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Kenkel, N. C. 2006. On selecting an appropriate multivariate analysis. Can. J. Plant Sci. 86: 663–676. The broad objective of
multivariate data analysis in biology is to summarize associations among species (the dependent or response variables), and to elu-
cidate species responses to one or more environmental factors (the independent or predictor variables). This objective is achieved
by reducing the dimensionality of variable space to an efficient, low-dimensional summative model of the underlying data struc-
ture that reflects the coordinated response of species to environmental factors. While multivariate methods have proven indis-
pensable for analyzing both experimental and survey data in the biological sciences, considerable confusion persists regarding the
selection of appropriate analytical strategies. The selection of an appropriate analytical strategy, which includes important deci-
sions regarding data transformation, variable standardization and methodological approach, should be based on fundamental con-
siderations of statistical appropriateness, data structure, and study objectives. Unfortunately, past and more recent assessments of
multivariate analytical strategies have been based largely on empirical models of questionable relevance. This empirical approach
has led to misleading recommendations and erroneous generalizations regarding the relative efficacy of the available multivariate
methods. This paper dispels these misleading recommendations and provides some general guidelines for selecting appropriate
data transformations, variable standardizations and methodological approaches in the multivariate analysis of biological data. 
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Kenkel, N. C. 2006. Choix d’une méthode convenable d’analyse à variables multiples. Can. J. Plant Sci. 86: 663–676. En
biologie, l’analyse à variables multiples des données a pour objectif général de résumer les associations entre espèces (la variable
dépendante ou la variable-réponse) et d’élucider la réaction de l’espèce à un ou à plusieurs paramètres environnementaux (les vari-
ables indépendantes ou explicatives). On y parvient en diminuant le nombre de dimensions de l’espace des variables jusqu’à
obtenir un modèle efficace à peu de dimensions qui résumera la structure sous-jacente des données et illustrera la réaction coor-
donnée de l’espèce aux facteurs environnementaux. Bien que les méthodes à variables multiples s’avèrent indispensables à
l’analyse des données expérimentales et des données relevées sur le terrain en biologie, une grande confusion règne dans le choix
de la méthode appropriée. Pareil choix suppose en effet d’importantes décisions au niveau de la conversion des données, de l’u-
niformisation des variables et de la méthodologie. Il devrait donc reposer sur des considérations fondamentales, notamment la
valeur statistique, l’organisation des données et les buts de l’exercice. Malheureusement, les évaluations anciennes et d’autres, plus
récentes, des méthodes à variables multiples reposent dans une large mesure sur des modèles empiriques dont la pertinence peut
être mise en doute. Cette approche empirique a débouché sur des recommandations fallacieuses et des généralisations erronées
concernant l’efficacité relative des méthodes existantes. Cet article rejette ces recommandations et donne quelques lignes directri-
ces générales qui faciliteront le choix d’une approche convenable à la transformation des données, à l’uniformisation des variables
et à la méthodologie pour l’analyse à variables multiples des données biologiques.

Mots clés: Ordination, analyse canonique, analyse par co-inertie, analyse en composantes principales, analyse par correspon-
dance, analyse multidimensionnelle non métrique

Classic statistical methods used in field biology were devel-
oped to address the specific needs of agriculturalists working
with highly controlled experimental systems (Digby and
Kempton 1987; Sokal and Rohlf 1995). Characteristic features
of such controlled experiments include the manipulation of
experimental factors over a relatively narrow range, the mini-
mization of potentially confounding uncontrolled factors
through careful site selection and appropriate experimental
design, and emphasis on the analysis of a single response vari-
able such as yield. These features allowed for the development
of a statistical theory based on two important assumptions: that
the factors affecting variable response patterns are additive, and
that the residual response is normally distributed (Digby and

Kempton 1987). Provided that these assumptions are met
(exactly, or at least approximately), classic statistical theory
provides powerful analytical methods for detecting departures
from the null hypothesis (Mead 1988; Sokal and Rohlf 1995). 

While classical statistical methods are well-suited to the
analysis of data arising from highly controlled experiments,
they are of limited utility for analyzing data arising from
surveys or experiments undertaken in natural or semi-natur-
al ecosystems (e.g., rangeland, agricultural weed communi-
ties). Consider for example the Park Grass Experiment,
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established at Rothamsted, England, in 1856 and used to
investigate the long-term effects of nutrient manipulation on
the productivity and biodiversity of semi-natural grasslands
(Digby and Kempton 1987). This manipulative experiment
differs from classic controlled experiments in a great many
ways. Perhaps most importantly, the data are multivariate:
responses of a large number of species are simultaneously
recorded. There are also very wide ranges in species yields,
and many species are entirely absent (zero yields) from most
plots. Even after removing rare species from the Park Grass
Experiment data, for example, over 50% of the data matrix
contains zero values (Digby and Kempton 1987).
Furthermore, the interactions of species responses and envi-
ronmental factors, and those among species in the plots, are
highly complex. This complexity necessarily leads to study
objectives that are fundamentally different from simple esti-
mation and hypothesis testing, the standard objectives of
classic statistical methods. Specifically, the objectives of
multivariate data analysis are to summarize associations
among species, and to elucidate species responses to envi-
ronmental factors (Legendre and Legendre 1998). 

Multivariate statistical methods were first described in the
early years of the 20th century, but computational chal-
lenges precluded their wide application until the advent of
computers. They were introduced into the biological litera-
ture in the 1960s as effective methods for the analysis and
display of complex data structures (Rao 1964; Seal 1964;
Orloci 1966). Today multivariate statistical methods are
indispensable analytical tools in the agricultural, biological
and environmental sciences, as well as such diverse fields as
psychology, economics and medicine. Yet despite nearly 40
years of application, and innumerable research articles dis-
cussing the relative efficacy and utility of various multivari-
ate models, there persists a great deal of confusion regarding
the selection and application of multivariate techniques.
Most studies comparing multivariate methods and strategies
are empirical and based on inductive reasoning. As a result,
recommendations largely reflect the biases inherent in con-
clusions derived from empirical data, as well as the biases of
individual researchers. While many researchers have main-
tained a certain objectivity in their assessments, a number of
misleading and erroneous claims regarding the relative effi-
cacy of multivariate methods persist in the literature. In
some cases, unwarranted pronouncements have been made
regarding the application of multivariate methods, which, in
my opinion, have done a great disservice to the scientific
community by perpetuating unwarranted generalizations.
Unfortunately, a number of researchers and reviewers of sci-
entific manuscripts have adopted these views, strongly
advocating the use of a particular multivariate method to the
exclusion of all others. Such a simplifying perspective fails
to give due consideration to the issues most critical to the
selection of an appropriate multivariate analytical strategy:
statistical relevance, data structure, and study objectives.

It is against this current state of affairs that I have written
the present article. My intent is not to present a statistical
summary of multivariate methods – there are plenty of arti-
cles and monographs on that subject – but rather to provide
some general guidelines for selecting appropriate multivari-

ate analytical strategies based on fundamental considera-
tions of statistical relevance, data structure, and study objec-
tives. My objective is to dispel prevailing misconceptions
regarding the relative efficacy of multivariate methods,
which initially appeared in the ecological literature in the
early 1970s and have been uncritically perpetuated even to
this day. 

MULTIVARIATE DATA STRUCTURES
Data are said to be multivariate (or multivariable) when a
sample survey or experiment results in measurements of
more than one variable in each sampling unit. The resultant
data are typically represented as a matrix of attribute values,
with P rows of variables and N columns of sampling units.
An example is a biotic (species) data set consisting of abun-
dance values of P1 plant species (dependent or response
variables) within each of N plots (sampling units) located at
random within a grazed pasture. Possibly, but not necessar-
ily, a second, abiotic (environment) data set consisting of
values for P2 soil nutrient measurements (independent or
predictor variables) may be obtained from the same N plots,
with the ultimate objective of predicting species composi-
tion from soil nutrient status (or vice versa). The defining
feature of multivariate data analysis is that the P variables
are considered simultaneously to investigate their coordinat-
ed response. It is this coordinated response that produces
underlying trends and patterns in the data. 

It is important to recognize and distinguish among differ-
ent types of multivariate data structures, since data structure
plays a critical role in determining the appropriate analytical
strategy. The analytical strategy itself encompasses three
related decisions: data transformation, variable standardiza-
tion, and methodological approach. The following discus-
sion focuses on three types of observed data structures:
continuous abiotic (environmental) survey data, continuous
biotic (species) survey data, and categorical contingency
data. Simulated ecological data are also discussed, since
they are widely used to assess the relative efficacy of multi-
variate analysis methods and strategies. 

Observed Data Structures
Abiotic (Environmental) Survey Data 
Examples of abiotic (environmental) survey data include
soil nutrients measured in fields, and climatic factors mea-
sured at a set of discrete locations. Common features of such
data include continuous predictor variables measured in dif-
ferent units (variables lacking a common scale), variable
distributions that are positively skewed (log-normal distrib-
utions), and an absence of zero values. The appropriate ana-
lytical strategy for such data typically involves logarithmic
transformation, variable standardization to z-scores, and the
application of linear multivariate methods.

Biotic (Species) Survey Data
Examples of biotic (species) survey data include measured
abundances of weed species in a series of fields, and insect
species in a set of light traps. Common features of such data
include continuous variables expressed in the same units
(variables have a common scale, for example counts or
related measures of absolute abundance), variable distribu-
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tions that are highly positively skewed (log-linear distribu-
tions), and the presence of many zero values. The presence
of zeros in such data is attributable to two factors: the dis-
tribution of species commonness and rarity, and niche limi-
tations on the occurrence of species within some sampling
units. The appropriate analytical strategy normally involves
logarithmic transformation but no variable standardization
(since measures are made on the same scale), and the appli-
cation of linear or non-linear multivariate methods. Linear
methods are appropriate when the zero values in the data
largely reflect absences of rare species, whereas non-linear
methods are appropriate when niche limitations are para-
mount (that is, when the sample encompasses a very broad
range of environmental variation). For survey and experi-
mental data in agriculture and related disciplines, linear
multivariate models are generally appropriate since the sam-
pled range of environmental variation is normally modest. 

Contingency Data
Biotic contingency data most commonly arise through com-
pilation of a series of biotic surveys or sub-samples from
separate areas, and/or by combining variables and/or sam-
pling units into broader categories (e.g., Greenacre and Vrba
1984). The resulting categorical data are in contingency
form since the matrix elements represent counts (or abun-
dances) of individuals in a cross-classification defined by
the row and column categories. As an example, consider a
study undertaken to survey the species composition/abun-
dance of weed species in a series of 35 agricultural fields.
Each field is first sampled using 20 randomly located plots
in which weed species abundances are measured (i.e., a sin-
gle biotic survey). The survey data are then compiled into a
contingency table, by computing frequencies or means of
weed species abundances (P row categories) in each field (N
= 35 column categories). The variables may also be com-
bined to form broader categories, for example by amalga-
mating taxonomic species into life-form classes (annual,
biennial, perennial herb, perennial woody). Similarly, the 35
fields may also be classified into broader categories, for
example productivity classes (low, medium, high and very
high yielding fields). 

While biotic survey data can be viewed as special cases of
contingency data (see Legendre and Legendre 1998), it is
important to distinguish these two data structures. The dis-
tinguishing features of biotic contingency data are a much
larger sample size (they are often obtained by compiling
numerous smaller biotic surveys, as in the example above),
and much broader spatial (environmental) and/or temporal
scales. Consider for example a study to determine variation
in insect pollinators along a broad elevation (environmental)
gradient, extending from sea level to the alpine. At a given
elevation, a detailed biotic survey (e.g., 50 overnight light
traps) would be required to enumerate fully the community
of insect pollinators. Similar biotic surveys (i.e., 50 light
traps each) would be undertaken at each elevation level.
Finally, the individual biotic surveys would be compiled to
form a contingency matrix (rows = insect species as vari-
ables, columns = elevation categories as sampling units).
Note that biotic survey data at a given elevation level

encompass a relatively narrow range of environmental vari-
ation, and could be separately analyzed using a linear multi-
variate method. By contrast, the contingency table
summarizes variation over a much broader range of envi-
ronmental variation, and therefore requires a non-linear
(unimodal response) multivariate approach. The appropriate
analytical strategy is to apply correspondence analysis on
unstandardized, untransformed data. 

As noted above, biotic survey data do not (and should
not) encompass a wide range of environmental variation –
no one would place great faith in the insect pollinator study
outlined above if only a single overnight light trap was
established at each elevation level (i.e., a biotic survey data
set with insect species as variables, light traps as sampling
units). While a clear distinction between biotic survey and
contingency data is rarely made, such a distinction is criti-
cally important in determining the appropriate analytical
strategy for multivariate analysis. 

Simulated Data Structures
Assessments of multivariate techniques are typically based
on the ability of methods to recover the underlying structure
of simulated biotic data, an approach that dates back to the
pioneering work of plant ecologists (Swan 1970; Gauch and
Whittaker 1972a,b). This inductive approach was elaborat-
ed upon by Minchin (1987a,b) and others, and many con-
temporary researchers continue to use this approach for
evaluation purposes (e.g., McCune and Grace 2002). A
major advantage of using simulation modeling is that the
underlying data structure is known, making the approach
useful for comparing multivariate strategies and approaches
under specified conditions (e.g., Bradfield and Kenkel 1987;
Podani and Miklos 2002). If simulations are used to assess
multivariate methods and strategies, however, then it must
be convincingly demonstrated that simulated data are repre-
sentative of data structures expected from the enumeration
of natural systems (Minchin 1987a,b).

Simulated data structures are based on Whittaker’s (1956)
pioneering work on plant species response to one or two
very broad environmental gradients, in a method known as
direct gradient analysis (Whittaker 1978). In this approach,
idealized species response curves along one or more com-
plex environmental gradients are obtained by averaging or
smoothing observed abundance data obtained from exten-
sive field surveys. The data for common species are then
smoothed to obtain idealized unimodal curves that represent
realized niche responses along the gradient or gradients
studied (Digby and Kempton 1987).

This idealized niche-based direct gradient model has been
used by biologists for over 30 years to compare and evalu-
ate multivariate methods and approaches. Simulated data
are generated by representing species responses to a single
environmental gradient (coenocline) as idealized unimodal
Gaussian curves, or to two orthogonal environmental gradi-
ents (coenoplane) as unimodal Gaussian response surfaces
(Gauch and Whittaker 1972a, 1976). While numerous mod-
ifications have been subsequently made to the basic model
[e.g., introducing random variation (Minchin 1987a)], the
basic and essential features of the gradient model have been
retained to this day. 
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It is instructive to consider the nature of the simulated
data arising from the coenoplane model: 
1. Variations in species abundances are entirely attributable

to species responses to one or two dominant environ-
mental gradients. 

2. Simulated species curves are idealized and smoothed
(averaged) niche-based responses. 

3. Only common species are considered. 
4. Environmental gradients are orthogonal (uncorrelated), and

all gradient combinations occur with equal frequency. 

Are such data representative of natural systems, or more
specifically of observed biotic data structures? Let us con-
sider each point in turn: 

1. In practice, species respond to a wide variety of factors,
including numerous environmental factors (not just one
or two) as well as disturbance, site history, dispersal lim-
itations, and so forth. 

2. Biotic survey and contingency data are notoriously
“noisy”, and a given species may not occur in the data
where it “should” (i.e., according to a niche-based
response curve). Thus, observed species responses,
obtained through sampling, will differ substantially from
idealized ones. 

3. Biotic data are characterized by log-linear species-abun-
dance distributions, resulting in many rare species that
have important consequences on data structure. 

4. Environmental variables are not independent, and some
environmental combinations may be absent or rare, e.g.,
for the environmental gradients soil moisture and nutri-
ent status, the combination of “very well-drained” and
“nutrient-rich” is rarely encountered. 

The inescapable conclusion is that the coenoplane model
produces simulated data structures that are fundamentally
different from those expected of biotic survey or contin-
gency data. This calls into serious question the inductive
approach of using simulated coenoplane data to evaluate the
efficacy of multivariate methods and approaches. 

OBJECTIVES OF MULTIVARIATE ANALYSIS
The objective of ordination is to reduce the dimensionality
of a set of variables in order to obtain a low-dimensional
summative model of the underlying multivariate data struc-
ture. Ordination methods achieve this goal by producing a
statistically optimized arrangement of the sampling units
along a reduced number of derived ordination axes. In addi-
tion, useful ordination methods produce weights and/or
biplot scores for variables along these derived axes.
Ordination is typically used to reduce variable dimensional-
ity to a much smaller number of interpretable dimensions, to
summarize variable inter-correlations, to determine the rela-
tive contribution of variables to the underlying data struc-
ture, and to quantify variable redundancy (Jeffers 1982).
Interpretation of ordination axes typically results in the gen-
eration of hypotheses regarding possible causal factors
determining the underlying data structure: for example,
biotic data ordination axes are often interpretable in terms of

underlying environmental factors or gradients. For this rea-
son ordination is sometimes referred to as “indirect gradient
analysis”, under the assumption that the ordination axes cor-
respond to underlying environmental factors indirectly mea-
sured by the sampled biota (ter Braak and Prentice 1988).
However, it must be recognized that numerous additional
factors determine biotic composition and abundance, such
as biotic interactions, historical factors, dispersal limita-
tions, and chance effects. The two major goals of multivari-
ate analysis – the representation of species composition in a
derived low-dimensional space, and gradient analysis –
should therefore be viewed as distinct objectives that cannot
be simultaneously achieved by a single ordination strategy
(Dea’th 1999). Ordination is a method for the efficient rep-
resentation of compositional trends, but cannot be expected
to fulfill optimally the objective of gradient analysis.

Canonical methods are appropriate when the broad objec-
tive is gradient analysis. More generally, canonical methods
are used to examine the relationship between two sets of
variables measured on the same sampling units. Typically,
the dependent or response variable set consists of species
composition-abundance (biotic data set), while the second
contains the independent or predictor variables, typically
environmental factors (abiotic data set). Under this scenario,
the objective is to determine the extent to which the envi-
ronmental data determines or predicts biotic composition,
and to obtain information as to which variables (both abiot-
ic and biotic) contribute most strongly to the relationship.
Such an approach is sometimes referred to as “direct gradi-
ent analysis”, since the environmental factors thought to
influence biotic composition are quantified and examined
directly (ter Braak and Prentice 1988). However, to avoid
confusion the term “direct gradient analysis” is used here
only in its historical sense: the approach of fitting species
response curves or surfaces to pre-specified environmental
gradients (Whittaker 1978). Of course, canonical methods
can also be used to examine the relationship between two
biotic data sets (e.g., plant species and insect species), or
two environmental data sets (e.g., soil variables and climat-
ic variables). 

DATA TRANSFORMATION
In both univariate and multivariate analysis, examination of
the frequency distributions of variables is critical to the
selection of an appropriate analytical strategy. While linear
statistical methods implicitly assume that variables are nor-
mally distributed, the vast majority of biological and physi-
cal measurements are distributed log-normally; that is,
frequency distributions are positively skewed to a greater or
lesser extent (Limpert et al. 2001). Both normal and log-nor-
mal distributions arise as a consequence of a large number
of factors acting independently on the variables. A normal
frequency distribution occurs when factor interactions are
additive, whereas multiplicative interactions result in a log-
normal frequency distribution. The factors governing fre-
quency distributions in nature are typically multiplicative –
growth is proportional to present size, for example, indicat-
ing a relative rather than absolute scale – implying that bio-
logical and physical measurements should be analyzed on a
logarithmic scale (Mead 1988). Fortunately, analysis on a
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log-scale is easily achieved through logarithmic transforma-
tion of continuous variables prior to the application of linear
statistical methods. Mead (1988) notes that logarithmic
transformation of variables greatly aids in meeting the
assumptions of linear models – including homogeneity
(reduction in variability), normality (reduction in skewness),
and additivity (conversion to a linear scale) – leading him to
state: “the statistical moral is that it should be assumed that
data for continuous variables should be transformed to a log
scale”. This sound advice applies equally well to multivari-
ate data analysis (Digby and Kempton 1987). 

The critical importance of data transformation generally,
and the logarithmic transformation in particular, is often not
fully appreciated by practitioners of multivariate data analy-
sis. Continuous abiotic (environmental) variables must be
log-transformed, both to increase normality and to ensure
additivity (Mead 1988). The logarithmic transformation is
particularly useful in reducing the influence of so-called
“outliers” (which are actually natural and expected quanti-
ties, since multiplicative effects will occasionally produce
very large values; see Limpert et al. 2001). 

For multivariate biotic survey data, two distributional
properties must be considered: the P frequency distributions
of the individual species (abundance values of a given row
in the data matrix), and a single distribution of total species-
abundances (i.e., the distribution of the P row total values).
The frequency distribution of enumerated abundance values
for a single species over the N sampling units is typically
strongly skewed to the right: there are a few large values, a
few more intermediate values, a great many small values,
and a greater or lesser number of zero values depending on
whether the species is rare or common (Legendre and
Legendre 1998). The main benefit of applying a log-trans-
formation to such data is to reduce the effect of the large val-
ues, which would otherwise be perceived as “outliers” by
linear models (Digby and Kempton 1987; Mead 1988). 

Consider now the single species-abundance distribution,
i.e., the distribution of species commonness and rarity. This
is the distribution of row totals, i.e., computed total abun-
dance for each species across the N sampling units.
Numerous studies have demonstrated that species-abun-
dance distributions are characterized by a few very abundant
or common species, a few more at medium abundance,
many more at low abundance, and a great many rare species
at very low abundance (Fisher et al. 1943; Preston 1948;
Whittaker 1965; Pielou 1975; Wilson 1991; Magurran
2004). Species-abundance data based on extensive surveys
and very large sample sizes are distributed log-normally, but
distributions based on a smaller sample size typical of most
multivariate data sets are truncated [the “veil line” of
Preston (1948)] and are generally indistinguishable from a
log-linear (log-series, geometric or related) distribution
(Tokeshi 1999; Hubbell 2001; Magurran 2004). In fact,
multivariate biotic survey data are often characterized by the
occurrence of a great many rare species (Digby and
Kempton 1987; Legendre and Legendre 1998), which con-
tribute substantially to the proportion of zero values in the
data (e.g., a species occurring only once will contribute N-1
zero values to the data matrix). Some multivariate methods

are particularly sensitive to, and the results unduly influ-
enced by, the presence of rare species. This sensitivity has
led to the development of ad hoc procedures for “down-
weighting” the influence of rare species (ter Braak and
Smilauer 2002), and to more extreme recommendations
such as the wholesale elimination of rare species from the
data prior to analysis (McCune and Grace 2002). Neither
approach can be condoned on theoretical or biological
grounds. Instead, practitioners should seek out ordination
methodologies and strategies that implicitly recognize and
account for the expected log-linear species-abundance dis-
tribution of biotic survey data. The logarithmic transforma-
tion is extremely useful in this regard, since it linearizes the
species-abundance relationship (Tokeshi 1999; Margurran
2004). This in turn linearizes the weighted contribution of
species in multivariate analysis. Without log-transforma-
tion, the analysis may be entirely dominated by a few abun-
dant species (Digby and Kempton 1987; McGarigal et al.
2000). 

A minor complication occurs in transforming variables
containing zero values to a log scale, since the logarithm of
zero is not defined. The simplest solution is to add an arbi-
trarily small number (equal to or less than the smallest
observable value) to each data value prior to transformation
(Mead 1988; Legendre and Legendre 1998; McCune and
Grace 2002). 

DATA STANDARDIZATION

Standardization of Variables 
Environmental variables are usually measured on different
scales, that is in different units. For example, soil data can
include variables expressed as depths, concentrations, pH-
units, and so forth. It is therefore necessary to standardize
the variables prior to multivariate analysis to achieve com-
mensurability. The most widely used method is standardiza-
tion by the standard deviate, also known as conversion to
variable “z-scores”. This standardization renders the vari-
ables scale-free and dimensionless, with each having zero
mean and unit variance (Legendre and Legendre 1998). This
is the standardization “built into” the product-moment cor-
relation coefficient. In multivariate analysis, the correlation
standardization (i.e., conversion to z-scores) gives equal a
priori weighting (variances) to the P variables. 

With biotic survey data, all variables (e.g., species) are
generally measured in the same units (e.g., counts). It is
therefore not necessary to standardize the variables, and it is
often undesirable to do so. Some researchers recommend
standardizing species variables to z-scores to give equal
weight to all species in multivariate analysis (e.g.,
McGarigal et al. 2000). While weighting species equally
might seem reasonable and even desirable, the conse-
quences of doing so must be considered in light of the log-
linear species-abundance distribution characteristic of biotic
survey data. Specifically, this standardization equalizes the
contribution of common and rare species in the analysis,
including very rare species (e.g., those occurring only once
or twice) that provide very little “information” to the data.
Such a standardization is therefore far too severe, producing
results that are largely dominated by the chance occurrences
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of rare species. Digby and Kempton (1987) note an addi-
tional disadvantage of standardization by the standard devi-
ate. Consider two species with the same mean abundance in
a sample data set. The first species occurs at similar – but
randomly varying – abundance in all sampling units (low
variance), while the second has consistently high cover in
wetter areas and low cover in dry areas (high variance). The
second species is therefore diagnostic of soil moisture con-
ditions, while the first is not. A multivariate analysis based
on unstandardized (or log-transformed) data would reveal
the moisture gradient clearly, but standardization would
equalize the variable variances and thus obscure the species-
environment relationship. 

In general, multivariate analysis results based on unstan-
dardized variables are often dominated by abundant species,
whereas those based standardized variables are dominated
by rare ones. A compromise solution is to base the analysis
on log-transformed data, which linearizes the species-abun-
dance relationship (i.e., species weights). The logarithmic
transformation is also a useful alternative to standardization
by standard deviate, as it renders the data values scale-inde-
pendent “save for an additive constant” (Digby and
Kempton 1987). 

Standardization of Sampling Units
It is sometimes necessary to standardize or relativize the
sampling units, particularly when the time and/or effort
available for data collection varies among them. For exam-
ple, consider a set of light traps established to determine the
composition and abundance of insect pollinators. The length
of time over which insects are collected may vary among the
traps. A common approach to this problem is to standardize
the sampling units by their variable totals (i.e., summations
over all species) to produce proportional or percentage data,
also known as compositional data (Aitchison 1986). This
standardization relativizes the data, constraining the sample
space to a geometric simplex (i.e., the N sampling units are
constrained to a space of P-1 dimensions). Standardization
of sampling units by their vector lengths [e.g., chord dis-
tance, Legendre and Legendre (1998)] is similar, but pro-
duces a “curved” geometric simplex. A constrained simplex
space is radically different from the standard Euclidean
space of vector data, although this is not always appreciat-
ed. The analysis of simplex-constrained data requires alter-
native multivariate approaches such as log-ratio analysis
and related techniques (Aitchison 1986; ter Braak and
Smilauer 2002). Some data sets are naturally compositional:
for example, soil texture is often quantified as percentages
of sand, silt and clay (constrained to total 100%). 

Double Standardization (Variables and Sampling
Units)
The most commonly used double standardization is the con-
tingency deviate, i.e., simultaneous standardization by row
and column totals. When a double standardization is per-
formed, it is implicitly assumed that the data can be viewed
as a contingency table, i.e., that relative rather than absolute
variation is of interest (Legendre and Legendre 1998). This
standardization is “built into” the ordination technique

known as correspondence analysis. The implications and
assumptions of double standardization in the context of cor-
respondence analysis are discussed in greater detail below. 

Local Standardization
Some empirically derived distance coefficients have “built-
in” local standardizations, meaning that the denominator
changes with each paired comparison of sampling units.
These coefficients are known as “semi-metrics” (Legendre
and Legendre 1998) or “scrambled forms” (Orloci 1978),
since local standardization necessarily distorts Euclidean
vector space. These coefficients cannot be recommended for
general use, based on both theoretical and statistical grounds
(Digby and Kempton 1987). Some researchers have recom-
mended the semi-metric “percent difference” (also known
as the Bray-Curtis or Sorenson) coefficient for general use
(e.g., Faith et al. 1987; McCune and Grace 2002). However,
this coefficient is very sensitive to large outlying values, and
it strongly distorts Euclidean vector space (Digby and
Kempton 1987; Legendre and Legendre 1998). Local stan-
dardization is unnecessary and should be avoided. 

ORDINATION METHODS
Ordination or scaling methods achieve an efficient and opti-
mized low-dimensional representation of a complex data
structure by emphasizing and bringing to the forefront
underlying trended variation while suppressing “noise”
(Gauch 1973). This objective is readily achievable since
multiple variables normally show coordinated responses to
one or more (typically many) underlying factors. Ordination
methods are generally used in exploratory data analysis,
both to search for and summarize underlying trends, and to
examine interrelationships among variables. A number of
ordination approaches are available, including principal
component analysis (PCA) and its variants, correspondence
analysis (CA), and non-metric multidimensional scaling
(NMDS). The discussion here is meant to provide a basic
understanding of the assumptions, advantages and limita-
tions of available ordination methods and is therefore pur-
posefully selective and non-technical. Statistical aspects of
multivariate methods used in the biological sciences can be
found in Digby and Kempton (1987), Legendre and
Legendre (1998), McGarigal et al. (2000), Kenkel et al.
(2002), and Gotelli and Ellison (2004). 

Principal Component Analysis (PCA)
Principal component analysis (PCA) obtains an optimized,
low-dimensional representation of coordinated variable
response along mutually orthogonal ordination axes in
Euclidean space. These ordination axes are derived through
rigid (and therefore linear) rotation of the P variables such
that the proportion of variance accounted for is maximized.
The first axis maximizes linear variance (i.e., it summarizes
the dominant linear trend), the second maximizes the resid-
ual variance not accounted for by the first axis (i.e., sub-
dominant linear trend), and so forth. The method is
somewhat analogous to simple linear regression, but extend-
ed to multiple dimensions and without distinguishing
between dependent and independent variables (Kenkel et al.
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2002). Principal component analysis and related methods do
not actually reduce dimensionality, but instead optimally re-
express linear variation along derived (variable-weighted)
ordination axes. Dimension reduction is achieved by retain-
ing only the dominant ordination axes, in much the same
way that simple linear regression expresses the relationship
between two variables as a “best-fit” line: variation about
the linear trend is considered “error” and is generally
ignored in predictive modeling. The first few ordination
axes, which account for much of the total variance of the
data set, will therefore normally provide a reasonable repre-
sentation of the underlying linear trends of coordinated vari-
able response (Gauch 1973). 

Principal component analysis is a straightforward method
of linear transformation, in which the total variance of the P
variables is repartitioned along orthogonal ordination axes.
The ordination axes are therefore derived variables
expressed as linear combinations of the original P variables.
Specifically, each variable is “weighted” on a given ordina-
tion axis in accordance to its contribution to the linear trend
summarized by that axis. Consider, for example, a multi-
variate data set with a single linear underlying trend. The
first ordination axis will summarize this trend, and species
displaying a coordinated response to this trend will be high-
ly weighted (either positively or negatively according to
their relationship to the overall trend). By contrast, variables
showing an uncoordinated response (i.e., trending away
from the majority) will have low weightings. 

Coordinate positions of the sampling units on the derived
ordination axes are readily obtained as simple linear combi-
nations of the variable weights: this is possible because ordi-
nation axes are obtained through rigid rotation of the
original variable axes in Euclidean space. Ordination results
are normally displayed as a scatter diagram (or scatterplot),
showing the coordinate positions of the sampling units on
the first two (i.e., most important) ordination axes. The dis-
play is rendered more interpretable by adding variable vec-
tors (biplot scores), which are readily derived from the
variable weights (Digby and Kempton 1987; Gower and
Hand 1996). 

Principal component analysis summarizes linear trends,
and as such is the method of choice for the effective sum-
marization of linear data structures. Continuous abiotic
(environmental) survey data should always be analyzed
using PCA (Leps and Smilauer 2003). Biotic survey data are
also very often amenable to PCA, provided that the under-
lying data structure is broadly linear (that is, that the data do
not encompass so great a range of environmental variation
that species responses are non-linear). Many biotic survey
data sets are broadly linear, making PCA the ordination
method of choice in most studies. Principal component
analysis also assumes variable normality; thus, like simple
regression analysis it is sensitive to outliers. Log-transfor-
mation of continuous variables will eliminate the outlier
problem (Digby and Kempton 1987). 

Principal coordinate analysis (PCoA), also known as met-
ric multidimensional scaling, is a generalized variant of
PCA that has become increasingly popular in recent years
(Podani and Miklos 2002). The method produces a mapping

of sampling units, in which the pair-wise distances among
sampling units in ordination space match as closely as pos-
sible their corresponding distances in variable space. A
PCoA ordination based on Euclidean distances among sam-
pling units is identical to that of a PCA based on a covari-
ance matrix among variables, but the method can be
generalized to accommodate other distance measures
(Legendre and Legendre 1998; Podani and Miklos 2002).
One drawback of PCoA is that variable weights (and thus
biplot scores) are not produced, making it difficult to exam-
ine and interpret interrelationships between variables and
ordination axes. 

Another variant of principal component analysis, termed
log-ratio analysis (Aitchison 1986), is appropriate when
analyzing compositional (percentage) data with no, or few,
zero elements (e.g., abiotic survey data). The most common
approach to log-ratio analysis is loglinear-contrast principal
components, which is the application of PCA to log-trans-
formed data centered by both variables and sampling units
(ter Braak and Smilauer 2002). Variable weights and biplot
scores can also be determined in log-ratio analysis
(Aitchison and Greenacre 2002). For compositional data
containing many zeroes, correspondence analysis may be
more appropriate (ter Braak and Smilauer 2002). 

Correspondence Analysis (CA)
Correspondence analysis (CA) assumes a chi-square data
space (versus the Euclidean data space assumed by PCA and
its variants), and is therefore ideally suited to the analysis of
contingency data (Greenacre and Hastie 1987). Reciprocal
averaging (Hill 1973) and dual scaling (Nishisato 1980;
Greenacre 1984) are theoretically identical to CA, although
their statistical developments differ (Digby and Kempton
1987). As a method of dual (row-column) scaling, CA pro-
duces an ordination biplot in which the variables and sam-
pling units are positioned according to their co-dependency
(Jeffers 1982). Various CA algorithms scale the biplot
scores differently, but this does not affect the interpretation
of co-dependency (Legendre and Legendre 1998). 

Curiously, CA can be viewed as either a linear or non-lin-
ear (unimodal) model (ter Braak and Smilauer 2002).
Specifically, CA can be viewed as a special case of a linear
PCoA in which the data are doubly standardized by the row
and column totals (Digby and Kempton 1987).
Alternatively, under specific limiting condition (see ter
Braak and Prentice 1988), CA achieves a parsimonious rep-
resentation of unimodal species responses to a single domi-
nant environmental gradient.

PCA and CA are actually quite similar, both conceptual-
ly and statistically (Legendre and Legendre 1998). Whereas
PCA operates in Euclidean data space to repartition the total
variance as a series of optimized linear additive components
(ordination axes), CA partitions the total contingency chi-
square (or inertia) as a series of linear additive components
within a chi-square data space (Digby and Kempton 1987).
Derived PCA axes therefore maximize linear variation,
whereas CA axes maximize the correspondence (or inertia)
between the rows and column categories (variables and
sampling units) of a data matrix. PCA summarizes trends by
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finding lines of best fit (much like regression analysis),
whereas CA summarizes trends by highlighting specific
matrix co-occurrences (that is, co-dependency of row-col-
umn categories). In CA, a higher inertia value indicates a
greater degree of correspondence between specific combi-
nations of the variables and sampling units (Kenkel et al.
2002).

Because CA is a contingency-based multivariate approach,
it is particularly sensitive to unique variable-sampling unit
combinations. It is not uncommon for such co-occurrences
to be highlighted at the expense of summarizing overall data
trends (ter Braak and Smilauer 2002). This feature is most
often a problem when CA is applied (or more correctly mis-
applied) to poorly structured biotic survey data, which are
very often characterized by one (or a few) “aberrant”
species values, i.e., species that occur at high abundance in
one or a few sampling units but are otherwise uncommon or
entirely absent in the remaining units. This situation rarely
occurs when CA is applied to structured contingency data
(e.g., Greenacre and Vrba 1984). 

Non-Metric Multidimensional Scaling (NMDS)
Both principal component analysis (and its variants) and
correspondence analysis utilize matrix algebra to derive
unique, successive linear composites such that distances
among sampling units in variable space are well represented
in a low-dimensional ordination space. Non-metric multidi-
mensional scaling (NMDS), or ordinal scaling, obtains a
similar representation using only the rank order of distances,
rather than the distance values themselves (Digby and
Kempton 1987). NMDS thus maps the sampling units into
an ordination space such that distances in the ordination
space are ranked as similarly as possible to those in variable
space. The theoretical advantage of this rank-order (ordinal)
approach to ordination is that underlying assumptions of lin-
earity (as in PCA and variants) or contingency (as in CA)
are not required nor specified. The lack of underlying
assumptions, however, necessitates the use of a computa-
tionally intensive iterative algorithm to derive an optimized
ordination configuration. At each NMDS iteration the rank
order relationship between ordination and variable space
distances is improved through successive approximation.
Iteration continues until the stress function, which measures
the correspondence between ranked ordination and variable
space distances, is minimized. The final solution is an opti-
mized rank-order mapping of the sampling units in an ordi-
nation space of specified dimensionality. The solution
obtained from a single run may not be globally optimal,
however, since NMDS is based on an iterative algorithm. It
is therefore imperative that multiple NMDS solutions be
obtained in order to ensure that a stable and optimal ordina-
tion configuration is found. Because only rank order rela-
tionships are used, NMDS solutions are unstable or even
degenerate when applied to small data sets or to poorly
structured data. 

NMDS has a number of additional disadvantages. Users
must pre-specify the dimensionality of the ordination solu-
tion, which may be difficult given that the inherent underly-
ing dimensionality of data is not generally known prior to

analysis. An additional limitation relates to the comparison
of ordination solutions in different dimensions. In PCA and
CA, the r-dimensional solution is simply the first r dimen-
sions of the s-dimensional solution, where r < s (Digby and
Kempton 1987). This is not true for NMDS, however, mak-
ing it difficult to compare NMDS results across dimensions.
Furthermore, NMDS ordination axes merely define a rela-
tive coordinate system and so cannot be interpreted in terms
of their relative “importance” in summarizing the variation
(as in PCA) or redundancy (as in CA) present in the data.
Finally, a true ordination biplot cannot be produced in
NMDS since variable weights are not determined, making
interpretation much more difficult (Gotelli and Ellison
2004). 

Given the many disadvantages and limitations of NMDS,
it is not surprising that Digby and Kempton (1987) conclud-
ed that “we are unable to recommend the general adoption
of non-metric methods to ecologists” (see also Legendre and
Legendre 1998; McGarigal et al. 2000). Despite this, some
researchers have recently championed the use of NMDS,
based on its supposed robustness to departures from the
“limiting” assumptions of PCA and CA (McCune and Grace
2002). While it is true that NMDS accepts a wide variety of
distance measures (including non-linear and ordinal mea-
sures), in practice ordination solutions obtained using
NMDS are rarely superior (and are very often inferior) to
those obtained using PCA, CA and their variants (e.g.,
Digby and Kempton 1987; McGarigal et al. 2000). As with
non-parametric univariate statistics (Sokal and Rohlf 1995),
NMDS should be viewed as a method of last resort when
applied to continuous or categorical data, to be used only
when other analytical options have been exhausted.
However, NMDS is more appropriate to the analysis of data
consisting of variables measured on a rank-order (ordinal)
scale (Podani 2005).

The Arch Effect
Simulation studies based on coenocline (single gradient)
models have shown that the second ordination axis is a sim-
ple quadratic function of the first, producing two-dimen-
sional ordinations in which the gradient is reproduced as an
arch or distorted curve. This mathematical artifact, also
known as the horseshoe or Guttman effect, is a natural con-
sequence of applying most distance measures to single gra-
dient data with unimodal species responses (Podani and
Miklos 2002). The arch effect in both NMDS and PCoA can
be alleviated using the method of flexible shortest path
adjustment (Bradfield and Kenkel 1987; De’ath 1999). In
CA, an empirically based method known as detrended cor-
respondence analysis (DCA) is often used to remove the
arch (ter Braak and Smilauer 2002). However, numerous
studies have demonstrated that “detrending” may further
distort ordination results (e.g., Jackson and Somers 1991).
The general consensus in the recent literature is that DCA
should be entirely avoided (Legendre and Legendre 1998;
McCune and Grace 2002; Gotelli and Ellison 2004) or used
with caution (McGarigal et al. 2000).

While problems related to the arch effect have received
much analytical attention, they are rarely a concern in prac-
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tice. The objective of ordination is to elucidate unknown
(but anticipated) underlying gradients, not to recover a sin-
gle obvious one. When a single environmental gradient pre-
dominates, the researcher is invariably aware of this and has
purposefully sampled along the gradient to quantify species
responses. The resultant data are therefore best analyzed
using direct gradient analysis (sensu Whittaker 1978), in
which species responses are plotted directly along one or
more known gradients. With such data, ordination is neither
necessary nor required (Digby and Kempton 1987). The
presence of the arch effect in CA (or any other ordination
method) indicates a single dominant underlying gradient,
implying that the results should be presented as a single
ordination axis (not a two-dimensional scattterplot); there-
fore, there is no need to “detrend” at all (Legendre and
Legendre 1998). 

CANONICAL METHODS
Canonical methods are used to determine the common struc-
ture, or correspondence, between two sets of variables (P1
and P2) measured on the same sampling units (Legendre and
Legendre 1998). A typical application involves determining
the degree and nature of the relationship between species
and environmental variables in a common sample. Other
examples include examination of the relationship between
two species data sets (e.g., plants and insects), or between
species groups and habitats. In all cases, the objective is to
examine and summarize the common structure of the two
data sets (Dray et al. 2003). 

A number of canonical methods have been proposed,
reflecting the many possible approaches for assessing the com-
mon structure of two data sets. Symmetric or descriptive
canonical methods are correlation-based: neither data set takes
on a response or predictive role. Asymmetric or predictive
canonical models are regression-based approaches, in which
one variable set (typically environmental data) takes on a pre-
dictive role while the other (species data) contains response
variables. Canonical methods are also distinguished based on
assumptions regarding the underlying structures of the two
data sets. PCA-based canonical models assume that both data
sets are linear, whereas in CA-based models one or both data
sets are assumed to have unimodal (non-linear) responses. A
final distinction is made between models based on multiple
regression (classical canonical approach) and those based on
partial least-squares regression (co-inertia approach). 

Canonical Correlation Analysis (CCor)
Canonical correlation analysis (CCor) is a symmetric,
descriptive method for examining the linear relationship
between two data sets containing P1 and P2 variables,
respectively, (Legendre and Legendre 1998). The method
determines the common correlation structure of the two data
sets by maximizing the squared correlation between pairs of
derived linear canonical axes: one in species space, the other
in environment space. A maximum of t pairs of canonical
axes are found, where t is the lesser of P1 and P2. Like all
canonical models, successive canonical axes are obtained
subject to their being uncorrelated with those previously
obtained (Kenkel et al. 2002). 

Numerically, canonical correlation analysis involves two
simultaneous multiple regressions (Dray et al. 2003). As a
result, the number of variables P1 and P2 must be much
smaller than the number of sampling units. This, together
with the assumptions of linearity and analytical symmetry,
limits the applicability of CCor in many survey studies. The
number of variables can be reduced by first performing sep-
arate PCA ordinations on the two data sets, and then sub-
jecting the scores from the major PCA axes to CCor (Kenkel
et al. 2002). This data-reduction approach is numerically
equivalent to inter-battery analysis (Tucker 1958), also
known as PCA-PCA co-inertia analysis (Dray et al. 2003). 

Redundancy Analysis
Redundancy analysis (RDA), also known as PCA with
instrumental variables (Rao 1964), is the canonical or con-
strained form of PCA (Legendre and Legendre 1998). The
method is asymmetric and predictive, since it maximizes
predictions for a set of response variables (species data)
given a set of predictive variables (environmental data). The
method is essentially a PCA in which the sampling unit
locations in species space are restricted to be linear combi-
nations of the predictor or environmental variables (ter
Braak and Smilauer 2002). The method, which is based on
multiple linear regression analyses (one for each of the P1
species on all the P2 predictor variables), generally produces
results similar to CCor. An example demonstrating that
RDA is simply a principal component analysis of the fitted
values obtained from the P1 multiple linear regression
analyses is provided by Legendre and Legendre (1998).

Redundancy analysis is the appropriate canonical model
when both data sets are linear, and when an asymmetric
analysis is required (i.e., when environmental variables are
used to predict species composition, but not vice-versa).
Because the method involves multiple regression, the num-
ber of predictor variables must be small relative to the num-
ber of sampling units and species: otherwise, the results are
very similar to unconstrained PCA of the species data (Dray
et al. 2003). 

Canonical Correspondence Analysis
Canonical correspondence analysis (CCA) is the canonical
or constrained version of CA, and is thus closely related to
RDA (ter Braak and Prentice 1988; Legendre and Legendre
1998). Like RDA, the method uses multiple regression to
obtain linear combinations of the predictor variables that
best explain sampling unit positions in species space (ter
Braak and Smilauer 2002). CCA is the appropriate predic-
tive, asymmetric model when species responses are uni-
modal (response variables as contingency data) and the
environmental (predictor) data are linear (ter Braak 1986).
As in RDA, the number of predictor variables must be small
relative to the number of sampling units. 

CCA is undoubtedly the most widely used canonical
model in ecology. This is largely attributable to the avail-
ability of proprietary CCA computer programs (Dray et al.
2003), and to the numerous studies advocating CCA for
general use (Leps and Smilauer 2003). The method is a con-
strained form of CA and is therefore well-suited to the
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canonical analysis of contingency data. However, CCA pro-
duces highly distorted results when applied to linear biotic
data: RDA should be used instead (Dray et al. 2003). 

Co-Inertia Analysis
Co-inertia analysis (COIA) refers to a generalized approach,
based on partial least-squares regression, for analyzing the
common structure of two data sets (Doledec and Chessel
1994; Dray et al. 2003). Co-inertia analysis is a symmetric,
descriptive model that permits analysis of two data sets
using various linear and contingency approaches. The
approach includes many existing methods as special cases:
for example, a PCA-PCA COIA (i.e., a model assuming that
both the species and environmental data are linear) is inter-
battery analysis (Tucker 1958), which is in turn closely
related to RDA and CCor. Co-inertia analysis differs from
the “classic” canonical models (CCor, RDA, CCA) in uti-
lizing partial least-squares regression, rather than multiple
regression, to summarize common structure. However,
comparable canonical and co-inertia methods often (but not
always) produce similar results: thus PCA-PCA COIA is
related to RDA, and PCA-CA COIA is related to CCA
(Dray et al. 2003). The symmetric form of co-correspon-
dence analysis, a canonical method for comparing two con-
tingency tables, is equivalent to a CA-CA COIA (ter Braak
and Schaffers 2004). 

Because COIA is based on partial least-squares regres-
sion, it places no restrictions on the number of variables that
can be analyzed (unlike the classic canonical models). The
co-inertia model is symmetric, and therefore descriptive
rather than predictive. However, in practice equivalent sym-
metric and asymmetric models often give very similar
results. Canonical models may offer superior performance
when some environmental variables show low correlation,
whereas co-inertia analysis provides superior results when
environmental variables are highly correlated (Dray et al.
2003). The main advantage of co-inertia analysis is its flex-
ibility – as a general model, it incorporates various analyti-
cal combinations for comparing two data sets. Furthermore,
the model can be extended to the analysis of a series of
paired tables: for example, to examine changes in species –
environmental relationships over a temporal series
(Thioulouse et al. 2004). 

DISCUSSION
Historically, recommendations regarding the choice of
appropriate ordination methodologies in the biological sci-
ences were based on inductive reasoning. Specifically, the
performance of various methods and standardizations were
assessed using data generated from simulated coenoplane
models (Whittaker and Gauch 1978). For some researchers,
this remains the principal or sole approach to assessing mul-
tivariate methods and strategies (e.g., McCune and Grace
2002). When simulated data are used in this way, it is
implicitly assumed that: (1) different methodologies can be
objectively and completely assessed based solely on their
ability to recover highly specific, idealized data structures;
(2) theoretical considerations can be ignored when compar-
ing methods and strategies; and (3) the criteria for compari-

son are sensible and objective for both species and environ-
mental data. 

There is certainly merit in using simulated coenoplane
models to illustrate the efficacy and limitations of particular
analytical methods. However, using such models as the
principal or sole strategy for assessing multivariate methods
can result in highly misleading and even erroneous conclu-
sions, particularly when such models fail to reflect accurate-
ly the underlying structure of most environmental and biotic
data sets (Minchin 1987b). 

The most restrictive limitations of coenoplane models
relate to their very conceptualization (Gauch and Whittaker
1972a, 1976). They are niche-based models that consider
idealized, unimodal response curves of dominant species
along one or two continuous, lengthy and orthogonal envi-
ronmental gradients (Minchin 1987a, b). Such models are
clearly not representative of the great diversity, or indeed
the vast majority, of “real” environmental and biotic data
sets. Biotic survey data rarely, if ever, adhere to such a
restrictive model, and the model is entirely irrelevant for
environmental data. Given such severe limitations, it is in
hindsight remarkable that coenoplane models historically
played such a predominant role in assessing the efficacy of
ordination methods and strategies, and more remarkable still
is that they continue to do so today. An unfortunate recent
trend is the selective use of coenoplane models to dismiss
summarily established ordination methods and to advocate
non-metric multidimensional scaling as the “future of ordi-
nation”, and as “one of the most defensible techniques dur-
ing peer review” (McCune and Grace 2002). Such
statements are indefensible given the unrealistic properties
of the simulated coenoplane data on which they are based. 

A further limitation of coenoplane models is that they
make no provisions for the oft-observed log-linear frequen-
cy distributions of both species-abundance values (i.e., the
row totals), and of values for individual species across the
sampling units (i.e., the values in a given row). An impor-
tant consequence of the log-linear distribution of species-
abundance is that most species are rare and therefore
contribute disproportionately to the number of zeros in biot-
ic survey data. By contrast, the coenoplane model implicit-
ly assumes that zero values indicate not rarity, but rather
positions along an underlying environmental gradient that
are beyond the tolerance limits of a species. Uncritical appli-
cation of the coenoplane model leads to the conclusion that
biotic survey data “becomes increasingly sparse [greater
proportion of zeros] as the range of environment encom-
passed by the sample increases” (McCune and Grace 2002,
p. 38). While this is strictly true, the converse is certainly
not: a data set containing a high proportion of zeroes (typi-
cal of biotic survey data) does not necessarily indicate a
wide range of environmental variation. Indeed, it is entirely
possible that a high proportion of zeros simply reflects the
expected distribution of commonness and rarity, even in a
study site that is environmentally invariant. Despite this, it
is often argued that a high proportion of zeros indicates a
broad range of environmental variation (Legendre and
Legendre 1998). More controversially, a high proportion of
zeros is sometimes used in support of the erroneous argu-
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ment that PCA and related linear models are inappropriate
to the analysis of biotic survey data (McCune and Grace
2002). 

In practice the proportion of zeros in a data set is a func-
tion of both the species-abundance relationship (i.e., the dis-
tribution of commonness and rarity) and species tolerance
limits along environmental gradients, making it difficult to
separate their relative effects. However, it is instructive to
note that published biotic survey data sets (including those
used in evaluating ordination methods, e.g., Digby and
Kempton 1987; McGarigal et al. 2000; ter Braak and
Smilauer 2002; McCune and Grace 2002) are almost invari-
ably characterized by a few ubiquitous (or nearly ubiqui-
tous) species, a few more moderately common species, and
a great many rare species: exactly the distribution expected
from a log-linear species-abundance relationship (Tokeshi
1999; Margurran 2004). The presence of one or more ubiq-
uitous species in these data leads to the inescapable (and
sobering) conclusion that the range of environmental varia-
tion in many biotic survey data sets is actually rather small
– or at least not as great as often assumed – since at least
some species occur over the entire environmental range
sampled. This in turn implies that the large proportion of
zeros characteristic of biotic survey data is a direct conse-
quence of the log-linear species-abundance relationship, and
has much less to do with species tolerance limits and uni-
modal response curves. The implication of this observation
is of critical importance, for it indicates the need for a para-
digm shift in the approach used to select an appropriate ordi-
nation method and strategy. Specifically, much greater
attention needs to be devoted to the distributional properties
of biotic survey data, and much less to unrealistic coeno-
plane models of species tolerance limits and unimodal
response curves. 

The criteria for selecting appropriate ordination methods
and strategies should ultimately be based on the scientific
method: observational and theoretical considerations of data
structures, analytical objectives and methodologies are
therefore of paramount importance (Orloci 1978; Legendre
and Legendre 1998; Hubbell 2001). Such considerations
should take precedence over empirical investigations based
on inductive reasoning (i.e., general statements based on
limited coenoplane simulation models) when evaluating
ordination methods. Empirical investigations invariably
produce erroneous recommendations regarding the utility of
ordination methodologies: thus, statements such as
“Ecological community data are, however, rarely amenable
to PCA”, or that “… there should be no regular application
of CA to ecological community data” (both quotes from
McCune and Grace 2002) are both misleading and wrong. 

GENERAL RECOMMENDATIONS
The development of an appropriate multivariate analytical
strategy for a given data set should proceed as a careful
sequence of steps, in which results obtained at a given step
determine subsequent ones (Jeffers 1982). Multivariate data
analysis is thus a process of adaptive learning, in which
decisions made at a given analytical stage direct subsequent
steps and strategies. Before proceeding with a formal multi-

variate analysis, it is critically important to complete a
detailed exploratory analysis of the data. Exploratory analy-
sis is undertaken to elucidate and summarize distributional
properties and underlying trends of the data, which in turn
direct the user to meaningful analyses and interpretations
(Tukey 1977; Legendre and Legendre 1998). Digby and
Kempton (1987) provide an excellent example of how
exploratory analyses of the Park Grass Experiment data pro-
vide critical insights regarding necessary data transforma-
tions and variable standardizations, and for selecting the
most appropriate ordination and canonical methods. 

It must be emphasized that there is no single “best” ordi-
nation or canonical method. Rather, the underlying data
structure and study objectives must be considered when
choosing an appropriate methodology. Selection of an
appropriate multivariate analytical strategy must therefore
be made on a case-by-case basis, and should never be based
solely on simplified “recommendations” found in the litera-
ture. Nonetheless, some methods are clearly of limited use,
while others have a broader appeal. For example, NMDS
cannot be recommended for general use: it offers few if any
advantages over PCA and CA, and has a number of serious
disadvantages. Conversely, PCA – which has been much
maligned in the past and recent ecological literature –
should certainly be much more widely used. 

Some strategies to aid in the selection of appropriate mul-
tivariate methods and analytical strategies are presented
below. These are meant as general guidelines only, and it
must again be emphasized that considerations of study
objectives and data structure (obtained through exploratory
data analysis) must ultimately drive decisions concerning
data transformation, variable standardization, and selection
of ordination and canonical methods. These guidelines are
largely based on my experience over the past 20 years as a
multivariate analysis consultant to graduate students and
colleagues across a broad range of biological sub-disci-
plines, including agronomy and weed science, soil science,
environmental science, plant and animal ecology, numerical
taxonomy, oceanography, and biogeography. I have found
that selection of an appropriate multivariate analytical strat-
egy invariably transcends disciplines, and that the single
most important factor is data structure: that is, whether one
is analyzing continuous abiotic (environment), continuous
biotic (species), or categorical contingency data. 

Ordination Methods 
As with univariate analysis, it is strongly recommended that
multivariate analysis of categorical or continuous data pro-
ceed by first applying linear ordination methods having
well-known underlying assumptions and statistical proper-
ties. Linear ordination methods (PCA and CA) are statisti-
cally powerful and remarkably robust to moderate
deviations from underlying assumptions (Sokal and Rohlf
1995; Legendre and Legendre 1998). Non-metric ordina-
tion, like univariate non-parametric statistics, should only be
used when all other options (including data transformation
and variable standardization) are exhausted, and it can be
convincingly demonstrated that the assumptions of more
statistically robust models are clearly violated. Despite my
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earlier advocacy of NMDS (Kenkel and Orloci 1986;
Bradfield and Kenkel 1987), I have found that non-metric
ordination is very rarely required. 

Abiotic (Environmental) Survey Data
Analytically, this is certainly the most straightforward data
structure. All continuous variables should be linearized
through log-transformation except, of course, for those
recorded on a logarithmic scale (e.g., soil pH). Since envi-
ronmental data invariably consist of variables measured on
different scales, variables must be standardized by standard
deviation (z-scores). The appropriate method for this type of
data is PCA of a correlation matrix based on log-trans-
formed data. CA is inappropriate in this case because it will
severely distort the underlying data structure by emphasiz-
ing relative rather than absolute differences (ter Braak,
1986; ter Braak and Smilauer 2002), and because the vari-
ables are measured on different scales (Leps and Smilauer
2003).

Biotic (Species) Survey Data
Species abundance values should be log-transformed prior
to ordination, both to linearize the relative contributions of
common and rare species and to alleviate problems associ-
ated with outlier values. In general, species variables should
not be standardized to z-scores. In the rare case where
species variables are measured on different scales, log-
transformation may be a better choice than standardization
to z-scores (Digby and Kempton 1987). An initial analysis
of species survey data should employ PCA of a covariance
matrix based on log-transformed data. This recommenda-
tion runs counter to that of many researchers advocating CA
(or DCA) or NMDS for the ordination of biotic data, but in
my experience most biotic survey data are broadly linear
(i.e., they encompass a relatively modest range of environ-
mental variation). In such cases interest focuses on absolute
rather than relative differences in species abundance, imply-
ing that PCA is the correct model. Automatic application of
CA or NMDS implies that biotic data are characterized by
high species turnover (and unimodal response curves), but
there is no prior reason to suppose this to be the case
(Legendre and Legendre 1998; McGarigal et al. 2000). 

The efficacy of a linear PCA model can be assessed
through careful examination of a two-dimensional ordina-
tion biplot, which displays both the positions of sampling
units and vectors of species correlations. The positions of
sampling units relative to one another, and to the species
biplot vectors, should be examined and related back to
trends in the raw data (sorting the species and sampling
units by their scores on the first ordination axis will simpli-
fy the comparison). Practitioners should ask: does the ordi-
nation configuration reflect well the underlying data
structure? Ultimately, the “success” of the ordination model
in summarizing underlying data structure must be deter-
mined by the individual researcher (Jeffers 1982; Legendre
and Legendre 1998). 

If the PCA ordination configuration reflects the underly-
ing data structure, it is not necessary to seek an alterative
model. Conversely, a poor ordination representation indi-

cates that a non-linear model may be appropriate (contin-
gency data, discussed below), or alternatively that the data
are poorly structured. Poorly structured data arise when one
or more variables are exclusive to one or more sampling
units that contain only these variables – that is, disjunctions
occur in the data set. Disjunct data, which are impossible to
adequately represent by any ordination technique, often
indicate inadequate sampling effort in surveying the biota.
Examples of poorly structured data, and the analytical chal-
lenges they present, can be found in the recent monograph
by Shaw (2003). 

Contingency Data
Correspondence analysis (CA) is the ordination method of
choice for analyzing contingency data. Since CA undertakes
a simultaneous double standardization by row and column
totals, variables should not be standardized to z-scores. A
logarithmic transformation is generally not necessary and
may be undesirable, since the double standardization of CA
implies that relative rather than absolute differences are
summarized. 

Application of CA to contingency data may occasionally
produce a two-dimensional ordination with a pronounced
arch effect, indicating predominance of a single strong
underlying gradient. If this occurs, the results should be
summarized along the first ordination axis (Legendre and
Legendre 1998). Alternatively, the environmental factor
reflecting the gradient can be identified (it is usually obvi-
ous), and the species responses displayed using direct gradi-
ent analysis (Digby and Kempton 1987). It is rarely
necessary, nor desirable, to utilize detrended correspon-
dence analysis (DCA). 

CA is highly sensitive to outliers, particularly unique
row-column combinations (e.g., a sampling unit with high
abundance of a species that is otherwise absent, or at low
abundance, in all other sampling units). This problem most
commonly arises when CA is applied to biotic survey data,
which are often “sparse” (e.g., a given species may be dom-
inant in only one sampling unit). For this reason, CA cannot
be recommended for general use in the analysis of biotic
survey data. However, CA is well-suited to the analysis of
contingency data obtained from extensive biotic surveys
that involve substantial sampling effort (e.g., Greenacre and
Vrba 1984). 

Canonical Methods
Canonical analysis should always be preceded by separate
ordination analyses of the two data sets that are to be canon-
ically compared (typically, a biotic or species data set, and
an abiotic or environment data set). If this is done, the selec-
tion of an appropriate canonical method is very straightfor-
ward. Because environmental data are invariably linear
(most often following logarithmic transformation), PCA is
the appropriate model (ter Braak 1986). If the biotic data are
also linear (i.e., the PCA model is deemed appropriate), then
the canonical model of choice is RDA (or PCA-PCA COIA)
using a covariance matrix of log-transformed species abun-
dance data. For biotic contingency data, the appropriate
canonical model is CCA (or CA-PCA COIA). Finally, co-
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correspondence analysis (or CA-CA COIA) is the appropri-
ate method for comparing two contingency tables. 
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