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Fractals in the Biological Sciences

1. INTRODUCTION

1.1 Fractal and Euclidean Geometries

    Western culture is obsessed with order, smoothness 
and symmetry, to the point that we often impose on na-
ture patterns and models derived from classical Greek 
geometry. Historically this tendency can be traced to 
Plato, for whom the ‘real’ world consisted of smooth, 
Euclidean shapes created by a supreme being. By con-
trast, the world we inhabit was created by a lesser, 
demiurgical being, and is nothing more than a rough, 
asymmetrical copy of the ‘real’ world. According to 
Plato, the ‘real’ world can only be glimpsed occasion-
ally through the mind. In this way, Plato was able to 
reconcile the inability of classical geometry (as later 
formulated by Euclid) to describe the world we inhabit. 
Peters (1994) has described fractal geometry as that of 
the Demiurge.

   Despite the fact that Euclidean geometry is a gross 
simplification of the world, western society has tena-
ciously clung to this ordered view. Such a view divorc-
es us from nature, since we tend to perceive deviations 
from symmetry as fundamentally wrong, as something 
to be corrected. This is learned very early, for example 
when children are taught to represent complex natural 
objects such as trees as simple Euclidean constructs 
(e.g. triangles, circles, rectangles). In later life, we ex-
pend considerable effort creating and maintaining sym-
metric patterns in our gardens (Victorian topiary being 
an extreme example). Our architecture also reflects 
these deeply ingrained traditions of symmetry and 
order: a good early example is the Roman Pantheon, 
which incorporates three basic shapes of Euclidean ge-

ometry (the circle, triangle, and rectangle). More mod-
ern examples include the palaces of the French kings, 
the fascist architecture of Germany and Italy, and in-
deed any modern city skyline. It is instructive to note 
that human-made objects invariably stand out against 
the natural, more ‘fractal’ world.

1.2 What is Fractal Geometry?

   Mandelbrot (1975) introduced the term ‘fractal’ 
(from the latin fractus, meaning ‘broken’) to character-
ize spatial or temporal phenomena that are continuous 
but not differentiable. Unlike more familiar Euclidean 
constructs, every attempt to split a fractal into smaller 
pieces results in the resolution of more structure. Frac-
tal objects and processes are therefore said to display 
‘self-invariant’ (self-similar or self-affine) properties 
(Hastings and Sugihara 1993). Self-similar objects are 
isotropic upon rescaling, whereas rescaling of self-af-
fine objects is direction-dependent (anisotropic). Thus 
the trace of particulate Brownian motion in two-dimen-
sional space is self-similar, whereas a plot of the x-co-
ordinate of the particle as a function of time is self-af-
fine (Brown 1995).

   Fractal properties include scale independence, self-
similarity, complexity, and infinite length or detail. Frac-
tal structures do not have a single length scale, while 
fractal processes (time series) cannot be characterized 
by a single time scale (West and Goldberger 1987). 
Nonetheless, the necessary and sufficient conditions for 
an object (or process) to possess fractal properties have 
not been formally defined. Indeed, fractal geometry 
has been described as “a collection of examples, linked 
by a common point of view, not an organized theory” 
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(Lorimer et al. 1994).

   Fractal theory offers methods for describing the inher-
ent irregularity of natural objects. In fractal analysis, the 
Euclidean concept of ‘length’ is viewed as a process. 
This process is characterized by a constant parameter 
D known as the fractal (or fractional) dimension. The 
fractal dimension can be viewed as a relative measure 
of complexity, or as an index of the scale-dependency 
of a pattern. Excellent summaries of basic concepts of 
fractal geometry can be found in Mandelbrot (1982), 
Frontier (1987), Schroeder (1991), Turcotte (1992), 
Hastings and Sugihara (1993), Lam and De Cola (1993) 
and in many of the references cited below.

    The fractal dimension is a summary statistic measur-
ing overall ‘complexity’. Like many summary statistics 
(e.g. mean), it is obtained by ‘averaging’ variation in 
data structure (Normant and Tricot 1993). In doing so, 
information is necessarily lost. The estimated fractal 
dimension of a lakeshore, for example, tells us noth-
ing about the actual size or overall shape of the lake, 
nor can we reproduce a map of the lake from D alone. 
However, the fractal dimension does tell us a great deal 
about the relative complexity of the lakeshore, and as 
such is an important descriptor when used in conjunc-
tion with other measures.

1.3 Fractals in the Biological Sciences

   Biologists have traditionally modelled nature using 
Euclidean representations of natural objects or series. 
Examples include the representation of heart rates as 
sine waves, conifer trees as cones, animal habitats as 
simple areas, and cell membranes as curves or simple 
surfaces. However, scientists have come to recognize 
that many natural constructs are better characterized us-
ing fractal geometry. Biological systems and processes 
are typically characterized by many levels of substruc-
ture, with the same general pattern being repeated in an 
ever-decreasing cascade. Relationships that depend on 
scale have profound implications in human physiology 
(West and Goldberger 1987), ecology (Loehle 1983; 
Wiens 1989), and many other sub-disciplines of biol-
ogy. The importance of fractal scaling has been recog-
nized at virtually every level of biological organization 
(Fig. 1; Section 5).

   Fractal geometry may prove to be a unifying theme 
in biology (Kenkel and Walker 1993), since it permits 
generalization of the fundamental concepts of dimen-
sion and length measurement. Most biological pro-
cesses and structures are decidedly non-Euclidean, 

displaying discontinuities, jaggedness, and fragmenta-
tion. Classical measurement and scaling methods such 
as Euclidean geometry, calculus and the Fourier trans-
form assume continuity and smoothness. However, it is 
important to recognize that while Euclidean geometry 
is not realized in nature, neither is strict mathematical 
fractal geometry. Specifically, there is a lower limit to 
self-similarity in most biological systems, and nature 
adds an element of randomness to its fractal structures. 
Nonetheless, fractal geometry is far closer to nature 
than is Euclidean geometry (Deering and West 1992).

    The relevance of fractal theory to biological problems 
is dependent on objectives. To the forester interested in 
estimating stand board-feet, a Euclidean representation 
of a tree trunk (as a cylinder or elongated cone) may be 
quite adequate. However, for an ecologist interested in 
modelling habitat availability on tree trunks (say, for 
small epiphytes or invertebrates), fractal geometry is 
more appropriate. Using a fractal approach, the com-
plex surface of tree bark is readily quantified. A forest-
er’s diameter tape ignores the surface roughness of the 
bark, giving but a crude estimate of the circumference 
of the trunk. For an insect 10 mm in length, the ‘dis-
tance’ that it must travel to circumnavigate the trunk is 
much greater than the measured diameter value. For an 
insect of length 1 mm, the distance travelled is greater 
still. This has consequences on the way that the tree 
trunk is perceived by organisms of different sizes. If 
the bark has a fractal dimension of D = 1.4, an insect 
an order of magnitude smaller than another perceives 
a length increase of 10D-1 = 100.4 = 2.51, or a habi-
tat surface area increase of 2.512 = 6.31. By contrast, 
for a smooth Euclidean surface, D = 1 and both insects 
perceive the same ‘amount’ of habitat. The higher the 
fractal dimension D, the greater the perceived rate of 
increase in length (or surface) with decreasing scale.

2. THE FRACTAL DIMENSION

    Formally, a mathematical fractal is defined as any 
series for which the Hausdorff dimension (a continu-
ous function) exceeds the discrete topological dimen-
sion (Tsonis and Tsonis 1987). Topologically, a line is 
one-dimensional. The dimension D of a fractal ‘trace’ 
on the plane, however, is a continuous function with 
range 1 ≤ D ≤ 2. A completely differentiable series has a 
fractal dimension D = 1 (the same as the topological di-
mension), while a Brownian trace completely occupies 
two-dimensional topological space and therefore has a 
fractal dimension D = 2. Fractal dimensions 1 ≤ D ≤ 2 
quantify the degree to which a trace ‘fills’ the plane. In 
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the same way, a planar curved surface is topologically 
two-dimensional, while a fractal surface has dimension 
2 ≤ D ≤ 3.

    Consider estimation of the length of a complex ‘coast-
line’. For a given spatial scale δ, the total length Lδ is 
estimated as a set of N straight-line segments of length 
δ. Because small ‘peninsulas’ and other features not 
recognized at coarser scales become apparent at finer 
scales, the measured length Lδ increases as δ decreases 
(Mandelbrot 1967). This dependence of length on mea-
surement scale is a fundamental feature of fractal ob-
jects. The relationship between length and measuring 
scale is summarized by the power law:

 L K Dδ δ= −  [1]

where K is a constant. The fractal dimension (1 ≤ D 
≤ 2) quantifies the degree of coastline complexity. In 
practice, D can be estimated from the slope of the log-
log plot: 

 log log ( )logL K Dδ δ= + −1  [2]

Note that the measured length is independent of mea-
surement scale (D = 1) for Euclidean (non-fractal) ob-
jects.

   Mathematical fractals exhibit exact self-similarity 
across all spatial or temporal scales, such that succes-
sive magnifications reveal an identical structure. An 
example is the Koch ‘curve’ (Sugihara and May 1990; 
Schroeder 1991: 8), a fractal object in which a reduction 
in the measuring scale by one-third (δn+1/δn = 1/3) in-
creases the measured length by four-thirds (Ln+1/Ln) = 
4/3. Substituting into the power law relationship:

 (Ln+1/Ln) = (δn+1/δn)1-D     

 (4/3) = (1/3)1-D  

 4 = 3D 

 D = log 4/log 3 = 1.26.

    Unlike mathematical fractals, natural objects do not 

Fig. 1. Examples of fractal patterns at various spatial scales (rounded boxes). Ovals summarize general processes operating at each 
scale: biotic processes predominate at finer spatial scales, abiotic processes at coarser scales. Rectangles indicate the scientific disci-
plines at which these patterns and processes are normally studied.
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display exact self-similarity. Nevertheless, many natural 
objects do display some degree of ‘statistical’ self-simi-
larity, at least over a limited range of spatial or temporal 
scales. For example, lung branching shows statistical 
self-similarity over 14 dichotomies, and trees branch-
ing over 8 dichotomies (Lorimer et al. 1994). Statistical 
self-similarity refers to scale-related repetitions of over-
all complexity, but not of the exact pattern. Specifically, 
details at a given scale are similar, though not identical, 
to those seen at coarser or finer scales. It should be em-
phasized, however, that statistical self-similarity is not 
a prerequisite to applying fractal theory. Normant and 
Tricot (1993) emphasize this point:

“... a geographical line is seen as a fairly nonho-
mogeneous curve, that is, with both straight lines 
(almost recifiable) and chaotic parts, whose lo-
cal dimension is not the same everywhere. Such 
curves are not self-similar, not even statistically 
... it is necessary to stress the fact that fractal does 
not imply self-similar, and thus coastlines are not 
self-similar, but fractal ... we assert that self-simi-
larity is a restrictive point of view”.

    The fractal dimension D is most commonly estimated 
from the regression slope of a log-log power law plot. 
However, the definition of ‘independent’ and ‘depen-
dent’ variables (required in least squares or Model I re-
gression analysis) is not straightforward in such appli-
cations (Zeide and Gresham 1991). This is a serious but 
largely unrecognized problem, for using least square 
regression in this way results in a biased slope estimate 
(Kenkel and Walker 1993; Loehle and Bai-Lian 1995). 
Model II regression analysis should be used instead. 
Two methods, principal axis regression (equivalent to 
principal components analysis) and reduced major axis 
regression, are available. The reduced major axis slope 
is obtained very simply, as the least squares (Model I) 
slope divided by the product-moment correlation be-
tween the two variables (Niklas 1994).  

3. MEASURING THE FRACTAL DIMENSION OF 
NATURAL OBJECTS

   In this section, we summarize some of the more com-
monly used methods for estimating the fractal dimen-
sion D of natural objects. Formal mathematical deriva-
tions and proofs have been omitted; readers interested 
in fractal theory should consult Mandelbrot (1982), 
Voss (1988), Falconer (1990), Tricot (1991), or Hast-
ings and Sugihara (1993). Note, however, that some 
of the methods used to estimate the fractal dimension 
are empirically, not mathematically, derived. Other 

reviews that have summarized fractal dimension esti-
mation methods include Frontier (1987), Milne (1988, 
1991a), Williamson and Lawton (1991), Kenkel and 
Walker (1993), Klinkenberg (1993), Nonnenmacher 
et al. (1994), Lorimer et al. (1994) and Johnson et al. 
(1995). Most of these reviews have been somewhat se-
lective, or have focussed on a specific sub-discipline 
within the biological sciences. The diversity of avail-
able approaches for determining the fractal dimension 
reflects differences in objectives, and in the type of data 
analyzed.

3.1 Dividers (Compass) Method

    This method is used to measure the fractal dimension 
of a curve (e.g. cell membrane, coastline, landscape 
edge). The procedure is analogous to moving a set of 
dividers of fixed length δ along the curve (Fig. 2). The 
estimated length of the coastline is the product of N 
(number of rulers required to ‘cover’ the object) and the 
scale factor δ. The power-law relationship between the 
measuring scale δ and the length L = Nδ is: 

 L K D= −δ1  [3]

    The fractal dimension is estimated by measuring the 
length L of the curve at various scale values δ. Normant 
and Tricot (1991) note that this method is not well-
founded theoretically, and furthermore is exact only for 
statistically self-similar curves (see also Tricot 1991). 
Because the value L = Nδ may vary depending on start-
ing position along the curve, it is recommended that 
the procedure be repeated at different starting positions 
(Sugihara and May 1990). In some cases the log-log plot 
does not have a constant slope (i.e. the fractal dimen-
sion is not constant). While the point of slope change 
may indicate the operational scale of different genera-
tive processes (Kent and Wong 1982; Wiens 1989), it 
may simply reflect the limited spatial resolution of the 
data being analyzed (Hamilton et al. 1992; Kenkel and 
Walker 1993; Gautestad and Mysterud 1994).

   Longley and Batty (1989) refer to the above pro-
cedure as the ‘structured walk’ method, and outline a 
number of variants of this basic procedure. Normant 
and Tricot (1991, 1993) have recently described an al-
ternative estimation algorithm, termed the ‘constant de-
viation variable step’ (CDVS) method, that emphasizes 
the local behaviour of the curve. Their method is more 
complicated, as it involves division of the curve into a 
series of subarcs (local convex hulls) of given breadth 
ε. By varying ε, an estimate of the fractal dimension 
is obtained using a simple modification of the above 
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equation. Tricot (1991) provides a detailed exposition 
on the analysis of nonrectifiable fractal curves. He is 
quite critical of empirical estimation methods, as evi-
denced by the following quote from the introduction to 
his book: 

“... it is quite surprising to find, even in the case of 
curves, how scarce, hazy, and unmathematical are 
our notions on the subject. The less precise our 
thoughts are, the fuzzier our practical scientific 
path will be. How many still think that the west 
coast of Great Britain is a self-similar curve, or 
that the ‘compass method’ allows us to estimate 
the fractal dimension ...?”

3.2 Grid (Box-Counting) Method 

    This procedure, like the dividers methods, can be 
used to measure the fractal dimension of a curve (Long-
ley and Batty 1989). In addition, it can be applied to 

overlapping curves (Peitgen et al. 1992: 240) and struc-
tures lacking strict self-similar properties such as veg-
etation (Morse et al. 1985). Formally, the method finds 
the ‘δ-cover’ of the object, i.e. the number of pixels of 
length δ (or circles of radius δ) required to cover the 
object (Voss 1988: 60). A more practical alternative is 
to superimpose a regular grid of pixels of length δ on 
the object and count the number (C) of ‘occupied’ pix-
els (Fig. 3). This procedure is repeated using different 
values of δ. The defining power-law relationship is:

 C K D= −δ  [4]

Because slight re-orientations of the grid can produce 
different values of C, grid placements should be ran-
domly replicated to obtain a distribution of D-values 
(Appleby 1996). Tatsumi et al. (1989: 501) outline an 
analogous method for image-processing systems. Long-
ley and Batty (1989) note that the box-counting method 
“may be less suited to the task of hugging the more in-
tricate details of the base curve but, because of its low 
computer processing requirements, it is recommended 

Fig. 2. Dividers (compass) method. Two ruler lengths (δ) are 
shown in (a) and (b). The starting position is indicated by an 
arrow.

Fig. 3. Grid method: border or line image. Two box ‘lengths’ are 
shown in (a) and (b). Boxes including the image are shaded.

δ

δ
a)

b)

a)

b)
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as a method suitable for yielding a first approximation 
to the fractal dimension”. Normant and Tricot (1991) 
are more critical, stating that the box-counting method 
is “often unusable and, in any case, yields very impre-
cise results”. Pruess (1995) demonstrates that the lim-
ited resolution of most data renders the estimation of D 
sensitive to the range of box lengths δ used.

    Morse et al. (1985) describe a box-counting method 
for estimating the fractal dimension of ecological habi-
tats (2 ≤ D ≤ 3). Consider the problem of estimating the 
fractal dimension of a tree branch. In principal, a three-
dimensional grid system could be superimposed on the 
branch and the size of ‘counting-cubes’ varied. Such a 
procedure is impossible to implement in the field, how-
ever, at least given present technical limitations (Zeide 
and Gresham 1991: 1209). Morse et al. (1985) simpli-
fied the problem by obtaining a two-dimensional pho-
tographic image of the habitat, the fractal dimension of 
which was determined using the box-counting method 
(1 ≤ D ≤ 2). Following Mandelbrot (1982: 365), they 
determined heuristic lower (D+1) and upper (2D) limits 
of the ‘habitat’ fractal dimension under the assumption 
that the photograph is a randomly-placed orthogonal 
plane. The resulting limits are rather broad (e.g. if D = 
1.3, the limits are 2.3 - 2.6). Despite this limitation, and 
evidence suggesting that extrapolation to higher dimen-
sions is invalid (Roy et al. 1987; Huang and Turcotte 
1989), the procedure has since been used by others to 
estimate habitat fractal dimensions (e.g. Shorrocks et al. 
1991; Gunnarsson 1993). Cube-counting methods can 
be used to estimate D of coded surfaces (Milne 1988: 
73) and animal territories (Milne 1991a).

    The box-counting method can also been used to de-
termine the fractal dimension of pixel images (Milne 
1992: 44; Virkkala 1993). Consider a map in which 
states of interest are coded either ‘on’ (1) or ‘off’ (0). 
To determine the fractal dimension of the ‘on’ pixels, 
divide the image into coarser scales of pixel resolution 
(‘windows’) and count the number of windows occu-
pied by a least one ‘on’ pixel (Fig. 4). The log-log plot 
(resolution scale vs. number of windows occupied) is 
used to determine the fractal dimension (D = -slope).  
De Cola (1991) describes a related method, based on 
hierarchical grouping of adjacent pixels, for determin-
ing the fractal dimension of spatial autocorrelation. 
Virkkala (1993) used a similar method to determine 
the fractal dimension of passerine birds distributions in 
central Finland. Gautestad and Mysterud (1994) note 
that Virkkala’s (1993) approach is incorrect. They offer 

a correction, but note that the limited resolution of most 
distributional data (the so-called ‘dilution effect’) can 
severely bias fractal dimension estimates.

   Taylor and Taylor (1991) point out that the limited 
resolution of digitized images results in an underestima-
tion of counts for smaller boxes, resulting in a convex 
log-log plot (and an underestimate of D). They propose 
an image filtering algorithm in which cells that are ‘off’ 
in the original image are selectively turned ‘on’. The 
idea is that, for (say) a 3 x 3 window in which only the 
central cell is ‘on’, there is a finite probability that some 
or all of the adjacent eight cells should also be included 
in the box count. Probabilities are assigned to the cells 
using a binomial model and solving for p:

 3 1 8D pB− =  [5]

where D is the box dimension of the original (uncor-
rected) image and B is the observed mean number of 
‘on’ neighbours (for a more complete description see 

Fig. 4. Grid method: pixel or filled image (solid black). Two box 
‘lengths’ are shown in (a) and (b). Boxes including the image 
are shaded.

a)

b)
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Taylor and Taylor 1991: 358). Cells with probability 
values exceeding a specified threshold are switched 
‘on’ and the box-dimension recalculated.

3.3 Area-Perimeter Relationships

    Area-perimeter methods are generally used to esti-
mate the fractal dimension of objects (‘islands’) coded 
as raster-based digitized images. Depending on ob-
jectives, three approaches are possible: (a) perimeter-
based, to determine the extent that an island perimeter 
fills the plane; (b) area-based, to determine the extent 
that the island itself fills the plane; (c) landscape-based 
(islands divided into different types), to compare island 
complexity. These methods can be used to determine 
the ‘mean’ fractal dimension of a set of islands, or to 
determine D for each island. The method used will 
depend on the objectives of the study. As an example, 
consider a landscape consisting of pixel ‘islands’ (Fig. 
5a). A study focussing on ecotonal boundaries (edges) 
would use the perimeter dimension method. With this 
method, convoluted islands have a high D, as do long 
and thin islands. A study focussing on acquisition and 
retention of space, however, would use the area dimen-
sion. This method computes a high fractal dimension 
for objects that best ‘fill up’ two-dimensional space (i.e. 
isodiametric islands). Here, the argument can be made 
that an isodiametric patch of vegetation (area to edge 
ratio high) is more likely to retain that space than a thin, 
convoluted patch (area to edge ratio low). Both meth-
ods measure a fractal dimension, but application and 
interpretation are quite different.

Perimeter Dimension

    This method measures the extent that patch perim-
eters ‘fill’ the two-dimensional plane. The perimeter-
area relationship for a set of islands is given by:

 P kA D= 2  [6]

where the area A is the number of pixels making up a 
given object, the perimeter P is a count of the number 
of pixel edges, and k is a scaling constant. The slope 
of the log-log area-perimeter plot for a set of objects 
gives a ‘mean’ fractal dimension (Burrough 1986:127). 
Landscapes with perfectly square objects (perimeter: 
area ratio low) have a fractal dimension D = 1, while 
those containing highly complex convoluted objects 
(perimeter:area ratio high) have fractal dimensions ap-
proaching 2. In effect, the method determines the rela-
tive ‘edginess’ of an image. For a single island, the pe-
rimeter dimension reduces to D = 2 log(P)/log(A).

   A digital image of a fractal object is Euclidean by 

virtue of its being placed onto a grid, leading to biased 
estimates of D. To account for this ‘rectangularization’, 
the perimeter P is expressed as P/4, where the value 4 
is determined as the proportionality constant for a pixel 
system. The limitations of a square grid means that the 
maximum value for D = 2 (A - 1), where A is the island 
area. The island perimeter should therefore be measured 

Fig 5. Area-perimeter relationships. (a) Landscape of pixel ‘is-
lands’. The area of each island in shaded, and its perimeter is 
indicated by a solid black line; (b) Determination of L (row 
and column lengths of pixel-islands) for computation of the box 
dimension; (c) Landscape of three island types, indicated by 
different shading levels.

a)

b)

c)
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using the expression [P + (2 (A - 1))]/4 when estimating 
D using the perimeter-area method (Olsen et al. 1993). 
Milne (1991a: 224-226) notes that rectangularization is 
particularly problematic when islands are small (A < 
30). Edge effects are also a problem: inclusion of ‘is-
lands’ abutting the edge of the study area will result in 
a biased estimate of the fractal dimension. The simplest 
solution is to ignore these islands, but this will tend to 
exclude larger, more convoluted islands and so bias the 
D estimate. A final problem relates to the representation 
of digital images. A line drawn at 45° to the horizontal 
is approximated as a ‘staircase’ of pixels, resulting in 
a considerable increase in the ‘perimeter’ of an object 
relative to its area. In preliminary studies, we found that 
estimates of D depended on the orientation of an im-
age during scanning. We recommend that the image be 
digitized in a number of orientations to quantify this 
variation.

Area Dimension

   This method quantifies the proportion of the plane 
that is occupied by an island. Voss (1988: 61) suggests 
that the ‘box’ dimension of an island can be measured 
as D = log A/log L, where L is the maximum of the 
row and column lengths of the pixel-island (Fig. 5b). 
Square islands (A = n2, L = n) completely fill the two-
dimensional space (D = log n2/log n = 2), while for 
rectangular islands of length n and width 1 (A = n x 1, 
L = n), D = log n/log n = 1. Milne (1991a: 225) sug-
gests as an alternative the ‘area’ dimension D = log A/
log (P/4). Unfortunately, the relationship between these 
two area-perimeter measures (and to the perimeter di-
mension) are poorly understood. If an archipelago of 
islands is characterized using this method, the deter-
mining length-area relationship is:

 A LD=  [7]

Landscape dimension

   For an image composed of several island types (e.g. 
habitat classification map, Fig. 5c), a measure of D that 
considers island adjacency is desirable. Specifically, 
the extent to which the perimeter of a given island type 
interacts with neighbouring island types is incorporat-
ed into the measure of fractal dimension. Olsen et al. 
(1993) calculate a modified perimeter length:

 P P A C Cm t= + −( ) −( )( ) 2 1 1  [8]

where P and A are the island perimeter and area respec-
tively, C is the count of the number of adjacent island 

types, and Ct is the total count of all island types in the 
image. A modified fractal dimension is then calculated 
for the landscape by substituting the new perimeter 
measure into the perimeter-area power law relation:

 D P Am m= ( ) ( ) 2 4ln ln  [9]

3.4 Probability-Density Function

    This method was originally developed to analyze 
point pattern data (Voss 1988), but has most commonly 
been used to estimate the fractal dimension of a ras-
ter image (e.g. Milne 1992). Unlike the perimeter-area 
methods, discrete habitat islands are not required. The 
probability-density function ρL is obtained from square 
(L x L) sampling ‘windows’ successively placed over 
each ‘on’ pixel (Fig. 6a). Within each window, a count 
is made of the number (n) of ‘on’ pixels. Count frequen-
cies are then expressed as probabilities (Fig. 6b,c):

 ρL
n

N L

=

( )

∑ =
1

1 [10]

where N(L) ≤ L2. For a given value of L, the first mo-
ment of the probability distribution is given by:

 M L n L
n

N L

( ) =
=

( )

∑ ρ
1

 [11]

which  is termed the ‘mass dimension’. These computa-
tions are repeated for various values of L. Because each 
window is centred on a single pixel, L must be an odd 
number. Voss (1988: 66-67) shows that the following 
power law holds for fractal images:

 M L kLD( ) =   [12]

Thus the fractal dimension D can be estimated from 
the log-log plot of the first moment as a function of L 
(Milne 1991b). Note that higher-order moments of the 
function can also be defined (see Section 4).

   Milne (1992: 41-45) compared three artificial land-
scapes (each half-covered with ‘filled’ pixels) to deter-
mine the behaviour of this method. The method can also 
be used to estimate the dimension of fractal surfaces, 
though it gives poor estimates for surfaces of D > 2.5. 
To overcome this problem, Keller et al. (1989) suggest 
a linear interpolation correction. Note that increases in 
the window size (L) result in exclusion of a greater pro-
portion of pixels along the periphery of the map. Under 
assumptions of isotropy, a toroidal edge correction can 
be used to circumvent this problem. 
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3.5 Size-Frequency Distributions 

Distribution of Areas (Korcak Empirical Relation)

   For an archipelago of ‘self-similar’ islands, the re-
lationship between island size (area) and frequency is 
given by the cumulative hypergeometric size-frequency 
distribution (Burrough 1986:127):

 N ka D= −( )2  [13]

where N is the number of islands larger than area a. 
(Fig. 7). This function implies that an archipelago of 
irregularly-shaped islands (i.e. D large) will be domi-

nated by many small islands. 

    Hastings et al. (1982), following Mandelbrot (1982), 
suggested that there is a relationship between persis-
tence (H = Hurst (1951) parameter of the fractional 
Brownian motion (fBm) model; Peters 1994: 53) and 
landscape fragmentation (D = fractal dimension of 
patches as determined from the hypergeometric distri-
bution). While the exact relationship between D and H 
depends on the model chosen, Sugihara and May (1990) 
state that “increased persistence (more memory in the 
process) should correspond to smoother boundaries and 
patches with larger and more uniform areas; whereas 
reduced persistence will correspond to more complex 
and highly fragmented landscapes dominated by many 
small areas”. Under certain limiting assumptions (Sugi-
hara and May 1990: 83), the relationship between H 
and D is:

 H D= −2  [14]

    This implies that landscapes with many small islands 
show greater boundary complex (high D) and are less 
persistent (low H). Sugihara and May (1990: 83) sum-
marize the relationship as:

H D Correlation Nature of Process

> 0.5 < 1.5 positive ‘persistent’

= 0.5 = 1.5 zero Brownian (random)
< 0.5 > 1.5 negative ‘anti-persistent’

    Persistence refers to the degree of autocorrelation of 
adjacencies: for H < 0.5, a fractional Brownian motion 
trace is negatively correlated, whereas values are posi-
tively correlated for H > 0.5. Hastings et al. (1982) used 
this method to compare cypress (early successional) 
and broadleaf evergreen (late successional) patches in 
Okefenokee Swamp. They found that cypress patches 
had a higher fractal dimension (D = 1.25, H = 0.75) 
than broadleaf evergreen patches (D =1.0, H = 1.0), 
implying that the earlier successional vegetation shows 
greater patchiness and decreased persistence (see also 
Hastings and Sugihara 1993:126). A later study (Melt-
zer and Hastings 1992) points out a number of method-
ological problems associated with the approach. While 
the method may prove useful in remote sensing (Sugi-
hara and May 1990), objective tests are required to de-
termine whether persistence-patchiness relationships 
developed under limiting theoretical assumptions are 
valid for ecological systems (Johnson et al. 1995).

   In a study of lake geometry in tropical river flood 

Fig. 6. Probability-density function. (a) Pixel map (shaded re-
gions), showing a representative 3x3 sliding window (double 
line) for which the count = 5; (b) Frequency distribution of pix-
el counts for a 3x3 window; (c) Frequency distribution of pixel 
counts for a 5x5 window.
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No. of Pixels

ƒ
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No. of Pixels
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basins, Hamilton et al. (1992) found that fractal dimen-
sions calculated were “infeasible”, with some values 
approaching 3. They attributed this to censorship and 
truncation. Censorship occurs as lake sizes approach 
the spatial resolution of the image (attributable to satel-
lite limitations, or possibly the seasonality of smaller 
lakes). Truncation reflects the physical impossibility of 
having lakes larger than the area of the floodbasin. Vio-
lations of the isodiametry assumption can also inflate 
estimates of the fractal dimension. Walker (unpublished 
data) found that high D-values for habitat patches in 
Riding Mountain National Park, Canada reflected the 
linearity of drainage patterns in the region.

Distribution of Volumes (Rosin’s Law)  

    Turcotte (1986) described the hypergeometric fre-
quency distribution relation (Rosin’s Law) for particle 
size in soils and other geological material as:

 N kR Di= −  [15]

where N is the number of particles whose radius is 

greater than Ri, and D is the fractal dimension. Perfect 
et al. (1992) derived a version of Rosin’s Law for use 
with soil mass data. A higher fractal dimension indi-
cates greater soil fragmentation and a soil increasingly 
dominated by small particles (Tyler and Wheatcraft 
1989): 

Fractal  
Dimension

Nature of Soil

D = 0 all particles are of equal diameter.

D = 3 number of particles greater than a 
given radius Ri doubles with each 
corresponding decrease in particle 
mass.

0 < D < 3 greater proportion of larger particles 
than D = 3 (sand).

D > 3 greater proportion of smaller par-
ticles than D = 3 (silt, clay).

    Tyler and Wheatcraft (1989) show that silt-clay soils 
have fractal dimensions in the range 3.0-3.5. They com-
puted one-dimensional ‘pore trace’ D values for soils 
using a method suggested by Mandelbrot et al. (1984). 
For a soil of fractal dimension D = 3.2, the fractal incre-
ment Di = D - 3 = 0.2 measures the degree to which the 
soil ‘exceeds’ the Euclidean three-dimensional space. 
The one-dimensional pore trace is simply 1 + Di = 1.2. 
A trace of D = 2 would completely fill the space, as 
expected for a soil containing a high proportion of very 
fine particles.

   Rieu and Sposito (1991a) developed a soil porosity 
model under the assumption that soil is a fragmented, 
fractal porous medium. Using this model, soil water 
potential was shown to be a function of fractal dimen-
sion:

 h h Dri o i= −( ) +  −( )1 1 3φ θ  [16]

where hi = soil water potential, φ = soil porosity, θi = 
volumetric water content, and Dr is the ‘bulk fractal di-
mension’. Rieu and Sposito (1991b) found good agree-
ment between Dr and the D determined using Rosin’s 
law.

3.6 Branch Order Relationships

   The relationship between mean bronchial tube diam-
eter and branch order was examined by West and Gold-
berger (1987). The defining power-law relationship is:

 R z A z zD( ) = ( )  [17]

where R(z) is the mean tube diameter at the zth gen-

Fig. 7. Size-frequency distributions. (a) Map of forest patches on 
public land between Riding Mountain National Park and Duck 
Mountain Provincial Forest, Manitoba; (b) Cumulative size-
frequency distribution for the image in (a).
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eration, A(z) is a constant periodic function, and D is 
the fractal dimension. This fractal model predicts that 
decreases in mean tube diameter with each generation 
follow a power-law relationship. For bronchial tube 
length, the relationship is:

 L z A z z D( ) = ( ) −1  [18]

where L(z) is the mean tube length at the zth genera-
tion (Fig. 8). Using this relation, Crawford and Young 
(1990) found that branching pattern of two species of 
oak is consistent with a power-law model. 

3.7 Spatial and Temporal Series

    These methods are used to examine the fractal prop-
erties of a spatial or temporal series. For a temporal 
series, the fractal dimension describes the relationship 
between signal variance and time scale (Schepers et al. 
1992).

Semivariance

    The semivariance γh of a spatial or temporal series 
(Curran 1988):

 γ h h i i h
i

N

N X X
h

= ( ) −( )+
=
∑1 2 2

1

 [19]

is the variance at lag interval h. The semivariogram 
plot (γh as a function of h) reaches a maximum (the so-
called ‘sill’) at a lag distance L (Fig. 9). The sill semi-
variance γL approximately equals the variance of the 

data, while distance L  specifies the range of spatial or 
temporal dependence (Phillips 1985). It can be shown 
(Burrough 1983) that the fractal dimension of the series 
is described by:

 2γ βh h=  [20]

where β = 4-2D. The log-log semivariogram is used to 
determine the fractal dimension (Burrough 1986:127), 
where β is the slope of the linear portion of a semivar-
iogram (h < L). For white noise,  β=0  and the fractal 
dimension D = 2. Conversely, for a simple linear trend 
(spatial dependence at all scales) β=2, giving D = 1. 
For a statistically self-similar series, D = 1.5 (Palmer 
1988: 94).

    Burrough (1981) used semivariance to determine 
the fractal dimension of landscapes and environmental 
data. Fractal dimensions were generally quite high: for 
example, D = 1.5 for successive values of soil pH. Soil 
sodium levels had a fractal dimension D = 1.9, meaning 
that successive values in the sequence are nearly inde-
pendent. Palmer (1988) used the semivariance method 
to examine spatial dependence of vegetation along 
transects, and Taylor (1988) used a related approach to 
determine the fractal geometry of tree ring increments. 

Fig. 8. Branch order relationships. (a) Branch order for a tree; 
(b) Example of branch order relationships in two species (dia-
monds and circles). Slopes of the log-log plots are indicated by 
dashed lines.
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Fig. 9. Spatial and temporal series: semivariance. (a) Successive 
values as a function of distance (coordinate position); (b) Semi-
variance plot, showing the sill value; (c) Log-log plot of semi-
variance as a function of lag distance (for values below the sill). 
The fitted line is used to estimate D.
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Russell et al. (1992) determined D for the distribution 
of a marine predator (auklet) and its prey (a species of 
copepod) along ocean transects off the Alaskan coast. 
They found that values of D for predator and prey were 
similar, which suggests that the foraging patterns of 
auklets match the multiscale complexity of their food 
resource.

   Curran (1988) found that the ‘ideal’ semivariogram 
form (i.e. a distinct range and defined sill) is often 
not found in remotely sensed data. He noted that the 
‘grain’ size (e.g. 30x30 m pixels in Landsat imagery) 
may exceed the range over which a particular variable 
is spatially dependent. Leduc et al. (1994) examined the 
robustness of semivariance in estimating the fractal di-
mension of landscapes. They found that landscapes are 
rarely self-similar over all spatial scales, and that they 
often display anisotropy. It was also found that grain 
size can affect the estimate of D. 

Spectral Analysis

   Spectral analysis has been used extensively in medi-
cine (e.g. Liebovitch et al. 1987; Goldberger et al. 1990) 
and geology (e.g. Huang and Turcotte 1989) to estimate 
D of temporal and spatial series. The power spectrum 
is defined as the square of the amplitude A of a Fourier 
transform. The spectral behaviour for pure fractional 
Brownian motion (fBm) is given by:

 P ω ω β( ) =   −1  [21]

where P(ω) is the power spectrum, |ω| is the spectral 
frequency, β = 2H+1, and H=2-D is the Hurst coeffi-
cient (Fortin et al. 1992). Because of the difficulty of 
estimating H directly from the fBm, the first differences 
of the signal (known as fractional Brownian noise, fBn) 
are normally used instead (Fig. 10). The spectral be-
haviour of fBn is as above, except that β = 2H-1. If suc-
cessive fBn increments are completely uncorrelated, 
H= 0.5 and D= 1.5. For fractal dimensions D < 1.5 (H > 
0.5), successive increments in the series are positively 
correlated. Correlations are higher and extend longer 
(i.e. the series has greater ‘memory’ or ‘persistence’ 
over time) as H increases. For D > 1.5 (H < 0.5), suc-
cessive increments are negatively correlated. 

   A number of other methods for estimating the fractal 
dimension of time series have been described. Schepers 
et al. (1992), in a comparison of four methods, found 
that spectral analysis gave the most precise and accurate 
results. The other three methods tested (relative disper-
sion, correlation, and Hurst’s rescaled range analysis) 

gave highly biased results and are not described here 
(see Hastings and Sugihara 1993: 56-59). A crude, em-
pirical measure of waveform fractal dimension derived 
by Katz (1988) is also not recommended (Kenkel and 
Walker 1993).   

3.8 Point Patterns

   These methods are used to determine the extent of 
self-similar spatial clustering in point patterns (Fig. 
11a). Statistically self-similar spatial point patterns can 
be generated using the Lévy dust model (Mandelbrot 
1982: § 32). The more highly clustered the points (at all 
spatial scales), the lower the fractal dimension.

Palm Intensity

    For a set of coordinates of points on the plane  
[ρ1, ρ2, ..., ρn], compute all pairwise vector ‘distances’:

 ∆i j i j, = −ρ ρ   (i = 1 to n; j = 1 to n;  i π j) [22]

    A nonparametric estimation of the Palm intensity 
is found by counting the number of vectors within an 

Power Spectrum Log ω
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Fig. 10. Spatial and temporal series: spectral analysis. (a) First 
differences of a signal; (b) Power spectrum plot (log ω vs. log 
P(ω)) for the signal spectrum in (a). The fitted line is used to 
estimate D.



Reprinted from: COENOSES 11: 77 - 100 (1996)

annular region of area A (with radii of u1 and u2). Di-
viding this value by A gives an estimate of the Palm 
intensity λ(Δ) at Δ = u (where u1 ≤ u < u2). The log-log 
plot of λ(Δ) vs. u has slope H = 2 - D under certain lim-
iting conditions. A parametric maximum likelihood es-
timation method for D is derived by Ogata and Katsura 
(1991: 465-466). This method requires a large number 
of points (>1000) to obtain a reasonable estimate of D. 

Spectral Intensity 

    This method is related to the power spectrum proce-
dure outlined above. The averaged marginal periodo-
gram with respect to wave number (ωr) is estimated 
as:

 ∆ ω ω ωθ ω ωθr r j j
j

J

J I r( ) = − ( )
=

∑1
1

cos , sin   [23]

The linear portion of the log-log plot of ∆(ωr) vs. ωr  has 
slope = -D. However, Ogata and Katsura (1991: 467) 
recommend that D be determined using parametric 
maximum likelihood estimation. 

Grid (Box-Counting) Method

    The box-counting method described previously can 
be applied to two-dimensional point patterns to esti-
mate the ‘cluster’ dimension (Hastings and Sugihara 
1993:44), with range 1 ≤ D ≤ 2 (Fig. 11b,c). The clus-
ter dimension can also be computed using ‘counting-
disks’ instead of boxes (Frontier 1987:350). Robertson 
and Sammis (1995) outline a cube-counting version for 
use with three-dimensional point patterns. They discuss 
some problems with cube-counting methods and offer 
strategies for resolving these problems.

   King et al. (1989) suggest counting the number of 
points within each grid unit of size δ and determining 
the relative dispersion (RD)  = (standard deviation)/
(mean) of grid counts. Repeating this for various values 
of δ defines a power law relationship between number 
of pixels and relative dispersion:

 RD KnD= −1 [24]

Random uncorrelated noise has a fractal dimension D 
= 1.5, while a value of D = 1.0 reflects “uniformity of 
the property over all length scales” (King et al. 1989). 
The spatial correlation between regions of defined size 
or separation distance is given by:

 r D= − −23 2 1  [25]

For D = 1.5 (random pattern), the correlation r = 0, 
while for D = 1.0 the correlation is maximal (r = 1.0).

Cumulative Distance Method

   Hastings et al. (1992) suggested a power law relation-
ship for the cumulative number of points N(r) within a 
distance r:

 N r krD( ) =  [26]

This relationship assumes a Poisson distribution within 
a D-dimensional space (Hastings and Sugihara (1993: 
45). Using this method, Hastings et al. (1992) demon-
strated that the distribution of pancreatic islets in planar 
sections had a fractal dimension D = 1.55. This implies 
that increasing the area four-fold will result in 21.55 = 
2.93 additional islet points, not 22 = 4 as would be ex-
pected if the pattern were statistically random (D = 2).

3.9 Information Theory and Diversity

   Consider again a square grid (box size δ) superim-
posed on an observed point pattern. Within each occu-
pied grid unit, the number of points ni is counted (Fig. 
12). Each count is then expressed as a proportional 

a)

b)

c)

Fig. 11. Point pattern analysis: box-counting method. (a) A self-
similar point pattern, generated using the Lévy flight model; 
(b,c) Shaded boxes are occupied by at least one point.
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value:

 p n Ni i=  [27]

where N is the total number of points in the set. Milne 
(1988: 71-75) considers scaling relationships in the 
context of the Shannon entropy:

 H p pi i
i

N

δ
δ

=
=
∑ log

1

 [28]

where Nδ is the number of occupied boxes (e.g. quad-
rats) of size δ. For fractal processes, H scales as:

 H Hoδ σ δ= − log  [29]

where Ho is a constant (H as δ approaches 0), and σ 
is the ‘information dimension’ (the lower bound of the 
Hausdorf dimension, Grassberger and Procaccia 1983; 
Scheuring and Riedi 1994). The information dimension 
is thus obtained as the slope of the Hδ vs. δ plot.

   Farmer et al. (1983) discuss the relationship between 
the fractal dimension D and the information dimension 
σ. They point out that D is a ‘metric dimension’ (i.e. 

depending on metric scaling properties), whereas σ is a 
‘probabilistic dimension’ (i.e. depending on both metric 
and probabilistic properties). Under some circumstanc-
es D = σ, although in general D > σ. The information 
dimension is sometimes referred to as the ‘dimension 
of the natural measure’ (Farmer et al. 1983; Loehle and 
Wein 1994).

   Frontier (1987: 358-364) demonstrates that the fa-
miliar Shannon evenness measure J = H/Hmax can 
be thought of as a measure of the fractal dimension of 
the distribution of individuals among species (see also 
Johnson et al. 1995).

   For fractal sets, the Simpson diversity index:

 C pi
i

N

δ
δ

=
=
∑ 2

1
 [30]

scales as:

 C K Dδ δ=  [31]

where D is the so-called ‘correlation dimension’ 
(Henctschel and Procaccia 1983). In practice, D deter-
mined as the slope of the log Cδ vs. log δ plot (Wall-
inga 1995).

3.10 Surface Models

    Polidori et al. (1991) derive a straightforward algo-
rithm for direct estimation of the fractal dimension of 
topographic surfaces (Fig. 13a). Their method is derived 
from the fractional Brownian motion model described 
in Section 3.5 (see also Goodchild 1980; Sugihara and 
May 1990: 83). An estimate of the fractal dimension (2 
≤ D ≤ 3) is obtained from the relation:

 log log loge k H d= +  [32]

where |e| is the mean absolute elevation (height) differ-
ence between points that are a horizontal Euclidean dis-
tance d apart. A measure of fractal dimension is given 
by D = 3 - H. Polidori et al. (1991) interpret the Brown-
ian parameter H as follows:

H D Interpretation
 > 0.5 < 2.5 height variations likely have the 

same sign.

= 0.5 = 2.5 height variations are independent.

< 0.5  > 2.5 height variations likely have oppo-
site signs.

    As expected, the fractal dimension of ‘rough’ topo-
graphic surfaces (negative correlation of height varia-
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Fig. 12. Point pattern analysis: information and correlation dimen-
sion. (a) A self-similar point pattern, as in Fig. 11; (b,c) Number 
of points per box at two box ‘lengths’.
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tion) is high, while smooth surfaces (positive correla-
tion of height variation with distance) have a low fractal 
dimension.

    The semivariance and spectral methods outlined 
above are easily modified to determine the fractal di-
mension of landscape surfaces (Huang and Turcotte 
1989). For the semivariance:

γ h
h

ij i h j ij i j h
jN

X X X X= ( ) −( ) + −( )



+ +

1
4

2 2

, ,
===

∑∑
11

N

i

N hh

[33]

From the log-log semivariogram, D = 3 - slope/2 (Bian 
and Walsh 1993).

    Surface fractal dimension can also be estimated 
indirectly by examining ‘profiles’ (one-dimensional 
transects) taken from the surface. Lam (1990; see also 
Goodchild 1980) used a cell-counting algorithm based 
on the fractional Brownian motion model. At various 
step sizes, counts are made along ‘profiles’. The fractal 
dimension is estimated separately for each profile from 
the log-log plot of cell count against step size (D = 2 

- slope, where 1 ≤ D ≤ 2). The average of these val-
ues plus one provides an estimate of the surface fractal 
dimension. Another method involves ‘converting’ the 
surface plot to a contour map (Fig. 13b), and using the 
dividers method to determine the fractal dimension of 
the contours (the surface fractal dimension is equal to 
the mean of these D-values plus one). Roy et al. (1987) 
compared some of these methods and found that they 
can give quite different results (e.g. D ranged between 
2.01 - 2.33 for the same image). Their study also found 
that the fractal dimension of many images varies spa-
tially.

3.11 Two-Surface Method

     Zeide and Pfeifer (1991; also Zeide and Gresham 
1991) developed an empirical procedure for estimating 
the fractal dimension of tree crowns. They point out that 
it is currently impossible to estimate tree crown D using 
the ‘cube-counting’ method. As an alternative, they sug-
gest a power law relating two easily obtained measures, 
total leaf area and the surface area of a convex hull en-
veloping the tree crown. If leaf area and crown surface 
area are equal, it can be inferred that leaves are largely 
restricted to the surface of the crown (as in shade-toler-
ant tree species growing in the understory). The tree 
crown therefore has a ‘planar’ form with fractal dimen-
sion D = 2. An increase in leaf area implies that more 
leaves occur inside the crown, which increases the frac-
tal dimension of the canopy. The defining relation is:

 A kED= 2  [34]

where A is the total leaf area and E is an estimate of the 
surface area of a convex hull that envelops the crown. 
As this is a measure of crown surface, 2 ≤ D ≤ 3. Zeide 
and Gresham (1991) suggest that crown fractal dimen-
sion may vary with site quality and thinning intensity, 
and therefore may be a useful indicator of site condi-
tions. Zeide (1991) and Lorimer et al. (1994) discuss 
additional applications of fractal geometry to forestry.

4. MULTIFRACTALS

   Thus far, it has been emphasized that a single scal-
ing exponent D characterizes a fractal object or struc-
ture. However, many natural fractal-like structures are 
determined by a large number of generating processes 
operating at different scales (Loehle and Wein 1994; 
Scheuring and Riedi 1994). Such structures (termed 
multifractals) are characterized by fractional dimen-
sions that vary in scale, and so require an infinite num-
ber (distributional spectrum) of scaling exponents for 

Fig. 13. Surface models. (a) Example of a three-dimensional topo-
graphic surface, with higher elevations represented by lighter 
shades of grey; (b) Contour map of the surface shown in (a).
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b)
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their description (Stanley & Meakin 1988). Appleby 
(1996) outlines a straightforward iterative algorithm for 
generating multifractal point patterns.

   As an introduction to multifractals, consider again a 
spatial pattern of N points (Fig. 12a). A grid of boxes 
of length δ is laid over the pattern, and a count of the 
number of points in each of the Nδ occupied grid boxes 
is determined (Fig. 12b,c). Express each box count as 
a proportion:

 p n Ni i=  [35]

   The generalized entropy (Rényi 1970) is defined as:

 Iq q p qi
i

N

δ
δ

( ) = −( )
=
∑1 1

1

log  [36]

By varying q, an entire family of entropy functions is 
defined:

q Iq(δ) Name Dimension 

0 log Nδ log(box count) box-count

⇒1 -Σ pi log pi Shannon entropy information

2  - log Σ pi
2 log(Simpson index) correlation

   The generalized dimension Dq for the qth fractal mo-
ment is given by:

 D Iq q= − ( ) ( ) →
lim log
δ

δ δ
0

 [37]           

   In practice, Dq is determined from the slope of the 
Iq(δ) vs. log δ plot (Hentschel and Procaccia 1983; 
Appleby 1996). For a ‘classic’ fractal object, Dq is a 
simple linear function of q (that is, no addition infor-
mation is obtained by examining higher moments). For 
multifractal objects, the relationship between Dq and q 
is non-linear (Fig. 14). Note that D0 = D is the box-
counting dimension (Sections 3.2, 3.8), D1 = σ is the 
‘information dimension’ (Section 3.9), and D2 is the 
‘correlation dimension’ (Section 3.9). Negative values 
of q can be used in multifractal analysis, but the method 
then becomes very sensitive to grid unit positioning and 
spatial resolution (Appleby 1996).

   Loehle and Wein (1994) argue that scale-specific 
analyses are required to fully characterize vegetation 
patterns resulting from the interaction of a number of 
fractally distributed processes such as soil type, land-
form and disturbances (see also Scheuring and Riedi 
1994). They used a modified version of the generalized 
entropy method (at q =1) that incorporates the ‘degree 

of similarity’ between vegetation classes. This is ac-
complished by  obtaining principal component scores 
(based on vegetation composition) for each pixel. These 
component scores are then rescaled into ‘probabilities’ 
(deviations from the mean ordination score), and dis-

Fig. 14. Multifractals. (a) Plot of Iq(δ) vs. log δ for a given value 
of q; (b) Linear plot of Dq vs. q indicates a fractal object; (c) 
Non-linear plot of Dq vs. q indicates a multifractal object.
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crete fractal dimensions obtained using:
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where γ is the next larger box size to ε, and Nε is the 
number of boxes of size ε. Changes in the fractal di-
mension Dε,γ with changing scale can then be exam-
ined (see also Johnson et al. 1995). The method can be 
criticized on two counts: (a) some information is neces-
sarily lost when principal component scores are substi-
tuted for multivariate information; (b) the theoretical 
basis for rescaling of component scores as ‘probabili-
ties’ is questionable.

   A directly related approach to examining multifractals 
was suggested by Voss (1988: 66-67). Higher moments 
of the probability density function (Section 3.4) are de-
fined as:

  M L n Lq q
n

N L
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=

( )
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1
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At q = 0, the ‘configurational entropy’ is defined:
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1
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For ‘classic’ fractal objects, all moments give the same 
value of D. By contrast, multifractal objects have a dif-
ferent value of D for each moment. An example is pre-
sented in Voss (1988: 68). 

5. APPLICATIONS OF FRACTAL GEOMETRY 
TO BIOLOGY

5.1 Cell, Protein and Chromosome Structures

   Takahashi (1989) hypothesized that the basic archi-
tecture of a chromosome is tree-like, consisting of a 
concatenation of ‘mini-chromosomes’. A fractal di-
mension of D = 2.34 was determined from an analysis 
of first and second order branching patterns in a human 
metaphase chromosome. Xu et al. (1994) hypothesized 
that the twistings of DNA binding proteins have fractal 
properties.

   Lewis and Rees (1985) determined the fractal dimen-
sion of protein surfaces (2 ≤ D ≤ 3) using microprobes. 
A mean surface dimension of D = 2.4 was determined 
using microprobe radii ranging from 1-3.5 angstroms. 
More highly irregular surfaces (D > 2.4) were found to 
be sites of inter-protein interaction. Wagner et al. (1985) 

estimated the fractal dimension of heme and iron-sul-
fur proteins using crystallographic coordinates of the 
carbon backbone. They found that the structural fractal 
dimension correlated positively with the temperature 
dependence of protein relaxation rates.

   Smith et al. (1989) used fractal dimension as a mea-
sure of contour complexity in two-dimensional images 
of neural cells. They recommend D as a quantitative 
morphological measure of cellular complexity. 

5.2 DNA Sequences

   Self-similarity has recently been found in DNA se-
quences (summarized in Stanley 1992; see also papers 
in Nonnenmacher et al. 1994). Glazier et al. (1995) 
used the multifractal spectrum approach to reconstruct 
the evolutionary history of organisms from m-DNA se-
quences. The multifractal spectra for invertebrates and 
vertebrates were quite different, allowing for the recog-
nition of broad groups of organisms. They concluded 
that DNA sequences display fractal properties, and that 
these can be used to resolve evolutionary relationships 
in animals. Xiao et al. (1995) found that nucleotide se-
quences in animals, plants and humans display fractal 
properties. They also showed that exon and intron se-
quences differ in their fractal properties.

5.3 Enzyme and Ion Channel Kinetics

   The kinetics of protein ion channels in the phospho-
lipid bilayer were examined by Liebovitch et al. (1987). 
The timing of openings and closings of ion channels 
had fractal properties, implying that processes operat-
ing at different time scales are related, not independent 
(Liebovitch and Koniarek 1992). López-Quintela and 
Casado (1989) developed a fractal model of enzyme ki-
netics, based on the observation that kinetics is a func-
tion of substrate concentration. They found that some 
enzyme systems displayed classical Michaelis-Menten 
kinetics (D = 1), while others showed fractal kinetics 
(D < 1).  

5.4 Dichotomous Branching Systems 

   Fractal dichotomous branching is seen in the lung, 
small intestine, blood vessels of the heart, and some 
neurons (West and Goldberger 1987; Goldberger et 
al. 1990; Glenny et al. 1991; Deering and West 1992). 
Fractal branching greatly amplifies the surface area 
of tissue, be it for absorption (e.g. lung, intestine, leaf 
mesophyll), distribution and collection (blood vessels, 
bile ducts, bronchial tubes, vascular tissue in leaves) or 
information processing (nerves). Fractal structures are 
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thought to be robust and resistant to injury by virtue of 
their redundancy and irregularity. Nelson et al. (1990) 
examined power-law relationships between branch or-
der and length in human, dog, rat and hamster lung tis-
sue. Differences between the human lung and those of 
other species were hypothesized to be related to postur-
al orientation. Long (1994) relates Leonardo da Vinci’s 
ratio of branch diameters in trees (= 0.707) to observed 
dichotomous fractal bifurcations.

5.5 Soil Physics

    Tyler and Wheatcraft (1990) offer a useful overview 
of the application of fractal scaling to soil physics. Tyler 
and Wheatcraft (1989) used particle-size distributions 
to determine the fractal dimension of various soils, and 
to relate D to such soil properties as percolation and 
surface water retention. Perfect and Kay (1991) used 
a similar method to examine soil fragmentation, while 
Bartoli et al. (1991) used various methods to estimate 
the mass, pore and surface fractal dimensions of silty 
and sandy soils. Eghball et al. (1993) used Rosin’s Law 
to demonstrate that different tillage methods and crop 
sequences affected soil fragmentation (fractal dimen-
sion). Perfect et al. (1993) modelled the relationship 
between soil aggregate size and tensile strength using 
a mulifractal approach. Frontier (1987: 340) suggests 
that it would be interesting to examine the relationship 
between soil microflora-fauna diversity and soil fractal 
geometry.

5.6 Plant and Fungal Structures

    Vlcek and Cheung (1986) measured the fractal di-
mension of leaf edges in a number of species. Although 
D was found to be highly variable in some species (e.g. 
oaks), they felt that D might have potential as a taxo-
nomic character. The fractal dimension of root systems 
was examined by Tatsumi et al. (1989) using the box-
counting method. They found fractal dimensions in the 
range 1.46-1.6 for mature crop plants. Fitter and Strick-
land (1992) demonstrated that the fractal dimension of 
root systems increases over time (to a maximum of D � 
1.35), and varies between species. Corbit and Garbary 
(1994) found no differences in the fractal dimension of 
three algal species, though D increased with both de-
velopmental stage and frond structural complexity.

   Zeide and Gresham (1991) estimated the fractal di-
mension of the crown surface of loblolly pine trees in 
North Carolina, and found evidence that D varies with 
site quality and thinning intensity. Osawa (1995) de-
termined that trees with higher crown fractal dimen-

sions have less negative self-thinning exponents. It was 
hypothesized that species-specific changes in foliage 
packing over time account for this relationship. Chen 
et al. (1994) developed a fractal-based canopy structure 
model to calculate light interception in poplar stands.

   The fractal geometry of fungal foraging is described 
by Ritz and Crawford (1990). Fractal dimension var-
ies between fungal species, and tends to be greater 
when nutrient availability is higher (Bolton and Boddy 
1993).

5.7 Chaos and Time Series Analysis

   Nonlinear dynamics is the study of systems that re-
spond disproportionately to stimuli. A simple determin-
istic nonlinear system may behave erratically (though 
not randomly), a state which has been termed chaos. 
Chaotic systems are characterized by complex dynam-
ics, determinism, and sensitivity to initial conditions, 
making long-term forecasting impossible. Chaos, 
which is closely related to fractal geometry, refers to 
a kind of constrained randomness (Stone and Ezrati 
1996). Wherever a chaotic process has shaped an envi-
ronment, a fractal structure is left behind.

   Goldberger et al. (1990) state that “physiology may 
prove to be one of the richest laboratories for the study 
of fractals and chaos as well as other types of nonlinear 
dynamics”. A good example is the study of heart rate 
time series (Goldberger 1992). Conventional wisdom 
states that the heart displays ‘normal’ periodic rhythms 
that become more erratic in response to stress or age. 
However, recent evidence suggests just the opposite: 
physiological processes behave more erratically (chaot-
ically) when they are healthy and young. Normal varia-
tion in heart rate is ‘ragged’ and irregular, suggesting 
that mechanisms controlling heart rate are intrinsically 
chaotic. Such a mechanism might offer greater flexibil-
ity in coping with emergencies and changing environ-
ments. Lipsitz and Goldberger (1992) found a loss of 
complexity in heart rate variation with age. Based on this 
result, they defined aging as “a progressive loss of com-
plexity in the dynamics of all physiological systems”. 
Sugihara (1994), using a different analytical approach, 
found that prediction-decay and nonlinearity models 
are good predictors of human health. Healthy patients 
have a steeper heart rate decay curve, and have greater 
nonlinearity in their heart rhythms. Teich and Lowen 
(1994) found that human auditory neuron transmissions 
are best modelled as fractal point processes, and that 
such transmissions display long-term persistence (H > 
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0.5). Hahn et al. (1992) examined thermoregulation re-
sponses to heat stress in cattle. Fractal dimensions of 
thermoregulation profiles were found to decrease with 
increasing stress. They also found that the interval be-
tween temperature reading was critical to the detection 
of changes in thermoregulatory profiles. Similar results 
were obtained by Escós et al. (1995) in a study of stress 
in wild goats (spanish ibex). These authors also found 
that plants under stress show greater variability in al-
lometric relationships, and reduced branch structure 
complexity.

   Basic ideas of chaotic dynamics in population biology 
are summarized by Schaffer and Kot (1986). The ques-
tion of whether natural population cycles are determin-
istic or purely stochastic was examined by Sugihara et 
al. (1990; also, Sugihara and May 1990). They state that 
populations are “embedded in a dynamic web of other 
species and environmental forces”, implying that ir-
regularities in population cycles (which have tradition-
ally been ‘smoothed’ prior to modelling) may provide 
important information regarding their dynamics. Sugi-
hara et al. (1990) found that for pure additive noise, the 
correlation of adjacent values was independent of the 
prediction interval, but for chaotic trends correlations 
decline as the prediction interval increased. They found 
that measles epidemics display chaotic properties, but 
that chickenpox epidemic patterns are best modelled 
as noise superimposed on a strong annual cycle. Ellner 
and Turchin (1995) have argued that it is potentially 
misleading to make a strict distinction between chaotic 
and stochastic dynamics. Using an approach of non-lin-
ear time-series modelling and estimation of Lyapunov 
exponents (see Godfray and Grenfell 1993), they dem-
onstrated that ecological populations vary from noise-
dominated, stable dynamics to weakly chaotic ones. 
However, Sugihara (1994) claims that their approach 
is “fundamentally flawed”, and offers an alternative 
method based on locally-weighted maps. Hastings et 
al. (1993) summarize the various methods available for 
detecting deterministic chaos in biological time series.

   Sugihara and May (1990) examined persistence (prob-
ability of extinction) in time series of population sizes. 
The higher the value of H (lower fractal dimension), 
the smoother and more persistent the population trend. 
Higher persistence (H) makes a species more prone 
to extinction, since population values increase (or de-
crease) faster over time than in populations having low 
H. Hastings and Sugihara (1993: 138-160) expand on 
these ideas, and present examples based on bird and 

butterfly population time series.

   Stone and Ezrati (1996) discuss potential applications 
of nonlinear dynamics and chaos theory to the study 
of ecological variability. They argue that chaos theo-
ry may be particularly useful in modelling vegetation 
change, where non-equilibrium dynamics (e.g. distur-
bance, natural mosaic cycling, and habitat fragmenta-
tion) often prevail.

5.8 Organism Size and Number of Individuals

    Morse et al. (1985) argued that since habitat has a 
fractal structure, there will be more ‘useable’ space for 
smaller animals than for larger ones. Working with in-
vertebrates, they found that predictions of the number 
of individuals (by size class) based on body mass and 
metabolic rate alone consistently underestimated ob-
served field values for the smaller size classes. Predic-
tions were considerably improved when the fractal di-
mension of the habitat was incorporated into the model: 
smaller organisms ‘perceive’ more space and are there-
fore comparatively more abundant. Shorrocks et al. 
(1991) confirmed this general result, as did Gunnarsson 
(1992) and Jeffries (1993) using artificial substrates of 
differing fractal dimension. 

5.9 Movements of Organisms

    Fractional Brownian motion models (Frontier 1987: 
351-353) have been used to characterize the movement 
of organisms. Dicke and Burrough (1988) used fractal 
analysis to examine spider mite movements in the pres-
ence and absence of a dispersing pheromone. Wiens 
and Milne (1989) took a different approach, examining 
beetle movements in natural fractal landscapes. They 
found that observed beetle movements deviated from 
the modelled (fractional Brownian) ones. A follow-up 
study by Johnson et al. (1992a) found that beetle move-
ments reflect a combination of ordinary (random) and 
anomalous diffusions. The latter may simply reflect 
intrinsic departures from randomness, or result from 
barrier avoidance and utilization of corridors in natural 
landscapes. Johnson et al. (1992b) discuss the interac-
tion between animal movement characteristics and the 
patch-boundary features in a ‘microlandscape’. They 
argue that such interactions have important spatial con-
sequences on gene flow, population dynamics and other 
ecological processes in the community (see also Wiens 
et al. 1995). In a comparison of path tortuosity in three 
species or grasshopper, With (1994a) found that the 
path fractal dimension of the largest species was small-
er than those of the two smaller ones. She suggested 
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that this reflects the fact that smaller species interact 
with the habitat at a finer scale of resolution than do 
larger species. In a second study, With (1994b) found 
differences in the ways that gomphocerine grasshopper 
nymphs and adults interacted with the microlandscape.

5.10 Ecotone and  Interfaces

    Frontier (1987: 337-343) discusses the ecological 
significance of contact zones (ecotonal boundaries) 
between ecosystems, and outlines how fractal theory 
can be used to examine boundary phenomena. For ex-
ample, consider the contact surfaces created by turbu-
lence in aquatic ecosystems (the geometry of which is 
fractal, Mandelbrot 1982; Milne 1988: 72). Turbulent 
regions (e.g. interfaces between warm and cold water) 
have high phytoplankton productivity due to increased 
contact with resources (nutrients and light), which in 
turn ‘feeds’ higher trophic levels. This cascade effect 
implies that spatial patterns at fine spatial scales deter-
mine patterns at broader scales. Pennycuick and Kline 
(1986) estimated D to determine bald eagle territory 
sizes along rocky coastlines in Alaska. Forest-grassland 
ecotones could also be examined in this way to deter-
mine habitat available to foraging animals, or to plant 
species restricted to ecotonal environments. Ecotone 
concepts can also be applied to the design of public 
spaces (Arlinghaus and Nystuen 1990).

5.11 Environmental Transects

    Burrough (1981) used the semivariogram method 
to estimate D for various environmental transects (e.g. 
soil factors, vegetation cover, iron ore content in rocks, 
rainfall levels, crop yields). He found high fractal di-
mensions in all cases, from D = 1.4 (iron ore content 
at 3 m intervals) to D = 2.0 (soil pH at 10 m intervals). 
Very high fractal dimensions indicate spatial indepen-
dence of successive values. While some of the series 
displayed self-similarity over many scales (i.e. a linear 
log-log plot slope), other trends suggested variation in 
D with changing scale. Palmer (1988) used the same 
method to examine spatial dependence of vegetation 
along transects. Values were generally high but not 
scale-invariant. Based on a fractal analysis, Phillips 
(1985) concluded that erosion processes along a portion 
of the Delaware coast could not be easily predicted.

5.12 Dispersal of Organisms and Disease

   Dispersal distances of crop plant pathogens display 
power-law relationships (van der Plank 1960), and sim-
ilar relationships have been suggested for plant prop-

agules (Harper 1977). Based on these observations, 
Kenkel and Irwin (1994) hypothesized that the disper-
sal of diaspores and pathogens have fractal properties. 
They suggested that Lévy or Cauchy flights (Mandel-
brot 1982: § 32) are appropriate models of dispersal. 
Species producing diaspores adapted for long-distance 
dispersal (e.g. ‘weeds’) have a low fractal dimension. 
These species advance through the landscape in large 
leaps, continually establishing new colonies or epi-
centers (a ‘guerilla’ strategy). As a result, they display 
highly patchy distributions at all spatial scales. Con-
versely, species lacking adaptations for long-distance 
dispersal move through the landscape more conserva-
tively (a ‘phalanx’ strategy), with only occasional ‘for-
ays’ to establish new epicenters. These species have a 
higher fractal dimension, resulting in less patchy, more 
continuous spatial distributions. If this model is correct, 
outbreaks of pathogens having a low fractal dimension 
will be difficult to predict, since new outbreaks will 
seem to appear from nowhere.

   Shaw (1994) expands on these ideas, noting that clas-
sical dispersal probability models are exponential (that 
is, all their moments are defined). Exponential models 
assume that dispersal has a characteristic scale, imply-
ing that long-distance dispersal is completely negli-
gible. Exponential-based simulation models result in 
a ‘wave-expanding’ dispersal pattern, where wave ve-
locity is proportional to the intrinsic population growth 
rate. However, empirical studies typically demonstrate 
that gene flows are much greater than those predicted by 
exponential models. More realistic models are obtained 
by using dispersal probability distributions having in-
finite first and higher moments. Shaw (1994, 1995) 
uses the Cauchy distribution (analogous to the ‘Cauchy 
flight’ of Mandelbrot 1982) to model dispersal. Cau-
chy-based models produce patterns in which ‘daughter 
foci’ are continuously formed, so that dispersal is best 
described as a disjoint set of locations (c.f. Kenkel and 
Irwin 1993). Mayer and Atzeni (1993) used the Cauchy 
distribution to model dispersal distance in the screw-
worm fly.

   Wallinga (1995) modelled weed dynamics under the 
assumption that weed populations are maintained at low 
densities (through tillage practices, application of herbi-
cides, and so forth). Under such a scenario, populations 
are expected to display ‘critical phenomena’ (Grass-
berger 1983), resulting in their dynamics and spatial 
pattern being scale-invariant. Fractal analysis (correla-
tion dimension) of a mapped point pattern of cleavers, a 
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European weed, confirmed the fractal (scale-invariant) 
nature of weed populations.

   Collins and Glenn (1990) argue that competition and 
dispersal act together to create fractal patterns in tall-
grass prairie plant communities. They found evidence 
of self-similarity in these grasslands (i.e. small-scale 
patterns are repeated at larger spatial scales).

5.13 Size-Frequency Distributions

    The hyperbolic distribution, because it lacks a 
characteristic scale, describes the sizes of self-simi-
lar phenomena (Goodchild and Mark 1987). Meltzer 
and Hastings (1992) examined the size distribution of 
grazed areas in Zimbabwe, and related H to the relative 
stability of vegetation patches. Overall, they found that 
increases in cattle density decreased patch stability. Us-
ing similar methods, Hastings et al. (1982) found lower 
stability in earlier successional patches. Kent and Wong 
(1982) used the size-frequency distribution of lakes to 
estimate the fractal dimension of littoral zone habitat in 
the Precambrian Shield of Ontario, while Hamilton et 
al. (1992) estimated terrain fractal dimension based on 
lake size distributions in the Amazon and Orinoco river 
floodplains. The hyperbolic distribution has also been 
fit to taxonomic systems (Burlando 1990, 1993) and the 
size-distribution of seeds (Hegde et al. 1991). Frontier 
(1987:359-367) discusses applications of fractal theory 
to rank-frequency diagrams of the distribution of indi-
viduals among species.

5.14 Landscapes

    Krummel et al. (1987) examined the fractal dimen-
sion of forest patches (‘islands’) using the perimeter-
area method. They found that smaller forest patches 
had lower mean D than larger patches. The transition 
zone from low to high fractal dimension occurred at 
� 60-73 ha. They concluded that small forest patches 
are the result of anthropogenic activities. This decrease 
in landscape complexity with increasing anthropogenic 
activity was also reported by O’Neill et al. (1988) and 
Turner and Ruscher (1988). De Cola (1989) used the pe-
rimeter-area method to determine fractal dimensions of 
eight natural and anthropogenic landscape-level classes 
in northern Vermont. Bian and Walsh (1993) used two-
dimensional semivariance to examine scale dependen-
cy in the relationship between topography (elevation, 
slope angle, and slope aspect) and reflectance/absor-
bance of vegetation at Glacier National Park, Montana. 
Studies involving fractal dimension estimation of geo-
morphological features are summarized in Goodchild 

and Mark (1987), Lam (1990) and Lam and Quattrochi 
(1992).

5.15 Habitat Complexity and Fragmentation

     A simplifying assumption of many classical eco-
logical models is that habitats are uniform, and that 
they vary linearly with distance. Some recent studies 
have examined these assumptions and/or modified the 
classical models in light of the recognized fractal na-
ture of habitats. Scheuring (1991) modified the clas-
sical species-area relationship model to include the 
fractal nature of vegetation. Palmer (1992) modified 
the ‘competition gradient’ model of Czárán (1989) to 
include fractal habitat complexity. He found that spe-
cies coexistence increased as landscape fractal dimen-
sion increased. Milne et al. (1992) examined mamma-
lian herbivore foraging in artificial fractal landscapes. 
They concluded that the fractal nature of landscapes is 
an important determinant of resource utilization rates. 
Milne (1992) examined the fractal geometry of land-
scapes from the viewpoint of habitat fragmentation. He 
concluded that habitat fragmentation affects ecosystem 
processes, and that this must be recognized in develop-
ing an ecologically meaningful view of landscapes and 
habitats. Haslett (1994) found that the fractal dimen-
sion of mountain meadow landscapes correlated well 
with the abundance of syrphid flies, suggesting that 
more spatial heterogeneous habitats may support more 
complex ecological communities. Additional potential 
applications of fractal analysis to vegetation complex-
ity are outlined by van Hees (1994). 

5.16 Image and Texture Analysis 

   The spatial dependency of image elements (e.g. pix-
els) is referred to as texture. A ‘textural feature’ is a 
combination of image elements that cannot be individ-
ually differentiated (Musick and Grover 1990). A num-
ber of image segmentation methods for the extraction 
of textural features are available (Davis 1981; van Gool 
et al. 1985; Blacher et al. 1993). Fractal-based texture 
methods overcome some of the problems inherent in 
classical resolution-sensitive techniques (van Gool et 
al. 1985), and are particularly well-suited to complex 
natural scenes (Keller et al. 1987; Pentland 1984).

   Keller et al. (1989) describe a modified box-counting 
texture analysis technique based on the probability den-
sity function. They characterized simulated (Brodatz) 
textures in terms of fractal dimension and lacunarity. 
An alternative box-counting method was proposed by 
Sarkar and Chaudhuri (1992). In their method, each x,y 
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coordinate has an associated third dimension (z-coor-
dinate) representing pixel intensity (e.g. gray shade). 
The box count is determined as the number of cells in 
a column intercepted by the surface. Using simulated 
textures, they found that their method was more com-
putationally efficient than that proposed by Keller et. al. 
(1989); see also Chaudhuri et al. (1993) and Chaudhuri 
and Sarkar (1995). De Cola (1993) describes a hierar-
chical grid method for the analysis of surface texture 
in remotely sensed images. It was found that fractal 
dimension varied with scale, implying multifractal be-
haviour.

   Pentland (1984) developed a fractional Brownian 
motion (fBm) approach to image texture analysis based 
on a modified Fourier algorithm. An analysis of photo-
graphs of natural objects found that texture was more 
effective than spectral properties in characterizing ma-
jor image features. Keller et al. (1987) used the fBm 
approach to examine interface complexity of vegeta-
tion/landform types. Using the same approach, Dennis 
and Dessipris (1989) found that anti-aliasing filtering 
techniques improved estimates of the fractal dimension 
of ‘natural’ images, but had little effect on synthetic im-
ages. 

   Image analysis has also been used in medicine and 
cellular biology. For example, Fortin et al. (1992) ana-
lyzed local and large-scale structures in cardiac mag-
netic resonance images and bone x-rays. They provide 
detailed descriptions of fBm image analysis models. 
Note that the methods for fractal analysis of self-affine 
signals described by Schepers et al. (1992) can also be 
used in image analysis.

6. CONCLUSIONS

    Fractal theory is a unifying concept integrating scale-
dependence and complexity, both of which are central 
to our understanding of biological patterns and process-
es (West and Goldberger 1987; Wiens 1989; Lam and 
Quattrochi 1992). Given that fractal and chaos theory 
are comparatively new fields, it is perhaps not surpris-
ing that biologists are still grappling with these con-
cepts. Recognition of the fractal geometry of nature has 
important implications to biology, as evidenced by the 
numerous examples presented here. Zeide and Gresh-
am (1991) describe as ‘self-evident’ the fractal nature 
of biological structures and systems. We feel that one of 
the great challenges facing biologists lies in translating 
these self-evident concepts into comprehensive models 
of the patterns and processes observed in nature. 
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