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Abstract. The Hudson Bay Lowlands of Manitoba contain a wide range of
vegetation types that re� ect local variations in climate, geological history, perma-
frost, � re, wildlife grazing and human use. This study, in Wapusk National Park
and the Cape Churchill Wildlife Management Area, uses a Landsat-5 TM image
mosaic to examine landscape-level vegetation classes. Field data from 600 sites
were � rst classi� ed into 14 vegetation classes and three unvegetated classes.
Principal component analysis was used to examine the spectral properties of these
classes and identify outliers. Multiple discriminant analysis was then applied to
determine the statistical signi� cance of the vegetation classes in spectral space.
Finally, redundancy analysis was used to determine the amount of vegetation
variance explained by the spectral re� ectance data. We advocate this adaptive
learning approach to vegetation mapping, by which the researcher employs an
iterative strategy to carefully examine the relationship between ground and spec-
tral data. This approach is labour intensive, but has the advantage of producing
vegetation classes that are spectrally separable, decreasing the likelihood of errors
in classi� cation caused by overlap between classes.

1. Introduction
Remotely sensed data from satellites have been used for thematic land cover

mapping at a wide range of spatial scales and for numerous applications (Cihlar
2000). Such data have most commonly been used to interpret land cover that re� ects
the combined characteristics of numerous landscape components. Continental and
global scale projects have typically produced generalized landscape level maps that
identify broadly de� ned land cover classes (e.g. ‘agricultural’, ‘grassland’, ‘boreal
forest’ or ‘barren land’) that are separable without having to resort to detailed ground
cover information. However, such broadly de� ned map classes are often of limited
utility in addressing landscape-scale ecological questions. In response to this limita-
tion, � ner-scale maps have been produced in which land cover is related to identi� able
ground cover components (Roughgarden et al. 1991). For example, vegetation maps
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represent plant communities based on their � oristic composition and structure. Many
vegetation mapping projects have used a standard land cover mapping approach,
applying a single supervised or unsupervised classi� cation directly to the entire image
and subsequently performing an accuracy assessment. In many cases, such maps
have low accuracy and therefore could not be used for their intended purpose
(Townshend 1992).

Reasons for the unful� lled potential of satellite remote sensing in vegetation
mapping are numerous. A primary limitation of satellite sensor data is that they
provide only a measure of the amount and type of re� ected and emitted electromag-
netic energy. This information is aVected by a number of factors, including soil
moisture, substrate, plant structural con� guration, topography and atmospheric
eVects, as well as the amount, vigour, productivity, structure and � oristic composition
of vegetation (Richardson and Wiegand 1977, Vogelmann and Moss 1993). The
complexity of ecosystem structure results in a continuum of vegetation cover and a
corresponding continuum in multi-spectral space (Richards 1993). Subdivision of
this multi-spectral continuum into meaningful vegetation classes is a major challenge
that requires careful consideration.

Spectral classi� cation is essentially a modelling procedure (sensu JeVers 1982 )
whereby a complex continuum of land cover information is translated into ecolo-
gically meaningful classes. Vegetation mapping is an important practical exercise,
since a level of generalization is required if ecosystem complexity is to be represented
in a meaningful and readily interpretable way. In the initial veri� cation of a classi� ca-
tion model, re� ected spectral data are related to ground cover information.
Speci� cally, � eld-collected vegetation data are examined to establish the feasibility
of using satellite imagery to separate known ground cover classes (Cihlar 2000). The
developed classi� cation model is then normally applied to the entire area of interest
in the satellite image to produce a vegetation map. This is followed by model
validation, in which map accuracy is assessed using an independently derived ground-
survey data set. All phases of model development, including veri� cation and valida-
tion, are highly dependent on the quality and quantity of ground-survey data.
Detailed site-level information on vegetation composition and structure is required
in order to objectively de� ne meaningful ground cover classes and provide essential
insights into factors determining spectral re� ectance.

Spectral classi� cation is necessarily a subjective process that involves carefully
considered sequential decisions. The quality and utility of a spectral classi� cation is
determined by the analyst’s skill, judgement and familiarity with the study area
(Foody 1999), as well as the scale of consideration. Each mapping project has unique
challenges since the concept of spatial heterogeneity is a scale-dependent descriptor
of the inter-relatedness of land cover components across the landscape (O’Neill et al.
1988). Decisions must be made regarding the sampling design used to collect ground
cover data, including the number and distribution of sample sites. The ground cover
data must then be analysed and the sites allocated to mutually exclusive vegetation
classes based on � oristic composition (Matveyeva 1994, Legendre and Legendre
1998). Following this, the de� ned vegetation classes must be translated into spectrally
separable classes. This is a critical step, since there is no guarantee that � oristically
distinct land cover classes will have distinct spectral signatures. Indeed, an accurate
vegetation map assumes that each land cover class has unique and characteristic
spectral properties over at least part of the measured electromagnetic spectrum.
Classes lacking unique spectral signatures must either be amalgamated (e.g. Matthews
1991) or separated using ancillary data (e.g. Nilsen et al. 1999 ).
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A number of studies have examined the relationship between spectral re� ectance
and broad-scale land cover classes (e.g. Perry and Lautenschlager 1984, Hope et al.
1993, Korobov and Railyan 1993, Cihlar et al. 1997, Homer et al. 1997, Nemani and
Running 1997). However, this relationship has not been as well studied for � ner-
scale vegetation classes, particularly those based on � oristic composition and struc-
ture. Determining the relationship between spectral re� ectance and vegetation com-
position is particularly important in northern ecoregions, where vegetation mapping
presents unique logistic and theoretical challenges. Much of the arctic and sub-arctic
is inaccessible, making the collection of ground cover data diYcult and expensive.
Arctic ecosystems are spatially and � oristically heterogeneous and vegetation may
be sparse or non-existent in many areas (Ferguson 1991, Nilsen et al. 1999). Arctic
vegetation is characterized by low shrubs, graminoids, bryophytes and lichens (Bliss
et al. 1973). Lichens, which have unique spectral re� ectance properties (Petzold and
Goward 1988), often form the dominant ground cover. A number of approaches
have been used to classify and map northern vegetation in the Hudson Bay Lowlands
(Ritchie 1962, Pala and Boissonneau 1982) and other northern regions (Thompson
et al. 1980, Horn 1981, Matthews 1983, Shasby and Carneggie 1986, Ferguson 1991,
Matthews 1991, Pearce 1991, Morrison 1997, Nilsen et al. 1999), with varying degrees
of success.

Bivariate scatterplots (comparing two-band combinations of spectral data) are
commonly used to examine class separability and to determine the ideal band
combinations for classi� cation purposes (e.g. Ferguson 1991, Muller et al. 1999 ).
While this approach is useful for comparing band pairs, vegetation classi� cation
generally involves the simultaneous use of three or more spectral bands. Multivariate
analysis is a more optimal strategy for simultaneously comparing the spectral
re� ectances of numerous satellite bands (Richards 1993). In multivariate analysis,
interrelationships among the original variables (e.g. multiple spectral bands) are
summarized as a reduced set of derived variables (Legendre and Legendre 1998).
Multivariate analysis thus provides a powerful strategy for data veri� cation, such as
comparing the separability of vegetation classes and examining the utility of diVerent
band combinations in characterizing classes.

In this paper, we use ground information and spectral data from multiple
Landsat-5 Thematic Mapper (TM) bands to develop an iterative strategy for the
classi� cation of highly complex sub-arctic vegetation in northern Manitoba, Canada.
Our objective is to demonstrate the utility of multivariate methods in developing
and verifying a vegetation mapping approach based on ground cover data and
remotely sensed spectral information. A complete overview of the entire classi� cation
process is beyond the scope of this paper. Instead, emphasis is placed on the
examination of vegetation class separability in order to maximize accuracy of the
� nal map product. The multivariate techniques considered include cluster analysis,
principal component analysis (PCA), correspondence analysis (CA), multiple
discriminant analysis (MDA) and redundancy analysis (RDA).

2. Study area
The study area includes Wapusk National Park and much of the Cape Churchill

Wildlife Management Area, which collectively encompass a large portion of the
Hudson Bay Lowlands of Manitoba, Canada (� gure 1). The area is a � at, extensive
coastal plain that forms a broad transition zone between continuous boreal forest
to the south and arctic tundra to the north. Plant communities of the Hudson Bay
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Figure 1. Wapusk National Park (WNP) and the Cape Churchill Wildlife Management Area
(CCWMA) situated within the Hudson Bay Lowlands, Canada (grey shading).

Lowlands include coastal salt marshes, upland heaths and extensive fen and bog
complexes of highly variable tree cover intermixed with vast numbers of ponds and
lakes (Ritchie 1956, Sims et al. 1982, Pala and Weischet 1982). Vegetational variation
follows a spatio-temporal gradient inland from the coast, re� ecting ongoing isostatic
emergence of the area from Hudson Bay (Ritchie 1962, Webber et al. 1970). Grazing
by large herbivores, including geese and caribou, has signi� cantly altered plant
community structure in some areas (Campbell 1995, Ganter et al. 1996). Fire is a
frequent and recurring process on the landscape. The dynamic nature of the region,
together with its size and remote location, makes satellite imagery an essential tool
for vegetation mapping. The complex mosaic of vegetation in the region provides
an ideal case study for examining issues of class separability in landscape-level
vegetation mapping.

3. Methods
3.1. Analytical approach

The collection and analysis of ground cover and spectral re� ectance data, and
classi� cation of the satellite image, followed an iterative approach that included a
number of decision steps (� gure 2). Our methodology focused on making careful
decisions based on multivariate data analysis and the inherent limitations of satellite
imagery. Adaptive learning was an essential component of our procedure, with each
decision having an important impact on subsequent decisions in the mapping process.
Cluster analysis (Ward’s method, Legendre and Legendre 1998), based on a chord
distance matrix of ground cover data, was performed to delineate major vegetation
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Figure 2. Flow model diagram of the generalized approach to satellite image classi� cation
using multivariate data analysis. Square boxes are steps involving satellite image
manipulation and classi� cation, while rounded boxes are data analysis steps. Dashed
arrows depict iterative steps.

communities (HIERCLUS, Podani 1994). The spectral data of the de� ned vegetation
classes were then analysed using principal component analysis, based on a correlation
matrix (ORDIN, Podani 1994). This step identi� es classes that have highly unique
spectral signatures in order to classify them separately and better resolve diVerences
between classes that are more similar. The separability of individual vegetation
classes was then assessed using multiple discriminant analysis (MDA) (ORDIN,
Podani 1994). MDA maximizes the ratio of the between-to within-groups variance,
and graphically displays interclass variation in a low-dimensional ordination space
(Legendre and Legendre 1998). MDA thus provides valuable insight into the relative
separability of vegetation classes. Finally, the correlation between the � oristic and
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spectral data was examined in order to verify the model relating ground vegetation
cover to spectral data in the satellite imagery. Canonical analysis is the appropriate
model to examine the correlation between two multivariate data sets (Gittins 1985).
We used a canonical model known as redundancy analysis (RDA) to examine the
relationship between spectral re� ectance (TM bands 3, 4, 5 and 7) and vegetation
ground cover. RDA is an extension of multiple regression for modelling multivariate
response data (Legendre and Legendre 1998). The method constrains the vegetation
data such that ordination vectors are linear combinations of spectral re� ectance
values.

3.2. Data collection
Two full Landsat TM images covering the study area, taken on 27 July 1996,

were acquired. These were the most recent cloud-free TM scenes available for the
study area during the peak of the growing season (early July to mid-August) . All
non-thermal bands were included. The thermal band (TM6) was not used because
of its low spatial resolution (120 m). In order to remove geometric distortion in the
Landsat TM imagery, each scene was geocoded to a Universal Transverse Mercator

(UTM) grid referenced to the North American Datum of 1927 (NAD 27) zone 15
projection. A total of 15 ground control points (GCPs) were collected for each image
(GCPWORKS, PCI Geomatics 1998) from 1:50 000 NAD 27 National Topographic
System (NTS) paper maps that are the most accurate spatial data currently available
for the region. GCP selection was based on the ability to � nd a corresponding pixel
within the image and the maps accurately. Three GCPs were selected that were
common to both images in order to ensure that when mosaicked together, the � t
would be accurate. Image to image GCP collection, � rst order transformation and
nearest neighbour re-sampling of uncorrected imagery were performed. Image identi-
� able points were selected and matched to map coordinates. The green, red and
near-infrared bands of the Landsat TM image displayed as a false composite image
were used for point identi� cation because it produced maximum contrast between
land, vegetation and water features. The resulting Root Mean Square (RMS) error
for the imagery was 0.96 pixel (28.8 m), 0.63 pixel (18.9 m) (x, y) for the north image
and 0.57 pixel (17.1 m), 0.87 pixel (26.1 m) (x, y) for the south image. Once the two
scenes were georeferenced, they were mosaicked together to produce a single compos-
ite image. This geocoded image was then subset to size it to the bounds of the study
area. A mask was digitized over the ice in Hudson Bay and it was cut out of the

image to remove its confusing eVect on the classi� cation process.
Field data were collected throughout the study area from June to September of

1998 and 1999. Four hundred sites that were visually homogenous at a minimum
scale of 50 m×50 m were sampled. At the centre of each site, percent cover values
for each plant species and unvegetated substrate were estimated within a 10 m×10 m

plot. Each plot was then sub-sampled using two randomly placed 2 m×2 m plots.
The precise location of each site was determined using a hand held Global Positioning
System (GPS) by taking several location � xes per second for 30–45 minutes and
then averaging them over time. An additional 200 sites were independently sampled

for classi� cation accuracy assessment. The location data were used to obtain Landsat
5 spectral re� ectance values (TM bands 1–5 and 7) for all sites, which allowed us
to directly compare the ground cover information to the thematic data provided by
the satellite image.
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3.3. Initial class allocation
Cluster analysis provided an objective grouping of vegetation communities, inde-

pendent of the spectral data, resulting in fourteen vegetation types (table 1). Three
unvegetated classes (<20% vegetation cover) were also identi� ed based on prominent
physical characteristics: water, unvegetated ridges and unvegetated shorelines. Digital
numbers (DN) of the six Landsat TM bands were obtained for each sample site to
form a veri� cation data set. Pixels were removed from the dataset if they clearly fell
outside of the normal range of homogenous sites. This step was performed to ensure
that the training data set contained no mixed pixels (Arai 1992). For illustration
purposes, a representative sample of 15 pixels was randomly selected from each of
the 17 classes in order to indicate inter-class spectral variability.

3.4. Identi� cation of outlier classes
The spectral data of the de� ned vegetation classes (17 classes, each with 15 sites

and six Landsat bands) were analysed using principal component analysis, based on
a correlation matrix. PCA is a multivariate ordination method that considers inter-
correlations of the spectral data to produce an optimized and simpli� ed representa-
tion of the underlying data structure. PCA is particularly well suited to the
identi� cation of outlier groups in multidimensional spectral band space. In our
analyses, sites are represented as scores on the two major component axes, while the
six spectral bands are shown as ordination biplot scores (Gabriel 1971). Classes
appearing as prominent outliers in the two-dimensional ordination space were identi-
� ed and removed. Classes were considered ‘outliers’ when the cluster of 15 sites
de� ning the class was clearly separated from the remaining sites. After one or more
outlier classes were removed, PCA was run again on the reduced data set. This
process was repeated until no strong outlier groups remained.

Table 1. Land cover and vegetation classes of the study area with the average digital number
from Landsat TM imagery (s.d.); n=15 for each class.

Landsat TM Digital Number (DN)

Class TM1 TM2 TM3 TM4 TM5 TM7

1. Sphagnum Larch Fen 55 (1.4) 24 (0.7) 22 (1.1) 75 (2.2) 49 (1.5) 16 (1.4)
2. Sedge Rich Fen 55 (1.4) 23 (1.0) 20 (1.1) 81 (3.6) 59 (2.2) 18 (1.3)
3. Willow Birch Shrub 53 (0.7) 21 (0.5) 18 (0.6) 64 (2.4) 58 (3.0) 19 (1.8)
4. Sedge Larch Fen 55 (2.1) 21 (0.8) 20 (1.3) 46 (2.0) 50 (2.8) 18 (1.2)
5. Sphagnum Spruce Bog 52 (1.3) 22 (0.5) 18 (0.5) 47 (2.1) 39 (1.7) 13 (0.7)
6. Graminoid Willow Salt 65 (4.6) 31 (3.9) 34 (7.2) 64 (7.8) 70 (6.3) 25 (2.6)

Marsh
7. Willow Sedge Poor Fen 57 (2.1) 25 (1.6) 24 (1.6) 62 (4.8) 60 (9.5) 21 (3.2)
8. Lichen Spruce Bog 63 (2.7) 28 (1.3) 29 (2.2) 63 (4.6) 68 (3.5) 25 (2.0)
9. Sedge Bullrush Poor Fen 59 (1.9) 24 (1.1) 26 (1.1) 51 (2.1) 69 (3.2) 26 (1.6)

10. Lichen Melt Pond 61 (2.5) 25 (0.9) 27 (1.8) 45 (3.6) 72 (4.4) 29 (2.5)
11. Lichen Peat Plateau 73 (1.3) 33 (0.9) 39 (1.4) 59 (1.6) 90 (1.3) 35 (1.1)
12. Dryas Heath 70 (10.2) 31 (6.9) 35 (9.3) 55 (4.9) 99 (10.3) 42 (8.3)
13. Regenerating Burn 56 (1.8) 23 (0.9) 23 (1.8) 42 (3.5) 70 (1.7) 30 (2.4)
14. Recent Burn 53 (0.7) 20 (0.5) 21 (1.0) 24 (1.7) 38 (1.9) 24 (1.9)
15. Unvegetated Ridge 122 (12.6) 68 (8.5) 89 (11.8) 86 (11.0) 150 (19.5) 83 (9.9)
16. Unvegetated Shoreline 87 (6.1) 45 (4.8) 56 (8.4) 53 (6.7) 54 (4.7) 23 (2.6)
17. Water 48 (2.8) 17 (4.1) 14 (3.1) 7 (0.7) 4 (1.6) 3 (1.1)
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Based on results of the iterative PCA, three major divisions of the data were
identi� ed: vegetated, unvegetated and water. An unsupervised 203-class isodata

classi� cation was run on the entire image mosaic (IMAGEWORKS, PCI Geomatics

1998), and the resulting classes assigned to one of these three divisions. The number
of classes selected for the isodata unsupervised classi� cation was based on the number

of vegetation classes being separated and the size of the area being classi� ed. From

the unsupervised classi� cation, the unvegetated group was separated into either the
unvegetated ridge class (high re� ectance in TM bands) or unvegetated shoreline

class ( low re� ectance in TM bands) . The water, unvegetated ridge and unvegetated

shoreline classes were then converted to individual bitmap masks in order to remove
them from further image classi� cation.

The boundaries of known recent burns were digitized to create a bitmap mask

over the recently disturbed areas. An unsupervised 28-class isodata classi� cation was
then run on the image, and all classes within the spectral range of recent burns were

aggregated to form a single recent burn class. This was converted into a bitmap

mask and removed from further classi� cation.

3.5. Discriminating vegetation classes

Once the main outlier groups were removed from the spectral data set, MDA
was used, based on spectral bands 3, 4, 5 and 7 identi� ed as the optimal band set

in PCA analysis. In our analysis, the vegetation classes are represented as 95%

con� dence ellipsoids, while the spectral bands are shown as biplot scores (Gabriel
1971). MDA was used to determine whether the � oristically-based vegetation classes

overlapped in spectral band space. Overlapping classes were then carefully examined

to determine the nature of their spectral similarity. For each class, a decision was
made to do one of the following: (1) Retain the class, while acknowledging that

overlap with another class will compromise the accuracy of the � nal classi� cation;

(2) Aggregate two overlapping classes, if it can be established that they are suYciently

similar � oristically and if doing so does not compromise the utility of the � nal map;

(3) Mask a class, if it is a disturbance feature that crosses over vegetation communities

and is spatially distinct; (4) Mask a class, if it is � oristically distinct and can be

spatially separated from its overlapping class; (5) Mask a class, if it contains features
that are considered unique and important to the � nal map and might be lost during

classi� cation and � ltering.

3.6. Verifying the model

Once overlapping classes and strong outliers are removed, more subtle relation-
ships between spectral re� ectance and vegetation cover on the ground can be exam-

ined. Floristic data were obtained from 10 sites in each of the nine vegetation classes

that were identi� ed as spectrally separable in the MDA analysis. A total of 55 plant

species and three unvegetated variables (water, organic soil and plant litter) were

included. These data were � rst processed using correspondence analysis (CA) ordina-

tion (ORDIN, Podani 1994). This step was necessary to linearize the data and to

reduce its dimensionality (Green 1993). RDA was then performed on the 90 sites,

using the scores on the � rst four CA ordination axes as the response variables and
the four spectral re� ectance bands as the explanatory variables.
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4. Results
4.1. Principal component analysis

PCA ordination of all 17 classes (table 1) indicated two strong outliers, water
and unvegetated ridge classes (� gure 3(a)). The water class is characterized by low
re� ectance in all bands, while spectral band re� ectances for the unvegetated ridge
class are uniformly high. A residual PCA (water and unvegetated ridge classes
removed) revealed an additional outlier class, Unvegetated Shoreline (� gure 3(b)).
This class is characterized by very high re� ectance in the visible spectrum (bands
1–3). Following removal of the Unvegetated Shoreline class, the Recent Burn class
proved to be an outlier with low re� ectance in all bands (� gure 3(c)). PCA of the
remaining 13 classes suggested no additional strong outliers (� gure 3(d )).

Figure 3. Principal component analysis of spectral re� ectance variables, each point repres-
enting data for a single site where � eld data and corresponding digital numbers of
Landsat TM bands were collected. Sites are identi� ed as outliers (open boxes) if all
15 sites in the class are strongly separated from the other sites in the data set ( ).
Outlier classes are indicated by a dashed line. Biplots of variables are shown as arrows
from the ordination centroid. (a) PCA of 17 classes, outlier class on the left of the
diagram is Water, outlier class on the right is Unvegetated Ridge (axis I=81.05%,
axis II=12.14%). (b) PCA of 15 classes (Water and Unvegetated Ridge removed),
outlier class is Unvegetated Shoreline (axis I=59.02%, axis II=21.83%). (c) PCA of
14 classes (Unvegetated Shoreline removed), outlier class is Recent Burn (axis I=
72.06%, axis II=19.29%). (d ) PCA of 13 classes (Recent Burn removed), no outlier
classes are present (axis I=72.81%, axis II=18.59%).
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Figure 4. Multiple discriminant analysis of spectral re� ectance variables of vegetation classes.
95% con� dence ellipses for means are shown; class labels as in table 1. Biplots of
variables are shown as arrows from the ordination centroid. (a) MDA of 13 vegetation
classes (Wilk’s L,=0.0010, p<0.001). (b) MDA of nine vegetation classes with classes
6, 7, 12, 13 removed (Wilk’s L,=0.0002, p<0.001 ).

Each step in the iterative process summarized above revealed various features of
the spectral data. As outlier unvegetated groups were removed, band 4 (near infrared)
became increasingly important in discerning the vegetated classes. Bands 1–3 (visible)
were proximate in all cases, indicating a high degree of multicollinearity. Bands
5 and 7 are also correlated with the visible bands, but band 4 contains unique
information not carried by the other bands.

4.2. Multiple discriminant analysis
An MDA of the 13 remaining classes revealed varying degrees of interclass

separation (� gure 4(a)). Four of the classes were subsequently masked or combined
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with other classes. Classes 3 (Willow Birch Shrub Fen) and 7 (Willow Sedge Poor
Fen) show considerable overlap in spectral space. Since they cannot be separated
spectrally and are � oristically similar, they were combined to form a single class.

Classes 6 (Graminoid Willow Salt Marsh) and 8 (Lichen Spruce Bog) also show
considerable overlap in spectral space, but are � oristically very diVerent and spatially
distinct (Salt Marsh occurs exclusively along the coast, while Lichen Spruce Bog is
found farther inland). To distinguish the salt marsh class on the vegetation map, a
15 km wide strip along the shore of Hudson Bay was digitized and masked.
Unvegetated areas of the mask were subtracted and an unsupervised 28-class isodata
classi� cation was run to spectrally separate salt marsh from other vegetation classes.

Class 12 (Dryas Heath) occurs on long, narrow former beach ridges that parallel
the Hudson Bay coastline. While limited in spatial extent, this vegetation class
represents a distinct and ecologically/culturally signi� cant landscape feature. To
ensure that these small, elongated regions were classi� ed with a high level of certainty
on the � nal map, a mask was created for this spectrally distinct class using the
same procedure applied to regenerating burns. Pixels were then only identi� ed as
being Dryas Heath if they occurred under the mask to ensure that no pixels were
misclassi� ed as Dryas Heath in areas where it is known to not occur.

Class 13 (Regenerating Burn) proved to be spectrally distinct, but it represents a
highly variable disturbance feature that spans several vegetation classes. Regenerating
burn boundaries were therefore hand-digitized to create a bitmap, and an unsuper-
vised 28-class isodata classi� cation was run under the mask. All classes falling within
the spectral range of the ground-sampled regenerating burns were aggregated into
a single regenerating burn class, converted to a bitmap mask, and removed from
further classi� cation.

A residual MDA (excluding classes 6, 7, 12 and 13) revealed strong separation
of the nine remaining classes (� gure 4(b)). The lichen peat plateau (class 11 ) has the
highest re� ectance in bands 3, 5 and 7. The most productive sites (classes 1–3) have
highest re� ectance in band 4, but low re� ectance in bands 3, 5 and 7.

4.3. Redundancy analysis
Redundancy analysis indicated that 43% of variance in the CA ordination space

can be explained by variation in spectral re� ectance (bands 3, 4, 5 and 7). This
suggests a reasonably strong relationship between � oristic composition and Landsat
spectral re� ectance, but not surprisingly a large amount of the variation in � oristic
composition remains unaccounted for. This occurs because spectral re� ectance is
largely a function of the structural, rather than � oristic, properties of vegetation.
The RDA ordination (� gure 5) indicates that vegetation classes dominated by lichen
(classes 8, 10 and 11) are characterized by high re� ectance in bands 3, 5 and 7, but
low re� ectance in band 4. More productive wet fen and shrub habitats (classes 1, 2
and 3) show highest re� ectance in band 4, but low re� ectance in bands 3, 5 and 7.

5. Discussion
Coarse-scale mapping projects have often downplayed the importance of col-

lecting ground cover data. Indeed, such data are often only used to label classes
derived from an unsupervised classi� cation of spectral information (Cihlar 2000).
For � ner-scale vegetation mapping projects (1:250 000 and � ner), our results indicate
that detailed and extensive � eld data are essential to the interpretation and analysis
of satellite imagery. We strongly suggest that image classi� cation (whether using a
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Figure 5. Redundancy analysis relating nine vegetation classes (numbers, see table 1 for
codes) and four spectral TM bands (3–5 and 7, displayed as biplots). The two
ordination axes I and II account for 77.7% of the vegetation–spectral band relation.
Total redundancy is 43%.

supervised or unsupervised approach) should occur only after vegetation classes have
been identi� ed and characterized using appropriate statistical analyses of � eld data.
Once this has been done, the spectral information associated with each vegetation
class must be examined to ensure that the classes are spectrally distinct. The mapping
of ecologically meaningful vegetation classes must begin with a classi� cation of
ground vegetation (e.g. Thompson et al. 1980, Nilsen et al. 1999), not a classi� cation
of satellite spectral re� ectance data.

The use of ground data to evaluate spectral information provides critical insights
into optimal band combinations for classi� cation purposes, and identi� es the degree
of separability of diVerent classes. It is generally recognized that not all Landsat TM
bands are required for classi� cation purposes (Richards 1993). Band selection should
be based on the ability of diVerent band combinations to resolve the classes of
interest and on the analysis of correlations among bands.

In our initial analyses, PCA was performed using six spectral bands (bands 1–5
and 7) as variables. Including the three highly collinear visible bands 1–3 places



Sixth Circumpolar Symposium on Remote Sensing of Polar Environments 4773

strong emphasis on distinguishing vegetated from unvegetated classes. Band 1 is
considered particularly eVective in separating vegetation from barren ground
(Lillesand and Kiefer 1994). After the unvegetated outliers had been recognized and
removed, bands 1 and 2 were excluded from subsequent multivariate analyses (MDA,
RDA) in order to reduce variable multicollinearity. When discriminating vegetation
types, it is generally recommended that at least one band from each of the visible,
near-infrared and mid-infrared regions are included (Beaubien 1994). The combina-
tion of bands 3 (visible red), 4 (near infrared) and 5 (mid-infrared) has been widely
used (e.g. Benson and Degloria 1985, Horler and Ahern 1986, Moore and Bauer
1990, Beaubien 1994), although band 7 (mid-infrared) is sometimes substituted for
band 5. Multivariate biplots (Gabriel 1971) eVectively summarize the correlations
among bands and trends in the spectral re� ectance properties of vegetation classes,
thus allowing the analyst to select bands that are most appropriate for a particular
application.

The initial 17 land cover/vegetation classes (table 1) displayed some overlap in
spectral space. A classi� cation based directly on these 17 groups would therefore
have resulted in an inaccurate and misleading vegetation map. In this study, the
reasons for overlapping spectral signatures varied, but were largely related to � oristic
composition, physiognomic structure and substrate composition. For example, classes
3 and 7 (Willow Birch Shrub Fen and Willow Sedge Poor Fen) were � oristically
similar, and are distinguished mainly by higher shrub cover in the Willow Birch
Shrub class. These two classes were amalgamated since this relatively subtle diVerence
in vegetation could not be resolved by the TM spectral re� ectance data. In contrast,
the spectral overlap between classes 6 and 8 (Graminoid Willow Salt Marsh and
Lichen Spruce Bog) illustrates how very diVerent vegetation classes can have nearly
identical spectral signatures. The salt marsh class is characterized by small patches
(1–50 m2 ) of halophytic vegetation (graminoids and low shrubs) interspersed with
highly re� ective unvegetated clay, while Lichen Spruce bogs are completely vegetated,
characterized by a sparse cover of coniferous trees, and a highly re� ective ground
layer dominated by lichens. These two classes are structurally somewhat similar
(patches of highly absorptive vegetation on a highly re� ective matrix) , but they share
no species in common and are functionally very diVerent. They cannot be distingu-
ished using spectral re� ectance information alone, and so must be mapped using
ancillary information.

6. Conclusion
When mapping vegetation, it is important to recognize that diYculties in charac-

terizing thematic classes are not merely related to a mixed pixel problem. Indeed,
very diVerent combinations of vegetation cover and substrate conditions can some-
times produce nearly identical re� ectance signatures. This phenomenon can only be
identi� ed through extensive collection of � eld data and a careful examination of its
spectral properties. A number of approaches are available to separate distinct vegeta-
tion classes showing overlap in spectral space. It is diYcult to recommend a single
approach, however, since each mapping exercise presents unique problems and
challenges. Ancillary information from digital elevation models, aerial photographs,
substrate data and so forth have long been used to improve the separation of classes
in vegetation mapping exercises (e.g. Nilsen et al. 1999, Walker 1999). Alternatively,
multi-temporal satellite imagery can be used to separate classes that vary spectrally
through time, for example over a growing season (Fuller and Parsell 1990, Lunetta
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and Balogh 1999). Whatever method is used, it is of course necessary � rst to identify
and characterize the overlapping classes.

We feel that the production of an eVective and optimized vegetation map is best
achieved using an adaptive learning process that involves careful examination of the
relationship between the ground cover and spectral data. The approach advocated
here is labour intensive and involves numerous iterative steps. However, we believe
that it provides a highly robust and � exible approach to thematic mapping, since
the analyst is able to make informed choices at all stages of the decision-making
process. The graphical approach that we employ (� gures 3–5) provides an uncomplic-
ated and intuitive method for displaying very complex multivariate relationships
between ground cover and spectral re� ectance data. It has been our experience that
presenting multivariate analysis results only in tabular form, while informative, is
rarely enlightening.

7. Summary
A model is a simpli� cation of a natural system that retains the important or

usable information while removing ‘noise’ that would otherwise obscure important
trends. The development of landscape-scale vegetation/land cover maps requires a
rigorous modelling approach that includes both validation and veri� cation. A graph-
ically-oriented multivariate approach can assist the modelling process by allowing
the analyst to consider multiple satellite bands simultaneously, and to identify overlap
in spectral re� ectance values prior to classi� cation. This is a critical process, since
mutually exclusive classes must be de� ned in order to unambiguously classify pixels
in a satellite image.
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