge neighbours, at least in even-aged monocultures (c.f. 
Mithen et al. 1984, Matlack and Harper 1986). 

A number of studies have related individual plant 
performance to various Dirichlet polygon parameters 
(e.g. tile area, number of neighbours, etc.; see Mead 
1966). In such investigations, edge effect problems must 
be taken into account (Kenkel et al. 1989a). Studies re
lating tile area to final dry biomass include Liddle et al. 
(1982), Mithen et al. (1984), Matlack and Harper (1986), 
and Firbank and Watkinson (1987). Most authors have 
found that polygon area can only account for a relati-

Fig. 3. Spatial coordinate map and Dirichlet tessellation of 562 ramets of a clone of the ostrich fern Matteuccia stru
thiopteris. Circle diameter is proportional to the number of fronds produced by each ramet rootstock. The area map
ped is 6 x 12 m in size. Ramets along the study area edge were excluded from consideration, using the algorithm proposed 
by Kenkel et al. (1989a). 
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Fig. 4. The relationship between frond number and mean 
tile area (m2) for an ostrich fern clone. Results are based 
on the 420 tessellation tiles shown in Fig. 3. 

vely small proportion of variation in final yield, leading 
Firbank and Watkinson (1987) to suggest that factors 
such as differences in emergence time, microhabitat, 
and genotype may be more important than local crow
ding. Other studies have related polygon area to pro
bability of mortality. Watkinson et al. (1983) found 
initial polygon area to be a good predictor of survival 
probability in artificial populations of Helianthus an
nuus. Owens and Norton (1989), in a study of natural 
populations of Artemesia tridentata, found that grea
test survival occurred in plants occupying the largest 
polygons. Finally, a study of mortality patterns in a na
turally established Pinus banksiana stand found that 
less than 25% of trees occupying the smallest areas sur
vived, while over half of those occupying the largest 
tiles were alive after 65 years (Kenkel et al. 1989b). 

To further illustrate the utility of the Dirichlet tes
sellation, a mapped pattern of the clonal fern Matteue
cia struthiopteris is shown in Fig. 3. This clone formed 
the understory of a portion of open, mature Quercus 
macrocarpa gallery forest near Delta, Manitoba, Cana
da. Ramets are erect rootstocks with a projecting crown 
of one or more fronds, and are connected by stout, per
sistent runners. The spatial coordinates of each root
stock, and the number of fronds produced, were 
recorded. A positive relationship between frond num
ber and tile area was found, suggesting that neighbour 
relations play a role in determining the number of 
fronds produced (Fig. 4). Since the ramets are intercon
nected, this result presumably reflects competition for 
light. 

There are a number of other applications of tessel
lation analysis to plant biology. The edges of the Dirich
let tessellation ('neighbours' as defined by the Delaunay 
triangulation) give an objective definition of 'joins' in 
spatial autocorrelation analysis (Reed and Burkhart 
1985, Kenkel et al. 1989b). The method can also be used 
as an alternative to the 'zone of influence' method of 

Fig. 5. The spread of dwarf mistletoe infection in a jack 
pine stand in south-eastern Manitoba, Canada. Uninfec
ted trees are 'bushy'. Increase levels of infection are re
presented by more 'spindly' icons. 

modelling spatial interactions in plants (e.g. Miller and 
Weiner 1989). Sibson (1980) and Boots (1987a) discuss 
other applications, including point-pattern analysis 
(Hutchings and Discombe 1986), the modelling of ter
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Fig. 6. Delaunay triangulation (fine lines) and the weigh
ted Moore tessellation (solid lines). Circle diameters, which 
are proprotional to plant size, are used as weights. Unoc
cupied regions are stippled. 

ritories, multivariate data analysis, and predicting the 
spread of an infection (Mollison 1977). An example of 
the latter is the progress of dwarf mistletoe infection 
in a stand of Pinus banksiana (Fig. 5). It can be seen 
that the infection generally spreads between trees sha
ring a common polygon edge. Examples of applications 
in geography can be found in Getis and Boots (1978) and 
Dudycha (1987). 

Straight-boundary weighted tessellations 

The Dirichlet tessellation assumes equal weighting 
of individuals, since the 'boundary' between any two 
points is a perpendicular bisector. When individual 
plants in a population vary in 'size', however, interest 
may focus on methods to weight the polygons to ac
count for size differences. Moore et at. (1973) develo
ped a 'competition index' for use in forestry based on 
a weighted polygon model. Their model has the follo
wing properties: (a) like Dirichlet tiles, weighted poly
gons are mutually exclusive, and (b) the weighting is 
proportional to the relative size of neighbouring trees. 
The weighting model used is: 

d j ' =d j [w~!(w~+wr)] 

where d/ is the weighted distance from the target in
dividual to the ith neighbour, d i is the distance to the 
ith neighbour, W is the size of the target individual,o 
and Wi is the size of the ith neighbour. A given poly
gon border is perpendicular to the line joining two in
dividuals, but passing through the weighted distance 
d/ instead of the bisector. The resulting tessellation 
has the undesirable property of not being space
exhaustive: there remain areas which are not assigned 
to any individual (Fig. 6). Polygon overlap is avoided 

Fig. 7. Delaunay triangulation (fine lines) and the weigh
ted Fraser tessellation (solid lines) for the point pattern 
shown in Fig. 2. Weights are proportional to circle 
diameter. 

by having lines nearest the target individual take pre
cedence over those further away. Modifications of this 
model were suggested by Pelz (1978), Zuuring et at. 
(1984), Nance et at. (1987) and Tome and Burkhart 
(1989). 

An alternative, more mathematically tractable 
weighted tessellation was suggested by Fraser (1977). 
His model involves partitioning the areas of Delaunay 
triangles (the closely related 'least-diagonal-neighbour' 
triangulation can also be used; see Upton and Fingle
ton 1985, p. 140). Specifically, each triangle is divided 
into three areas in proportion to the 'weights' of the 
plants at the vertices. Fraser developed this method to 
estimate total wood volume, and therefore suggested 
that weights be defined as the fraction of a tree's ba
sal area lying within a given triangle. The weights for 
the three vertex plants a, b, and c are scaled 
(wa +Wb + we = 1), and the area A of the triangle divided 
into three regions with areas A Ww A wb, and A we re
spectively. Computation of the corresponding tessella
tion is more complicated and is not outlined here: an 
example is given in Fig. 7. Although this method was 
developed to estimate forest parameters such as tim
ber volume, it may be useful in studying intraspecific 
interactions as well. Note that even if all weights are 
equal, the Dirichlet and Fraser tessellations are not the 
same: the sides of the Dirichlet tessellation intersect at 
the triangle's circumcentre, while those of the Fraser 
tessellation intersect at the centroid (Upton and Fin
gleton 1985). 

Curved-boundary tessellations 

Johnson and Mehl (1939) developed a model in which 
points 'appear' on the plane at a constant rate (rather 
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Fig. 8. Johnson-Mehl curved-boundary tessellation of the 
point pattern shown in Fig. 2. Weights are proportional 
to circle diacrneter. 

than simultaneously as in the Dirichlet tessellation), 
with the provision that any points falling inside the po
lygon of another point are immediately deleted. All 
other assumptions of the Dirichlet tessellation remain 
in effect. The result is a tessellation with curved boun
daries, in which points appearing earlier occupy, on 
average, a greater proportion of the total area (Fig. 8). 
This model could be used, for example, to model neigh
bour effects on plant performance when differences in 
germination time are present (Cormack 1979). 

Boots (1980, 1987b) described a number of other 
curved-boundary tessellations for use in geography. His 
'minimum threshold model' was shown to be a close 
spatial relative of the Johnson-Mehl model, and produ
ced an identical tessellation. He also explored the rela
tionship between Dirichlet and Johnson-Mehl 
tessellations. Frost and Thompson (1987) examined this 
relationship in more detail using various 'nucleation 
conditions'. Site saturation (all points or 'nuclei' appea
ring simultaneously) produced the Dirichlet tessellation, 
while continuous nucleation resulted in the Johnson
Mehl model. Tessellations between these two extremes 
were produced when the nucleation rate decreased ex
ponentially with time. 

Curved-boundary tessellations have not been used 
in ecology, though they have considerable potential. For 
example, such models could be used to predict indivi
dual plant performance when initial differences in plant 
size are present. The continuous nucleation tessellation 
may offer a more realistic approach to modelling plant 
populations than the 'zone of influence' approach. 

Future Directions 

This review has shown that there are a number of 
empirical and simulation approaches to modelling spa
tial interactions in plant populations. Underlying all the

se approaches is the idea that the performance of an 
individual plant is affected not by overall population 
density but instead by a plant's 'effective density', 
which is a function of the size, proximity and disper
sion of its immediate neighbours. While ecologists agree 
that competitive interactions in sessile organisms are 
localized, there is little agreement as to what constitu
tes a 'neighbour' and how neighbourhood effects should 
be quantified. If progress is to be made in understan
ding intraspecific interactions in plant populations, ho
wever, a unified approach to the problem of 
determining a plant's 'competitive zone' or 'ecologically 
effective distance' will be required (Antonovics and Le
vin 1980). This is a formidable challenge, particularly 
since a sound theoretical basis for developing interac
tion models in plants is lacking. 

The three major approaches to defining 'neighbour
hoods' in interaction indices were previously outlined. 
The first and simplest approach is to consider the nea
rest neighbour, or alternatively the n nearest neigh
bours. The problem here is the choice of n. Consider, 
for example, a value of n=3 and the four nearest neigh
bour distances d1 = 0.5, ~ = 0.6, d:3 = 1.0 and d4 = 1.1. Is 
it sensible or realistic to include the third individual as 
a neighbour, but not the fourth one? Clearly this ap
proach is at best a crude approximation of the defini
tion of a neighbourhood. A second approach involves 
centering a circle of specified radius about a plant, and 
defining as neighbours all individuals falling within this 
region. This approach also has its problems. Determi
nation of the circle radius, while often empirically ba
sed, is nonetheless somewhat arbitrary. Furthermore, 
the inclusion-exclusion problem remains. For example, 
given a zone of influence radius r= 1.5, is it sensible to 
exclude from consideration an individual which is 1.51 
units away while at the same time including one which 
is 1.49 units from the target plant? The problem with 
the 'nearest neighbours' and 'circle radius' approaches 
is that they imply an aspatial definition of a plant's 
neighbourhood: number and dispersion of neighbours 
are only considered after the neighbourhood is defined. 
This gives rise to a troubling paradox: while the ove
rall model is spatial (since individual performance is mo
delled as a function of the number, size, and dispersion 
of neighbours), the determination of which individuals 
are neighbours is itself aspatial. Only the third approach 
offers a truly spatial definition of a plant's 'neighbour
hood'. Here neighbours are defined as those individuals 
sharing a Dirichlet tile edge with the target plant (or 
equivalently the first-order Delaunay triangulation 
joins). This spatial definition of neighbourhoods can ea
sily be modified to consider second and higher order 
neighbours as well, and Boots (l987b) outlines an algo
rithm for the calculation of order-k Dirichlet tessella
tions. I would argue that spatial models of intraspeci
fic interactions should utilize a spatial definition of a 
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plant's neighbourhood. 'Nearest neighbours' and 'cir
cle radius' definitions are therefore probably best avoi
ded in favour of the Dirichlet tessellation definition of 
neighbourhoods. 

Theoretical models of population dynamics have ge
nerally used a 'zone of influence' approach to quanti 
fy individual interactions. Interaction is defined in 
terms of the extent of area (or volume) overlap of neigh
bouring zones. This is a truly spatial approach, since the 
amount of overlap is a function of the size and proxi
mity of neighbouring individuals. A major drawback, 
however, is that there is no unequivocal way to speci
fy what the radius of a 'zone of influence' circle should 
be. An empirical approach to this problem is generally 
taken (e.g. in forestry models circle radius is equal to 
the crown diameter of open-grown trees for a given 
trunk diameter), but a number of problems nonethe
less remain. For example, is it reasonable to use infor
mation about open-grown trees to model individuals in 
closed forest stands? Is the 'zone of influence' of a root 
system larger, or smaller, than the crown diameter? Is 
a circle (or cone) a realistic model for a plant? It should 
also be appreciated that any change in the circle radius
plant size relationship will result in different levels of 
spatial interaction, since the amount of overlap and the 
number of individuals overlapping will change. As a re
sult, small differences in the circle radius values could 
conceivably alter the results of the simulation. 'Zone 
of influence' models must therefore be used with so
me caution, and ideally alternative approaches which 
circumvent the problem of defining an interaction zo
ne should be sought. Weighted tessellations, which have 
been used to model forest populations, are one possi
ble alternative. A potentially more realistic approach 
would involve modifying the Johnson-MeW growth tes
sellation model: a dynamic approach could be taken in 
which superior competitors 'invade' the spatial terri 
tories of less competitive ones. In such a model, tile area 
would reflect the 'growth potential' of an individual ra
ther than a true spatial 'territory'. 

Sibson (1980) called the Dirichlet tessellation" ... one 
of the most basic and useful invariants associated with 
a point pattern in the plane". It is my belief that tes
sellation analysis offers the most promising approach 
to modelling spatial processes in plant populations. 
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