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The inherent complexity of ecosystems presents formidable challenges to 
biologists interested in describing, modeling, and managing animal popula­
tions (Milne 1997). Researchers now recognize that a multiscale approach is 
required to elucidate the spatio-temporal components of ecosystem complex­
ity and to understand animal movement patterns in natural landscapes 
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(Ritchie 1998, With et al. 1999). Because ecological complexity varies with 
scale, observations at multiple scales and multiscale approaches to data anal­
ysis are required (johnson 1980, Milne 1997). 

Although animal movements are known to be spatially and temporally 
complex, few studies have examined the multiscale features of movement 
patterns. Analytical tools traditionally used by wildlife biologists, while useful 
in summarizing and modeling space use, generally fail to explicitly consider 
scaling issues (Gautestad and Mysterud 1993). Thus, new approaches are 
required to characterize the scaling properties of animal distributions. Fractal 
geometry is particularly suited to this task, as it explicitly takes a multiscale 
approach (Mandelbrot 1983, Milne 1997). 

While fractal geometry has not been widely used to analyze radiotelemetry 
data, a number of recent studies have used fractals to characterize and model 
animal movement paths (e.g., With et al. 1999). Movement paths have trad­
itionally been modeled using random walks (Kareiva and Shigesada 1983), 
with the aim of translating movement data into simple measures of displace­
ment and habitat residency (Turchin 1998). Random walk models assume that 
movement positions are not spatially autocorrelated. A continuous path must 
therefore be represented as a simplified, discrete set of uncorrelated moves 
prior to analysis. An alternative view recognizes that the line segments con­
necting adjacent steps will continue to reveal a complex, erratic path as 
observation frequency increases (Gautestad and Mysterud 1993). This is the 
essence of the fractal approach. Instead of simplifying an inherently complex 
path as a discrete set of moves, one recognizes the underlying complexity and 
characterizes its scaling properties using the power law distribution (Viswa­
nathan et al. 1996, Turcotte 1997). 

Generally, it is difficult to obtain continuous movement-path data for a 
variety of reasons. Individuals may be logistically difficult to follow, or the act 
of following them may alter their behavioral pattern. In addition, movement 
paths are generally only available for short time intervals and may not include 
key movements, such as dispersal (Turchin 1998). An alternative approach is to 
obtain periodic fixes on animal positions using radiotelemetry. The result is a set 
of points that defines a utilization distribution (Worton 1989; see also Chapter 
5). Radiotelemetry data are used in wildlife biology and natural resource 
management to determine home ranges (White and Garrott 1990), to summar­
ize and model dispersal (Turchin 1998), or to quantify habitat selection (Manly 
et al. 1993). However, most of the currently available analytical approaches 
are not spatially explicit, and fewer still consider the multiscale features of 
animal movement patterns (Gautestad and Mysterud 1993, Viswanathan et al. 
1996). 

Data from radiotelemetry fixes often reveal that individuals have indistinct 
home range boundaries and show local variations in their intensity of space 
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use (Worton 1989, Gautestad and Mysterud 1995). Standard techniques, such 
as home range analysis, cannot fully characterize these complex dispersion 
patterns (Loehle 1990). As an alternative strategy, Gautestad and Mysterud 
(1993) suggest a multiscale approach to the analysis of radiotelemetry data. 
They hypothesize that animal movements result from complex interactions 
between coarse and fine-grained responses, so that individuals relate to their 
environment in a multiscale, hierarchical manner. The result is a complex 
utilization distribution with fractal properties (i.e., scale-free and character­
ized by clumps within clumps within clumps; Gautestad and Mysterud 1993). 

In this chapter, we propose a method for the multiscale analysis of spatial 
radiotelemetry data based on fractal geometry and the generalized entropy In 
addition, we outline a fractal-based dispersal model known as the Levy flight. 
We illustrate the method using radiotelemetry data from a disjunct population 
of sage grouse (Centrocercus urophasianus) in northwest Colorado. 

MULTISCALE ANALYSIS 
OF RADIOTELEMETRY DATA 

Radiotelemetry data are often used to obtain new insights into how a land­
scape is used by an individual or population. A set of radiotelemetry fixes is a 
sample from an underlying spatio-temporal distribution and, thus represents 
an empirical estimate of the utilization distribution of an individual or popu­
lation. Utilization distributions are typically underdispersed (contagious), 
indicating that some regions are used disproportionately relative to others 
(Turchin 1998; see also Chapter 5). The degree of contagion is thought to 
reflect both the scale-invariant spatial complexity of available habitat (Etzen­
houser et al. 1998) and the intrinsic behavioral dynamics of animal move­
ments (Gautestad and Mysterud 1993). 

A number of statistical methods are available to test the null hypothesis of 
spatial randomness in dispersion data (Upton and Fingleton 1985). The 
simplest tests consider only nearest neighbors and, thus, assess pattern only 
at fine spatial scales. More rigorous second-order approaches produce a profile 
of how spatial pattern changes with scale (Ripley 1977, Kenkel 1993). These 
methods, while useful in evaluating deviations from spatial randomness, do 
not expliCitly characterize important features of the utilization distribution, 
such as the degree of contagion. Alternative methods are therefore required to 
fully explore the scaling features of animal location data. 

Fractal geometry (Mandelbrot 1983) provides the tools necessary to char­
acterize and model multiscale contagion in radiotelemetry data. Spatial data 
are said to display fractal properties if the same underlying pattern of con­
tagion is resolved on an ever-diminishing scale. The degree of scale-invariant 
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contagion is quantified using a scaling parameter, D, known as the fractal 
dimension (Schroeder 1991, Kenkel and Walker 1996). A multiscale, fractal­
based approach to the analysis of radiotelemetry data is useful in addressing 
the following questions: 

ARE ANIMAL MOVEMENTS STATISTICALLY 

SELF-SIMILAR? 

Self-similarity is defined as invariance against changes in scale. Scale invari­
ance is an attribute of numerous natural phenomena and laws, and is the 
unifying concept underlying fractal geometry (Schroeder 1991, Kenkel and 
Walker 1996). As an example, consider a map of the spatial dispersion of 
radiotelemetry fixes. If a map scale is not indicated, it may be difficult if not 
impossible to determine whether the map covers 10 m or 10 km, particularly if 
the same general pattern manifests itself across scales. This intuitive notion of 
scale invariance provides the rationale for applying the fractal power law 
distribution to spatio-temporal radiotelemetry data. In practice, statistical 
self-similarity is demonstrated if the fractal dimension is found to be inde­
pendent of scale (Turchin 1996, Milne 1997). 

Self-similarity represents a fundamental departure from the scale-specific 
paradigm that pervades much of wildlife biology and theoretical ecology 
(Gautestad and Mysterud 1993, 1995). The demonstration of fractal scaling 
in animal movements therefore has far-reaching consequences for the analysis 
of radiotelemetry data and for modeling movement patterns in natural land­
scapes (Viswanathan et al. 1996). 

IF MOVEMENT PATTERNS ARE SELF-SIMILAR, WHAT Is 
THE DEGREE OF SPATIAL CONTAGION? 

Unlike other statistical distributions, the power law does not include a 
characteristic length scale and can therefore be applied to scale-invariant 
phenomena (Turcotte 1997). The fractal dimension D, derived from the 
power law distribution, is used to quantify the degree of scale invariance. A 
smaller D value indicates greater contagion (Schroeder 1991). 

As a scale-invariant measure of spatial contagion, the fractal dimension 
provides valuable insight into how an individual or population uses the land­
scape (With et al. 1999). While home range analysis gives important informa­
tion on the spatial extent of animal movements, it generally provides limited 
insight into the spatial dispersion of those movements. At one extreme, an 
individual may simply move through the area randomly, eventually visiting all 
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regions of its home range (D = 2, which is implicitly assumed in most home 
range models; see Gautestad and Mysterud 1995). Alternatively, an individual 
may visit some regions of its home range more frequently than others, and 
some areas may not be visited at all. This results in a contagious pattern 
(D < 2), suggesting a preference for some areas and underutilization of others. 
Because individual locations indicate areas where conditions satisfy the 
requirements of a species (Milne 1997), the degree of spatial contagion may 
be indicative of underlying physical and biological processes. An individual 
with a movement pattern of D = 2 uses its home range markedly different 
from one with a movement pattern of D = 1. 

WHAT FACTORS MIGHT CONTRIBUTE TO THE DEGREE 

OF CONTAGION OBSERVED? 

The fractal dimension can be used as a comparative index of self-similarity to 
test specific hypotheses related to how individuals and populations perceive 
landscapes (Crist et al. 1992). For example, it is known that animal movement 
patterns are often affected by natural and human-induced habitat fragmenta­
tion (Storch 1997, Wiens 1997), but to what degree? One could compare the 
fractal scaling of animal movements in two populations, one occupying a 
fragmented landscape and the other an unfragmented one. Comparisons 
could also be made within the same population over time (e.g., comparing 
movement patterns in harsh vs. mild winters), between sexes or age-classes, or 
across species (e.g., Etzenhouser et al. 1998, With et al. 1999). Comparative 
approaches can provide valuable insights into the processes determining 
spatial contagion on the landscape. Standard statistical methods can be used 
to compare individual D values from two or more populations (Gautestad and 
Mysterud 1993). Alternatively, Monte Carlo simulation can be used to estim­
ate confidence limits for measured D values (Loehle and Li 1996). 

FRACTAL ANALYSIS OF SPATIAL PATTERN 

Box COUNTING 

A number of approaches are available to explore fractal phenomena and 
estimate the fractal dimension (Frontier 1987, Schroeder 1991, Hastings and 
Sugihara L993, Kenkel and Walker 1996, Milne 1997). Here, we consider 
estimation of the fractal dimension for a point pattern (utilization distribu­
tion) derived from radiotelemetry fixes. Box counting is the most commonly 
used approach for estimating D (Hastings and Sugihara 1993, Turcotte 1997). 
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Formally, box counting obtains a 0 covering of a point pattern. A square box of 
side length 0 is centered on each point, and a count is made of the number of 
boxes No required to cover the pattern. This procedure is repeated at various 
values of O. A simpler approach is to superimpose a grid of non-overlapping 
boxes over the pattern, and count how many boxes are occupied. The fractal 
dimension D is given by the limit: 

D = -lim (log No/ log 0), (6.1) 
o~O 

where No is the number of boxes of diameter 0 containing at least one point. 
The limit 0 ---> 0 is not defined for discrete point patterns; instead, one plots 
log No against log O. The point pattern is fractal if a straight line is obtained 
over the range of 0 values: the negative of the gradient of this line is the fractal 
dimension. The grid method is somewhat sensitive to grid location, particu­
larly for small sample sizes (n < 500). Grid placement should therefore be 
randomly replicated to ensure stability of results (Appleby 1996, Milne 1997). 

GENERALIZED ENTROPY 

The fractal dimension described above considers only presence-absence of 
points in the boxes: the number of occupied boxes is counted but the number 
of points in a given occupied box is not considered. By considering the dis­
tribution of point counts within boxes, a set of q dimensions is defined that 
more fully characterizes the fractal pattern. The dimension described above is 
known as the cluster fractal dimension, which is defined at q = O. More gen­
erally, counts of the number of points (nj) in each of No occupied grid boxes are 
obtained and expressed as proportions (Pi = ni/n) of the sample size 11. These 
are used to determine the generalized entropy (Renyi 1970) expressed as: 

No 

Iq(O) = 1/(1 - q) log I>;. (6.2) 
i=l 

The generalized entropy defines a family of functions, each of which is 
referenced by the parameter q. From this, the generalized dimension Dq for 
the qth fractal moment is given by: 

Dq = -lim [Iq(O)/ log (0)]. (6.3) 
o~O 

A plot of the generalized entropy Iq(O) against log 0 is used to estimate Dq 
(Hentschel and Procaccia 1983). If a straight line is obtained over the range of 
0, Dq is given by the negative of the gradient. Varying q generates a family of 
generalized dimensions (Table 6.1). 
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TABLE 6.1 Common Generalized Entropy Functions 

q Iq(B) Dimension 

0 10gNs Cluster 

-.1 - L;Pi log Pi Information 

2 -log L;pf Correlation 

Measuring dimension as a function of q reveals the multifractal aspects of a 
pattern (Stanley and Meakin 1988, Scheuring and Riedi 1994). Consider the 
effect of varying q. At q = 0, each occupied box is weighted equally irrespect­
ive of the number of points it contains. For positive values of q, greater weight 
is given to boxes containing more points, while negative q values result in 
greater weight given to boxes containing few points. In analyzing statistical 
fractals, it is generally recommended that 0:::; q :::; 3 (Appleby 1996). 

DILUTION EFFECT AND MONTE CARLO TEST 

For fractal patterns of finite size, the log-log plot (e.g., log No vs. log 0, cluster 
fractal dimension) will deviate from linear at small 0 values since No necessa­
rily approaches the sample size n as 0 decreases (Gautestad and Mysterud 
1993). In fact, the maximum possible number of occupied boxes is No = nand 
is therefore independent of o. In a slightly different context, Gautestad and 
Mysterud (1994) refer to this as the dilution effect. Resolving the dilution 
effect problem requires careful selection of a lower bound for 0 that is appro­
priate to the resolution of the data (i.e., sample size). An objective procedure 
to determine this lower bound is to generate known fractal patterns (e.g., 
using the Levy flight model) of sample size n and derive the 0 value at which 
the log-log plot deviates from linear. 

A finite sample will also underestimate the true fractal dimension. For 
example, a random spatial pattern has a theoretical fractal dimension D = 2, 
but this value is only achieved as n approaches infinity (Gautestad and 
Mysterud 1993). For an empirical random pattern of finite size, D < 2. The 
smaller the sample size n, the further the deviation from D = 2. An observed D 
value (obtained from an empirical point pattern of size n) must therefore be 
compared against values obtained from random patterns of the same size to 
determine whether the observed pattern deviates significantly from random 
(Hastings and Sugihara 1993:106). 

An appropriate null model is that the observed point pattern is statistically 
random (i.e., all areas of the landscape are used equally). This hypothesis is 
readily tested using a Monte Carlo procedure (Manly 1997): 
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1. Generate a random point pattern of n points. 
2. Compute D for this randomly generated pattern. 
3. Repeat the above steps 100 times to generate a distribution of expected 

D values under the null hypothesis. 

If the observed D value is less than the 100 random D values, the null 
hypothesis is rejected and one concludes that the observed pattern deviates 
significantly from random. This is a conservative test; confidence limits based 
on 100 simulations are considered adequate for tests at the conventional 5% 
level (see Kenkel 1993). 

MODELING FRACTAL PATTERNS: 
LEVY FLIGHTS 

Animal movements over finite time intervals rarely achieve a strictly random 
pattern (Gautestad and Mysterud 1993). Animal positions are determined in 
part by previous locations, since travel distances are constrained by organism 
mobility. Movement patterns therefore have a memory component. The Levy 
flight power law contains such a memory component making it well suited for 
modeling animal movements. The Levy flight model can be used to simulate 
fractal patterns (Mandelbrot 1983), and time series animal movement data 
(Viswanathan et a1. 1996). The model is a special case of the random walk, in 
which "step" lengths are selected randomly from a power law probability 
distribution. Conventional random walks, by contrast, assume that step 
lengths are constant. A fractal point pattern, termed Levy dust, is obtained 
by plotting the set of landing points between Levy flights. Sequentially con­
necting the points generates a path (Levy flight random walk) of the same 
fractal dimension as the corresponding point pattern (Mandelbrot 1983). In 
this sense, there is a close relationship between the path and point pattern 
approaches to fractal analysis. 

Although mathematically rigorous, Levy dust cannot be simulated. However, 
an approximate realization on a two-dimensional torus is obtained from a set 
of n finite steps of a random walk (Ogata and Katsura 1991). Specifically, 
each flight is a random vector with polar coordinates (R;0). The azimuth 
o is selected uniformly and independently from the interval [0, 21T], 
while the radius R is chosen independently according to conditional prob­
ability: 

Pr(R> rlR > ro) = I if r:::; ro, otherwise = (ro/ - r)D, (6.4) 

where ro is the minimum flight distance, and D is the fractal dimension of the 
simulated pattern. 
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This is implemented by generating R values according to the power law 
distribution: 

(6.5) 

where x is a random uniform value (0,1). Provided that n is very large, the 
resulting point pattern has fractal dimension D and is self-similar over a range 
of scales from fO to the torus distance. Different degrees of self-similar 
contagion are readily simulated by varying the parameter D in Eq. (6.5). 

EXAMPLE: SAGE GROUSE LOCATION DATA 

To illustrate the fractal approach, we examined the utilization distribution of a 
sage grouse population in northwest Colorado. Sage grouse may travel large 
distances between winter and summer habitat, but movements of 1-5 km are 
typical within a season (Beck 1977, Connelly et al. 1988, Hagen 1999). Annual 
movement patterns are closely linked to the availability and spatial distribu­
tion of suitable habitat, as sage grouse generally select large, landscape-scale 
habitat patches (Patterson 1952, Oyler-McCance 1999). Within these large 
patches, habitat selection is a function of vegetation composition and quality 
(Beck 1977, Fischer et al. 1996) and topographic features (Hupp and Braun 
1989). This hierarchy in habitat selection makes the species well suited for 
testing the fractal approach to radiotelemetry data analysis. Here we use the 
generalized entropy and Levy flight modeling to test the hypothesis that sage 
grouse locations exhibit self-similar fractal properties. Specifically, we address 
the following questions: 

1.	 Is the sage grouse utilization distribution statistically self-similar? 
2.	 If the utilization distribution is self-similar, what is the degree of spatial 

contagion? 
3.	 What factors contribute to the degree of spatial contagion? 

STUDY AREA 

The sage grouse population studied occurs within a 1400 km2 area of the 
Piceance Basin and Roan Plateau region, northwest Colorado. Suitable sage 
grouse habitat in this region is highly fragmented, the result of both natural 
and human-induced processes. The study area is a structural basin dissected 
by parallel undulating ridges, producing a highly fragmented and scale-invari­
ant habitat landscape. Elevation ranges from 1800 to 2700 m, but sage grouse 
are generally restricted to middle and upper elevational regions where 
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sagebrush (Artemisia spp.) is most abundant. Agricultural practices have 
altered or degraded sagebrush habitat at the periphery of the study area, and 
fossil fuel exploration and extraction have resulted in localized habitat degrad­
ation. Colonization by pinyon pine (Pinus edulis) and Utah juniper (juniperus 
utahensis), the invasion by nonnative weeds, and domestic cattle grazing have 
also contributed to habitat fragmentation in the area. 

POPULATION SAMPLE 

Male and female grouse were night-trapped on or near lek sites during the 
breeding season, using spotlights and long-handled nets (Giesen et al. 1982). 
In total, 44 individuals were trapped at six of eight known active leks. Each 
bird was fitted with a 14-g lithium battery or a 20-g solar-powered radio 
« 3% of body mass). To ensure that the sample was representative of the 
population, 25 individuals having inadequate relocation information (fewer 
than 15 radiotelemetry fixes) were excluded from consideration. The remain­
ing 19 individuals had 27 ± 5 relocations and were representative of all six of 
the sampled leks. We feel that these individuals are representative of the 
population as a whole, particularly given that sage grouse are capable of 
traveling considerable distances (Fig. 6.0. Sage grouse locations were docu­
mented from April 1997 to December 1998. Attempts were made to relocate 
radio-marked individuals every week from]une to August, and every 2 weeks 
otherwise. 

DATA ANALYSIS 

Self-Similarity and Fractal Dimension Estimation 

We obtained fractal dimension estimates for the population using the box 
counting method. A 96 x 96 grid was placed over the 44 x 44 km study area 
and occupancy at box sizes 4, 6, 8, 12, and 16 determined. Smaller box sizes 
were not used, as Levy flight fractal simulations at n = 519 revealed a strong 
dilution effect. The cluster (q = 0), information (q = 1), and correlation 
(q = 2) fractal dimensions were determined from these data. 

Random Simulations 

We used Monte Carlo simulation to obtain 100 realizations of a random 
spatial pattern of n = 519 points. For each realization, a 96 x 96 grid and 
box sizes of 4, 6, 8, 12, and 16 were used to estimate the cluster, information, 
and correlation dimensions. Upper and lower limits of the D estimates were 
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10km 

FIGURE 6.1 Movement paths for three individual sage grouse tracked between April 1997 and 
December 1998 in the Piceance Basin - Roan Plateau region of northwestern Colorado. 

determined for the 100 random simulations and compared to the observed D 
values. In this test, the null hypothesis is that the observed pattern of sage 
grouse locations is statistically random. 

We also statistically compared the observed pattern to a random Levy dust 
pattern by simulating Levy flights at D = 2. One hundred realizations of 
random Levy dust at n = 519 points were obtained and analyzed as above. 
In this test, the null hypothesis is that sage grouse are randomly foraging on 
the landscape. 

Levy Flight Model 

We tested the appropriateness of the Levy flight model by comparing the 
empirical distribution of sage grouse movement distances to that expected 
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from the Levy flight power law conditional probability, Eq. (6.5). The model 
was developed at n = 519 and Do = 1.06 (i.e., the empirical fractal dimension 
of the sage grouse radiotelemetry data). 

RESULTS 

The observed pattern of sage grouse locations (n = 519) displays evidence of 
strong spatial contagion (Fig. 6.2). Furthermore, the pattern appears scale 
invariant because the same overall degree of spatial contagion occurs across 
scales (Fig. 6.3). These empirical observations were confirmed by the fractal 
analysis. The log-log scatterplots for the q dimensions are linear (Fig. 6.4), and 
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FIGURE 6.2 Spatial pattern of sage grouse relocations (n = 519) for all individuals tracked 
within the study area. 
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FIGURE 6.3 Sage grouse relocations at three spatial scales, illustrating the self-similar properties 
of the spatial point pattern. Note how successive magnification (top to bottom) resolves a similar 
pattern. The middle and lower panels are magnifications of the small box areas in the upper and 
middle panels, respectively. 
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FIGURE 6.4 Power law relationships between Iq and box size (natural log scale) for q = 0 
(cluster dimension, filled circle), q = 1 (information dimension, open circle), and q = 2 (filled 
square, correlation dimension). The fitted lines are principal components. 

the Monte Carlo tests indicate significant deviations from both empirical 
random and random Levy flight patterns (Table 6.2). For these random 
patterns, the finite sample size problem (n = 519) results in q dimensions 
that deviate strongly from the theoretical value of D = 2. However, the 
observed q dimensions are much lower still, indicating strong spatial conta­
gion of grouse locations. 

The empirical distribution of movement distances adheres closely to the 
Levy flight power law model (Fig. 6.5). This confirms that movements are 
statistically self-similar at Do = 1.06 (i.e., the frequency distribution of sage 
grouse dispersal distances is log-log linear). For example, 195 movements 
were less than 0.5 km, but only 7 were between 5.0 and 5.5 km. Deviations 

1.5 
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TABLE 6.2 Observed q-Dimensions (Cluster, Information, and 
Correlation) for the Sage Grouse Point Pattern (n = 519) 

Dq 

Data q=O q = I q=2 

Observed 1.06 1.07 0.95 

Random
G 

1.59-1.67 1.53-1.63 1.44-1.58 

Lev/ 1.51-1.63 1.55-1.66 1.51-1.66 

GRange of 100 simulations, n = 519. 

100 

10 

• 

10 

Distance (km) 

FIGURE 6.5 Empirical frequency distribution of sage grouse movement distances (filled circles) 
and the theoretical Levy £light power law model at D = 1.06 (line). 



182 Christian A. Hagen et al. 

from expectation at intermediate distances (3 to 4.5 km, Fig. 6.5) are likely 
attributable to the small sample size and the comparative rarity of longer 
distance dispersal events. 

For illustrative purposes, we simulated Levy flight point patterns for fractal 
dimensions Do = 2.0, 1.5, and 1.06 at n = 519 (Fig. 6.6). The simulation at 
Do = 1.06 results in a pattern that is statistically similar to the sage grouse 
location data (also Do = 1.06, Fig. 6.2). At D = 1.5 the pattern is somewhat 
less strongly contagious, whereas at D = 2.0 points are well dispersed. 

DISCUSSION 

Self-Similarity 

The utilization distribution of the sage grouse population is statistically self­
similar, as demonstrated by both the linear log-log plot of spatial location data 
and adherence of dispersal distances to the Levy flight model. A statistically 
self-similar pattern is consistent with hierarchical habitat selection, an idea 
that has allowed researchers to synthesize resource use studies into a single 
approach Oohnson 1980). Just as Johnson's (1980) selection order has unified 
resource selection studies, self-similarity has the potential to unify the study of 
movements through time and across individuals. Self-Similarity may be an 
adaptive strategy for optimal foraging in habitats where resource availability is 
also scale invariant (Viswanathan et al. 1996) and may be of adaptive sig­
nificance in avoiding predators (Bascompte and Vila 1997). While Johnson 
(1980) provides a quantitative approach to the problem of scaling and habitat 
selection, his approach is aspatial. Our results indicate that a full understand­
ing of the hierarchical nature of habitat selection requires examination of the 
scaling properties of location data. The fractal power law distribution is 
appropriate here because, scale-invariant patterns cannot be properly charac­
terized using a Poisson random walk model (Viswanathan et al. 1996). 

Degree of Contagion 

The sage grouse movement data are highly contagious across scales 
(Do = 1.06). Unlike standard home range estimators, the fractal dimension 
explicitly characterizes the scaling properties of a species' utilization distribu­
tion (Gautestad and Mysterud 1993). Utilization distributions are often char­
acterized by voids (i.e., unvisited areas within the home range), but these are 
not fully characterized in standard two-dimensional home range analysis (see 
Chapter 5). Fractal analysis, by contrast, explicitly quantifies the spatial 
features of voids in the species home range. In this sense, home range and 
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FIGURE 6.6 Example Levy flight point patterns at n = 519, for three cluster fractal dimensions 
CD = 1.06, D = 1.5, and D = 2.0). 
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fractal analysis are complementary approaches to characterizing utilization 
distributions. 

Factors Affecting Spatial Contagion 

The observed contagion of sage grouse locations is best understood in terms of 
the spatial configuration of available habitat, landscape physiography, and 
distribution of leks. Sage grouse generally select relatively large patches of 
sagebrush at the landscape level (Patterson 1952, Oyler-McCance 1999), 
while movements within patches are determined by a suite of finer scale 
variables (Hupp and Braun 1989). While apparently suitable sage grouse 
habitat (sagebrush/deciduous shrub, sagebrush, and grassland communities) 
comprises about two-thirds of the Piceance Basin study area, only a very small 
proportion of this is consistently used by the population. An observational 
study in the North Park region of Colorado found that sage grouse use only 
7% of the available winter habitat (Beck 1977). Landscape-scale habitat fea­
tures appear to be important in explaining these findings. For example, the 
central region of our study area consists of long but very narrow « 0.5 km) 
patches of sagebrush surrounded by agriculture and pinyon-juniper wood­
lands (Fig. 6.7). Such a spatial configuration is apparently unsuitable for sage 
grouse, as few birds used these patches and no birds were recorded traversing 
this area. 

Self-similarity in the sage grouse utilization distribution indicates that 
movements within large sagebrush patches are also highly contagious. Pre­
ferred sage grouse habitat (sagebrush and grassland) is patchy across scales, 
and habitat use analyses (using the selectivity index; Manly et al. 1993) 
revealed strong habitat selection by sage grouse at all spatial scales (Hagen 
1999). This result suggests that sage grouse movements are strongly affected 
by scale-invariant features of the habitat (Viswanathan et al. 1996, Etzenhou­
ser et al. 1998, Ferguson et al. 1998). Physiography may also playa role, as 
sage grouse are most often found on the upper reaches of sagebrush-covered 
ridges of the study area (Hagen 1999). In addition, seasonal congregation at 
lek sites may contribute to coarse-grained spatial contagion (Bradbury et al. 
1989). What emerges is a picture of a population subjected to numerous scale­
invariant factors that affect movement patterns across all spatial scales. 

FUTURE DIRECTIONS 

Many ecologists have embraced fractal geometry as the rationale for spatial 
extrapolation and interpolation of natural phenomena (Hastings and Sugihara 
1993, Milne 1997). While a strong case can be made for using the power law 
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FIGURE 6.7 Spatial distribution of sagebrush habitat (gray) in the main portion of the study area. 

distribution to quantify animal movements, does this application have a more 
fundamental basis? Certainly both the Gaussian and power law distributions 
have wide applicability in describing and modeling nature (Turcotte 1997). If 
spatio-temporal events are statistically independent, the central limit theorem 
provides the basis for application of the Gaussian distribution; examples 
include classic home range analyses and random walk models. Unfortunately, 
animal movement data must be simplified to achieve statistical independence 
(Swihart and Slade 1985a, Turchin 1998), suggesting that this basic assump­
tion is untenable. By contrast, scale invariance of spatio-temporal events 
provides the rationale for applying the power law distribution (Gautestad 
and Mysterud 1993). In describing and modeling animal movements, we 
believe that scale invariance is a more reasonable assumption than statistical 
independence (Viswanathan et al. 1996). 

Fractal geometry provides new and valuable insights into animal movement 
data that cannot be obtained from traditional home range analyses, first-order 
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spatial statlstlcs, and habitat selection estimation. The fractal dimension 
quantifies and characterizes the habitat available to a species at different 
scales, in both space and time (Milne 1997). In this respect, fractal analysis 
can be viewed as complementary to more traditional approaches. The Levy 
flight model produces statistically self-similar clusters of used habitat and 
voids of unoccupied habitat (Viswanathan et al. 1996), a pattern that wildlife 
biologists may find intuitive and appealing. Scale-invariance of utilization 
distributions thus has far-reaching consequences for radiotelemetry data anal­
ysis and the modeling of animal movements. 

A limitation of the fractal approach is that a large sample size is required to 
overcome the dilution effect. Point pattern analysis requires a minimum of 
about 500 radiotelemetry fixes (although thousands are needed to completely 
overcome the dilution problem). Similarly, movement path analysis requires 
finely detailed temporal data to properly characterize a path's fine-scale fea­
tures. Insufficient sampling exacerbates the dilution effect and may lead to the 
possibly erroneous conclusion that a fractal structure is not statistically self­
similar (d. Panico and Sterling 1995, Turchin 1996). Recent advances in 
global positioning system tracking and microchip technology have made it 
possible to collect large amounts of spatially accurate and temporally continu­
ous location data from marked individuals (Cohn 1999). Large data-sets will 
allow us to explore the self-similar scaling features of animal movements with 
more confidence. 

Many ecological studies have used fractal geometry as a descriptive tool, 
but most have stopped short of prediction (Kenkel and Walker 1996, Milne 
1997). A major challenge for the near future is to determine the processes 
underlying observed animal movements. Recent studies have hypothesized 
that movements are matched to the self-similar complexity of habitat and 
resource availability in space and time (e.g., Viswanathan et al. 1996, Etzen­
houser et al. 1998), but the specific mechanism by which this occurs is 
unclear. A second challenge is to incorporate self-similarity and hierarchical 
scaling into wildlife biology models and management tools. There has been 
much theoretical progress in this area (e.g., Ritchie 1998, With et al. 1999, 
references therein), but such models require field-testing and validation. 
While it is difficult to predict with certainty the future of fractal analysis in 
wildlife biology, we are confident that self-similarity and the power law will 
have important roles in describing and modeling animal movements. 

SUMMARY 

Animal location data are commonly obtained by tracking radio-marked 
individuals. Recent technological advances in radiotelemetry offer the 
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potential to collect large amounts of spatially accurate location data, allowing 
researchers to formulate new and fundamental questions regarding animal 
movement patterns and processes. We outline a fractal-based approach for 
analyzing spatial location data that uses Levy flight modeling and generalized 
entropy. In this approach, each animal location is viewed as a sampled 
coordinate from an underlying spatio-temporal distribution. The set of radio­
telemetry fixes constitutes a constellation of points known as a utilization 
distribution. Fractal analysis quantifies and characterizes the degree of spatial 
contagion of a utilization distribution and determines whether the distribution 
is statistically self-similar. As such, it offers valuable insight into how a 
population uses the landscape. The method is illustrated using radiotelemetry 
data en = 519 locations) from a disjunct population of sage grouse in north­
west Colorado. 
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