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MODELING MARKOVIAN DEPENDENCE IN POPULATIONS OF
ARALIA NUDICAULIS"

N. C. KENKEL
Department of Botany, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Abstract. 1 examined spatial patterns of two populations of the clonal herb Aralia
nudicaulis for evidence of spatial inhibition among neighboring ramets. Second-order spa-
tial analysis revealed that ramet patterns of both populations were regular at local spatial
scales, a result consistent with the proposition that localized, inter-ramet interactions are
important in reducing spatial overlap. Localized ramet interactions suggest Markovian
dependence, which is defined when an event (e.g., occurrence of a ramet) at X is dependent
solely on the existence or otherwise of an event within a distance § of X. Evidence of
Markovian dependence in the populations was tested by fitting Markov point-process
models to the observed ramet patterns. The populations conformed well to the Markov
model, the results indicating that both ramet spatial patterns were Markov of range § =
18 cm. This inhibition distance corresponds closely to the mean horizontal radius of an
A. nudicaulis ramet, indicating that interactions occur at the spatial scale of the individual.
I suggest that a likely mechanism for the development of locally regular spatial patterns in

these populations is inter-ramet competition for a limiting resource, probably light.

Key words:  Aralia nudicaulis; clonal plant; local interaction; Manitoba, Canada; Markov point
process; modeling; second-order spatial analysis; spatial pattern; spatial scale; ramet.

INTRODUCTION

Because plants are sessile organisms, an individual’s
performance is determined in part by the size and prox-
imity of its immediate neighbors (Mack and Harper
1977, Kenkel 1991). This local dependence of events
will also affect a population’s spatial pattern (Cormack
1979). Since local dependence implies spatial inhibi-
tion, both dynamic models incorporating local inter-
actions (Lep$ and Kindlmann 1987) and the simpler
spatial-inhibition models (e.g., Matérn 1960) will al-
ways produce regular spatial patterns of individuals.
The presence of a regular spatial pattern in a population
thus offers strong inferential evidence for resource
competition between individuals (Pielou 1962, Anto-
novics and Levin 1980). While environmental hetero-
geneity and disturbance often mask the development
of regular spatial patterns in natural plant populations
(Antonovics and Levin 1980), regular patterns have
been described (e.g., Laessle 1965, Kenkel 1988). Few
attempts have been made to model observed regular
spatial patterns, however. This is due in part to the
paucity, until recently, of biologically meaningful spa-
tial-inhibition models (Ripley and Kelly 1977).

Early spatial-inhibition models have been criticized
as being biologically unrealistic. Matérn’s (1960) mod-
els, for example, are based on an inhibition rule spec-
ifying that any two individuals cannot be less than a
distance ¢ apart. Such an inhibition rule is probably
too restrictive for most biological situations; a more
realistic model would make it unlikely, but not im-
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possible, for two (or more) individuals to occur in close
proximity to one another (Cormack 1979, Diggle 1983).
Markov point processes (Ripley and Kelly 1977) are
point-inhibition models which quantify spatial inter-
actions in such a ‘“‘non-strict” manner. Biologists are
most familiar with Markov processes in the context of
Markov chains, which have been used to model suc-
cessional and spatial sequences (Facelli and Pickett
1990). The formal definition of a Markov process is a
stochastic process in which the conditional distribution
of event X, given a set of past events, depends only
on the last observation in the set (Bhat 1982). A similar
property for random fields (stochastic processes in > 1
dimension, Adler 1982) requires definition of an an-
alogue of the local dependence condition (ideas of ““past”
and ““future”’) that underlies the one-dimensional case.
Ripley and Kelly (1977) define local conditionality in
terms of “neighborhoods,” where pairs of points are
neighbors if they are less than a distance § apart. Such
processes are said to display Markovian dependence,
since the probability density of a point occurring at
location X depends only on local conditions—specifi-
cally, the process within the neighborhood of X (Ripley
1981). Thus Markov inhibition models generate locally
regular spatial point patterns (Kelly and Ripley 1976).
Although Cormack (1979) and others have advocated
the use of flexible Markov inhibition processes in mod-
eling biological systems, the present study is the first
to use Markov point-process models in this way.
One area in which Markovian dependence can be
applied is in the modeling of inter-ramet interactions
in clonal plant populations. Resource capture efficiency
in clonal plants is increased by positioning ramets so
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as to minimize their spatial overlap (Harper 1985).
Many ramet positioning models are architectural, and
based on averages of field-observed branching angles,
inter-node length, and bud and meristem fates (e.g.,
Smith and Palmer 1976, Bell and Tomlinson 1980).
In these models it is assumed that genet architecture
is adaptive, with selection favoring precise clonal or-
ganization. However, observations of natural popula-
tions (see Cook 1985) have revealed that natural vari-
ation and stochastic processes produce ramet patterns
that cannot be predicted by simple architectural mod-
els; developmental plasticity is apparently of greater
adaptive significance. Clonal growth models based on
module-by-module interactions produce more realistic
results (Waller and Steingraeber 1985), suggesting that
the mechanisms determining aboveground clonal pat-
terns operate at the level of the individual ramet. This
will be especially true when interactions are mainly
between ramets that are not physiologically integrated,
as would occur in a population consisting of a number
of genets having a “runner” (Bell 1984) architecture.
Ifinter-ramet interactions are important in minimizing
spatial overlap, a locally regular spatial pattern of ra-
mets is expected of clonal populations growing in ho-
mogeneous environments.

In this study I describe and model observed spatial
patterns of ramets in two populations of the clonal herb
Aralia nudicaulis. 1 demonstrate that the observed pat-
terns are consistent with a Markov point-process mod-
el, and discuss possible mechanisms for the develop-
ment and maintenance of locally regular spatial patterns
in the populations.

MATERIALS AND METHODS
Aralia nudicaulis

Aralia nudicaulis L. (Araliaceae; wild sarsaparilla) is
a clonal acaulescent herb of wide distribution in North
America, occurring from British Columbia to New-
foundland, and from Georgia to the southern Yukon
(Flanagan and Bain 1988). The species produces a long-
lived, perennating rhizome with small dormant axil-
lary buds (=every S5 cm) that have the potential to
develop into rhizome branches. As the rhizome grows,
it produces a short, thick caudex or ‘‘spur shoot” ~ev-
ery 1 m, which may or may not be active in a given
growing season. When a spur shoot forms, the dormant
bud behind it grows to maintain a repetitive production
of shoots and rhizome regeneration. Proliferative
branching occurs when the terminal shoot is replaced
by two renewal shoots; dormant lateral buds are also
released if the terminal erect shoot dies (Bawa et al.
1982). A preformed caudex bud typically produces a
vegetative shoot consisting of a single doubly com-
pound leaf having a distinctive “umbrella’ shape (Fig.
1). Most leaves have a petiole length of 25-30 cm and
a leaf area of 500-1000 cm?. Leaf scars can be counted
to determine caudex age; a mean age of 20 yr has been
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FiG. 1. Aerial view of a typical Aralia nudicaulis leaf. An
18-cm radius circle, centered on the petiole (@), is superim-
posed on the image.

recorded from natural populations (Strong and La Roi
1983, Flanagan and Bain 1988). Reproductive shoots
are uncommon, particularly at high clonal densities
and in shaded habitats (Barrett and Thomson 1982).
The clones themselves are extensive; rhizome exca-
vations indicate that genets may occupy 10 x 10 m
areas or larger, although rhizome fragmentation makes
the exact determination of clone size difficult (Barrett
and Thomson 1982). Established populations may
consist of a complex interdigitation of genets, with the
result that spatially adjacent ramets rarely belong to
the same genet (Edwards 1984).

Study area

I examined populations of Aralia nudicaulis in a
gallery forest at the University of Manitoba Field Sta-
tion, Delta Marsh, Manitoba, Canada (50°11' N, 98°23’
W). The forest is =2 km south of Lake Manitoba along
an oxbow of the Assiniboine River. It is dominated by
mature Quercus macrocarpa and Fraxinus pennsyl-
vanica, with Acer negundo occurring at low abundance.
The understory is dominated by A. nudicaulis. Carex
assiniboinensis also occurs as a lower layer (rarely high-
er than 15 cm), but is not abundant where 4. nudicaulis
is present. Other species occasionally encountered were
Rhus radicans, Osmorhiza longistylis, Actaea rubra,
and Rudbeckia laciniata.

The climate is sub-humid continental, with short
warm summers and long cold winters. Mean annual
temperature is 1.5°C. The warmest month is July (mean
= 19.1°C), and the coldest is January (mean = —19.8°C).
Precipitation averages 49.9 cm/yr, =75% of which falls
as rain. The mean number of degree-days (temperature
above 5°C) is 1600, and there are 125 frost-free days
(Environment Canada 1981).

Soil cores (n = 24) were taken to a depth of 10 cm
in a rich clay-loam. Soil was dried at 60°C, ground,
and mixed with distilled water at a 1:5 ratio. Mixtures
were shaken for 1 h and gravity filtered. Average values
of 6.6 = 0.2 for pH, and 0.542 = 0.05 mS for con-
ductivity, were obtained (means + 1 sbD). Percentage



1702

FiG. 2. Map of an excavated genet (total rhizome length
~29 m), and detail of 1 x 1 m area of excavated rhizomes.
Symbols code: R = rotted end of rhizome; ® = ramet shoot;
O = newly formed caudex bud; ® = dead caudex bud.

of organic matter (by ignition, 12 h at 430°C) averaged
17 £ 2.6%.

Site selection and field mapping

The two stands of Aralia nudicaulis were selected
based on perceived uniformity of site conditions. Thus
regions containing trees, tall shrubs, or other under-
story species were avoided in favor of those with uni-
form ramet densities and light conditions. This mini-
mized site heterogeneity problems that would otherwise
mask patterns resulting from biotic interactions and
lead to a violation of the homogeneity and isotropy
assumptions of second-order spatial analysis. Each 5
x 5 m plot was shaded by a single large Quercus macro-
carpa tree.

The two 5 x 5 m plots were gridded into 25 1 x 1
m subunits. Within each subunit, ramets were marked,
and distances (+1 cm) to each of the four corner posts
of the plot recorded. The law of cosines was then used
to obtain the spatial coordinates for each ramet (see
Kenkel 1988). One plot contained n = 533 ramets, the
other n = 580 ramets.

After ramet mapping was completed, excavations
were undertaken to examine the population’s rhizome
system. A map of one of the genets excavated, together
with a representative 1 X 1 m area of the rhizome
system, is shown in Fig. 2. These results confirm pre-
vious studies indicating that ramets are generally wide-
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ly spaced along rhizomes, and that populations of A.
nudicaulis consist of a complex of many interdigitated
genets. Thus the majority of localized interactions in
the population occur between ramets that are not in-
terconnected.

Statistical analysis

Second-order spatial analysis. —The spatial pattern
of ramets was analyzed using second-order spatial anal-
ysis, which is derived through a reduction of second
moments under assumptions of homogeneity and isot-
ropy of a point configuration (Ripley 1977). Consider
n points (individuals) distributed within a region of
area A; the intensity (mean number of individuals per
unit area) is A = n/A4. In second-order spatial analysis,
a circle of radius ¢ is centered on each individual, and
the number of neighboring individuals (those within
the circle) determined. Spatial pattern can be examined
at various spatial scales simply by varying .

The function AK(?) is defined as the expected number
of individuals within distance ¢ of an arbitrarily se-
lected individual; K(f) = 7> (the area of a circle of
radius ¢) if the spatial pattern is Poisson random. The
empirical function AK(¢), which is the observed number
of individuals within distance ¢ of a randomly selected
individual, is biased unless an edge correction is im-
plemented. Ripley (1977) suggested a toroidal edge cor-
rection, defining:

K@) = n 24 2 k(x, y),

where k(x, y) is a weighting (specified for each ordered
pair of points x, y) that is inversely proportional to the
circumference of a circle, centered on point (individual)
x and passing through point (individual) y, that lies
within the bounds of the study area. Summation is over
all ordered pairs of points less than ¢ apart. Thus k(x,
) is inversely proportional to the probability of ob-
serving an individual at a distance y from individual
x (Ripley 1981:159).

In practice, the analysis of point pattern involves
plotting L(¢) against ¢, where:

L?z)=z—\@.
g

Like K(¢), the function L(¢) has zero expectation when
the spatial pattern is Poisson random. The square root
serves to both linearize the plot and stabilize the vari-
ance (see Besag, in Ripley 1977: discussion section
following article). For a given radius ¢, the degree to
which K’(\t) deviates from wz? offers insight into the
observed pattern of individuals at that spatial scale.
Positive values of L(¢) indicate spatial regularity, while
negative values indicate clumping. Applications of the
method to ecological pattern analysis include Kenkel
(1988), Rebertus et al. (1989) and Andersen (1992).
Monte Carlo simulation is used to test the signifi-
cance of departures of L(¢) from random expectation
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(Diggle 1983:7). The following method was used to
generate confidence envelopes in this study: (1) gen-
erate a random configuration of » individuals within
an area A, using a high-quality congruential random
number generator (Arnason 1977); (2) determine L(¢)
vs. ¢ for this random configuration; (3) repeat steps 1
and 2 m = 99 times, and use the maximum and min-
imum values of the m simulations to define a confi-
dence envelope (see Diggle 1983, Kenkel 1988). The
generation of a confidence envelope using m = 99 ran-
dom simulations is adequate for tests at the conven-
tional 5% level (Besag and Diggle 1977, Marriott 1979).
Portions of the observed function L(f) vs. ¢ exceeding
the confidence envelope limits indicate the spatial scales
at which the observed spatial pattern shows significant
deviation from statistical randomness.

Markov point processes.—Markovian dependence
among events occurs when the conditional intensity of
an event at a given point (individual) X is dependent
solely on the existence or otherwise of an event within
adistance 6 of X (Diggle 1983). Markov point processes
(Ripley and Kelly 1977) are spatial inhibition models
in which the conditional intensity of X for a given
spatial configuration depends only on the configuration
in the “neighborhood” of X. Since points are “neigh-
bors” if they are closer than é apart, the point process
is said to be Markov of range 6. An extreme example
is the Matérn (1960) process, in which no two points
in the process are less than 6 apart. Flexibility in the
degree oflocal dependence is achieved using the Strauss
(1975) process, the conditional density of which is giv-
en by:

SX) = apry?

Here « is a normalizing constant, 3 reflects the intensity
of the spatial process, v describes the interaction be-
tween neighbors, s is the number of point pairs in con-
figuration X less than é apart, and » is the number of
points (Diggle 1983). A value of ¥ = 1 produces a
Poisson random pattern, while v = 0 produces a Ma-
térn “‘hard-core” (simple inhibition) process of range
6 (Ripley 1977). Intermediate values of v produce an
entire family of “non-strict” inhibition processes. Rip-
ley (1988) and Cressie (1991) summarize the theory of
Markov point processes, and demonstrate the rela-
tionship between Markov processes and the Gibbs pro-
cess of statistical physics.

Strauss processes can be generated using a point de-
letion-replacement algorithm (Ripley 1979). One be-
gins with an initial configuration of » points in the
plane. A point X, is selected at random and deleted,
retaining {X,, . . ., X,,}. A replacement point X, is then
chosen according to the conditional density:

8>0,0=vy=1.

p(x) = I1I rdix, x.1),
i=2

where d{X,, X} is the Euclidean distance between points

MODELING MARKOVIAN DEPENDENCE

1703

X, and X, and A(d) =< 1. For the Strauss process, /(d)
= 1if d{X, X,} > ¢, while h(d) = v whenever d{X,,
X,} < 4. It follows that the replacement point X, is
accepted with probability p(X,) = v*. Repeating the
deletion-replacement step many times results in con-
vergence to the Strauss process. Ripley (1979) suggests
that 47 steps are adequate in practice. I used a toroidal
correction to overcome the edge effect problem in gen-
erating the process.

Fitting a Strauss process model to an observed pat-
tern is done iteratively by changing the parameters v
(the descriptor of interaction between neighbors) and
6 (the interactive radius). I used the goodness-of-fit
criterion suggested by Diggle (1983:77), in which the
discrepancy (D) between the Strauss model and the
observed pattern is measured as:

D(9)=J; VKo — Vi o) 4

where K(t; 0) is the K function for a point pattern gen-
erated by the Strauss process, and K’(\t) is the estimator
calculated from the observed pattern. Once I found the
parameters v and 6 that minimized D(f), the upper and
lower limits from m = 99 simulations of the Strauss
process were used to define a confidence envelope for
the model.

RESULTS

Second-order spatial analysis of the two ramet spa-
tial patterns (Fig. 3) indicates a trend toward spatial
regularity at low spatial scales (10-25 cm radius range).
This is consistent with a model of spatial inhibition
between neighboring ramets.

For both populations the best fits to the Markov
point process were obtained for parameter values in
the range 16 cm < 6 < 19 cm and 0.775 < y < 0.825.
Strauss process models were fitted using 6 = 18 cm and
~ = 0.8 (Fig. 4). Both simulation envelopes completely
included the observed second-order analysis results,
indicating a good model fit within the range 0 dm < ¢
< 10 dm.

The results indicate an interaction radius 6 of ~18
cm for the two populations of Aralia nudicaulis. How-
ever, the value vy = 0.8 indicates that the degree of
inhibition is comparatively weak (recall that v = 1 in-
dicates complete spatial randomness, ¥ = 0 indicates
the Matérn complete-inhibition process). Thus al-
though the spatial pattern of ramets is regular at local
spatial scales, a Matérn process (completely non-over-
lapping circles of radius &) would be far too restrictive
a model for the data. The fitted model indicates that
the probability of ramet “survival” is =~0.8°, where s
is the number of neighbors within 18 cm of the ramet.

DiscussioN

The observed ramet spatial patterns in the two Aralia
nudicaulis populations are consistent with a Markov-
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FiG. 3. Second-order spatial analysis of the two Aralia nudicaulis ramet maps. ——= observed pattern; - - - - - = confidence

envelope for the 99 random simulations. L(f) measures the intensity of pattern at various spatial scales.

ian model of inter-ramet interaction. The spatial in-
teractions are inhibitory in nature, since the probability
of ramet establishment decreases as local density (num-
ber of neighbor ramets) increases. This results in a
regular pattern of ramets at local spatial scales.

The horizontal plane architecture of Aralia nudicau-
lis ramets (Fig. 1) is characteristic of a species maxi-
mizing its photosynthetic capacity in severely shaded
environments (Niklas and Kershner 1984), suggesting
that light is a limiting resource. The success of a given
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ramet at intercepting light depends on the supply rate
in its immediate neighborhood, which in turn depends
on local ramet density. The fitted Markovian models
indicate that the “survival” probability of a given ra-
met decreases as ramet density within an 18-cm radius
increases. Since the mean horizontal radius of 4. nu-
dicaulis leaves is =18 cm (Fig. 1), I infer that inter-
actions occur at the spatial scale of an individual ramet.

A spatiotemporal model of differential ramet pro-
duction, based on competition for light, can be invoked
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scales.
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to explain the creation and perpetuation of locally reg-
ular patterns in these populations. Begin with an initial
homogeneous substrate colonized by one or more A.
nudicaulis seedlings. At low initial densities, the ramets
will rarely interact. As ramet density increases, how-
ever, local high-density areas will develop and ramets
will begin to shade one another. In high-density areas
light levels will be insufficient to support new ramets,
with the result that new ramets will tend to succeed
only in areas of lower local density. It is possible that
control of ramet production in high-density areas is
achieved through bud activity inhibition in response
to both low light levels and a decrease in the red-to-
farred light ratio (de Kroon and Kwant 1991). In clonal
species there is some evidence to support the idea that
such a mechanism operates at fine spatial scales (e.g.,
Briske and Butler 1989). One expected result of such
a mechanism is to prevent ramet overproduction in
clonal populations (Pitelka 1984, de Kroon and Kwant
1991). Another is the development of a locally regular
spatial pattern in accordance with Markovian rules, as
I found in this study.

It has been suggested that the maintenance of rhi-
zome connections, as occurs in Aralia nudicaulis, al-
lows new ramets to draw resources from older parts of
the clone in overcoming the “competitive superiority”
of established neighbors (Cook 1985). However, a study
of C'“assimilate distribution in A. nudicaulis (Flanagan
and Moser 1985) found only limited evidence for the
physiological integration of ramets; the majority of ex-
ported carbon was translocated basipetally to the ad-
jacent rhizome section. This indicates that individual
ramets function as physiologically independent sub-
units (Watson 1986). Given that a given caudex of A.
nudicaulis is long-lived (Flanagan and Bain 1988), one
would expect photosynthate transport to and storage
in adjacent rhizome sections for use in the following
growing season. Thus rhizome retention in the species
may simply be an adaptation for survival in temperate
climates. Rhizome retention may also allow rapid rees-
tablishment of ramets in areas where they have been
removed through herbivory, disturbance, or natural
death of caudex shoots. Specifically, gaps created in the
A. nudicaulis canopy could be quickly filled by devel-
opment of axillary buds from an extensive, established
rhizome system (Fig. 2).

Markovian dependence may prove to be a charac-
teristic feature of interactions in sessile organisms. For
example, the demonstration that individual plant per-
formance is determined in part by the proximity of
neighbors is consistent with the idea of “local”” or Mar-
kovian dependence of events. The same may be true
of interactions between plant metamers, since it is
known that the occurrence of a leaf at a given position
on a tree branch, or the location and growth of the
branch itself, is largely determined by prevailing “lo-
cal” conditions (Honda et al. 1981). Additional studies
should be undertaken to determine the general validity

MODELING MARKOVIAN DEPENDENCE

1705

of Markovian dependence in modeling spatial inter-
actions in plants and other sessile organisms.
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